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Abstract

Background: Viral infection involves a large number of protein-protein interactions (PPIs) between virus and its host.
These interactions range from the initial binding of viral coat proteins to host membrane receptor to the hijacking the
host transcription machinery by viral proteins. Therefore, identifying PPIs between virus and its host helps understand
the mechanism of viral infections and design antiviral drugs. Many computational methods have been developed to
predict PPIs, but most of them are intended for PPIs within a species rather than PPIs across different species such as

PPIs between virus and host.

for single virus-host PPIs.

Results: In this study, we developed a prediction model of virus-host PPIs, which is applicable to new viruses and
hosts. We tested the prediction model on independent datasets of virus-host PPIs, which were not used in training
the model. Despite a low sequence similarity between proteins in training datasets and target proteins in test
datasets, the prediction model showed a high performance comparable to the best performance of other methods

Conclusions: Our method will be particularly useful to find PPIs between host and new viruses for which little
information is available. The program and support data are available at http://bclab.inha.ac.kr/VirusHostPPI.

Keywords: Virus and host, Interspecies protein-protein interaction, Prediction model

Background

There are many types of viruses that cause a wide vari-
ety of viral infections or viral diseases. For example, more
than 11,000 deaths were reported in Africa during the out-
break of Ebola virus disease in 2014 and 2015 [1]. More
recently, an outbreak of Middle East respiratory syndrome
coronavirus (MERS-CoV) [2], which began with a patient
in an emergency room, occurred in South Korea. So far,
there is no specific vaccine or effective treatment for Ebola
virus and MERS-CoV [1, 2]. Viral infection involves a large
number of protein-protein interactions (PPIs) between
virus and its host. These interactions range from the initial
binding of viral coat proteins to host membrane receptor
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to the hijacking the host transcription machinery by viral
proteins. Therefore, identifying PPIs between virus and its
host helps understand the mechanism of viral infections
and design antiviral drugs.

Many computational methods have been developed to
predict PPIs, but most of them are intended for PPIs
within a same species rather than for PPIs across differ-
ent species. Methods for predicting intra-species PPIs do
not distinguish interactions between proteins of the same
species from those of different species, and thus are not
appropriate for predicting inter-species PPIs. Motivated
by a recent increase in data of virus-host PPIs, a few com-
putational methods have been developed to predict virus-
host PPIs using machine learning methods. For instance,
a homology-based method [3] and domain-based method
[4] were proposed to predict PPIs between H. sapiens and
M. tuberculosis H37Rv. Cui et al. [5] developed a support

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-018-4924-2&domain=pdf
http://bclab.inha.ac.kr/VirusHostPPI
mailto: khan@inha.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Zhou et al. BMC Genomics 2018, 19(Suppl 6):568

vector machine (SVM) model to predict PPIs between
human and two types of viruses (hepatitis C virus and
human papillomavirus). However, these prediction meth-
ods cannot be applied to new viruses or new hosts that
have no known PPIs to the methods. Inter-species PPIs
predicted by these methods are for PPIs between virus
of a single type and host of a single type. A recent SVM
model called DeNovo is perhaps the only one that can pre-
dict PPIs of new viruses with a shared host [6]. Amino
acid sequence similarity between different types of viruses
or hosts is relatively low, so sequence-based prediction of
virus-host PPIs for new viruses or hosts is quite challeng-
ing. In this study, we developed a new prediction method
of virus-host PPIs which is applicable to new viruses or
hosts. The rest of this paper discusses the details of the
method and its experimental results.

Methods

Data of virus-host PPIs

We obtained all known PPIs between virus and host using
the PSICQUIC web service (http://www.ebi.ac.uk/Tools/
webservices/psicquic/view/main.xhtml). We extracted
virus-host PPIs from four databases, APID, IntAct, Men-
tha and UniProt, which use same protein identifiers. The
sequences of the proteins involved in any of the PPIs were
obtained from the UniProt database (http://www.uniprot.
org). As of December 2016, there are a total of 12,157
PPIs between 29 hosts and 332 viruses (Table 1). The
reason that human is listed as a separate category from
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other animals (i.e., non-human animals) in the classifica-
tion of hosts is because human has a much larger number
of known PPIs with viruses than other animals. Detailed
information on the viruses involved in the virus-host PPIs
is available at http://bclab.inha.ac.kr/VirusHostPPIL

Learning-based prediction of PPIs requires both posi-
tive and negative PPI data, but negative data are not read-
ily available in databases. For negative data, we obtained
protein sequences of major hosts (human, non-human
animal, plant, and bacteria) from UniProt, and removed
those with a sequence similarity higher than 80% to any
positive data using CD-HIT-2D [7].

Datasets

We constructed several datasets to examine the applica-
bility of our prediction method to new viruses or hosts.
The datasets are classified into two types:

1. Training (TR) and test (TS) sets for assessing the
applicability to new viruses

TR1: PPIs between human and any virus except
HIN1

TR2: PPIs between human and any virus except
Ebola virus

TR3: PPIs between any host and any virus except
HIN1

TR4: PPIs between any host and any virus except
Ebola virus

TS1: PPIs between human and HIN1 virus

Table 1 The number of known host-virus PPls and viruses interacting with a host

Host Major hosts #Host-virus #Interacting
classification (taxonomy ID) PPIs virus taxanomy IDs
Human Homo sapiens (9606) 11,491 246
Mus musculus (10090) 191 89
Bos taurus (9913) 125 32
Rattus norvegicus (10116) 86 19
Non-human Sus scrofa (9823) 57 10
animal Gallus gallus (9031) 15 9
Equus caballus (9796) 7 6
Drosophila melanogaster (7227) 4 3
Canis lupus familiaris (9615) 3 1
Plant Arabidopsis thaliana (3702) 17 11
Escherichia coli K-12 (83333) 78 9
Bacteria Streptococcus pneumonia (170187) 49 2
Pseudomonas aeruginosa (208963) 13 4
Escherichia coli (562) 3 1
Others 15 hosts 18 15
Total 29 12,157 332%

332*: the total number of non-redundant viruses in terms of taxonomy IDs
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TS2: PPIs between human and Ebola virus

2. Training (TR) and test (TS) sets for assessing the
applicability to new hosts

TR5: PPIs between human and any virus

TS5.1: PPIs between non-human animal and any
virus

TS5.2: PPIs between plant and any virus

TS5.3: PPIs between bacteria and any virus

TS5.4: PPIs between any non-human host and any
virus

To examine the applicability of the prediction method
to new viruses, we constructed a training dataset with
10,955 PPIs between human and any virus except HIN1
virus (hereafter called TR1). The prediction method was
later tested on a test dataset with 381 PPIs between human
and HINI1 virus (called TS1), which were not used in
training the method. We constructed another training
dataset TR2 with 11,341 PPIs between human and any
virus except Ebola virus. The prediction method trained
with TR2 was tested on a test dataset TS2, which con-
tains 150 PPIs between human and Ebola virus (Fig. 1a).
Additional training datasets for studying the applicabil-
ity to new viruses are TR3 and TR4. TR3 contains 11,617
virus-host PPIs except PPIs of HIN1 virus. TR4 consists of
12,007 virus-host PPIs except PPIs of Ebola virus. The pre-
diction model trained with TR3 and TR4 was later tested
on TS1 and TS2, respectively (see Fig. 1b for details).

The reason for selecting the viruses for the SVM model
is as follows: (1) For training the SVM model, we tried
to select as many virus proteins as possible which have
known interactions with host proteins. (2) For testing
the SVM method on new viruses, we selected HIN1 and
Ebola virus because the viruses caused a large number
of deaths recently but no specific vaccine or effective
treatment is available yet.
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The applicability of the prediction method to new hosts
was evaluated using training dataset TR5 and test datasets
TS5.1-TS5.4. TR5 contains 11,491 PPIs between human
and any virus. The prediction method trained with TR5
was tested on PPIs of non-human hosts with virus, which
were not used in training the method. The test datasets
include TS5.1 (PPIs of non-human animal with virus),
TS5.2 (PPIs of plant with virus), TS5.3 (PPIs of bacteria
with virus) and TS5.4 (PPIs of any non-human host with
virus) (Fig. 2).

To assess the independence of the test data from
the training data, we analyzed the sequence similarity
between the training datasets and test datasets using
EMBOSS Needle tool [8]. As shown in Table 2, target
proteins in the test datasets showed a very low sequence
similarity with proteins in the training datasets (see the
supporting data at http://bclab.inha.ac.kr/VirusHostPPI
for the similarity of every sequence pair between the
training datasets and test datasets).

Features and representation

Feature selection and representation are critical to the
success of prediction of PPIs. In particular, one of the chal-
lenges in sequence-based prediction of virus-host PPIs
is to represent two types of proteins of variable lengths
into a feature vector of a fixed length. Several encoding
schemes have been used to represent protein sequences
for predicting PPIs. For instance, Shen et al. [9] clus-
tered 20 amino acids into seven groups, and represented
the relative frequency of three consecutive amino acids
(referred to ’amino acid triplet’) in a protein sequence
using the classification. In our previous work [5], we
redefined the relative frequency of an amino acid triplet
using six groups of amino acids. However, both Shen’s
representation and ours generate a feature vector with
many zero-valued elements, which lower the prediction
performance.

a
Host Virus
HiN1
’ Others ‘

and Ebola virus

Host Virus
H1N1
Others

Fig. 1 a Training dataset 1 (TR1): 10,955 PPIs between human and any virus except HIN1. Test dataset 1 (TS1): 381 PPIs between human and H1N1
virus. Training dataset 2 (TR2): 11,341 PPIs between human and any virus except Ebola virus. Test dataset 2 (TS2): 150 PPIs between human and
Ebola virus. b Training dataset 3 (TR3): 11,617 PPIs between any host and any virus except HIN1. Test dataset 1 (TS1): 381 PPls between human and
H1N1 virus. Training dataset 4 (TR4): 12,007 PPIs between any host and any virus except Ebola virus. Test dataset 2 (TS2): 150 PPIs between human
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Fig. 2 Training dataset 5 (TR5): 11,491 PPIs between human and any
virus. Test dataset 5.1 (TS5.1): 488 PPIs between non-human animal
and any virus. Test dataset 5.2 (TS5.2): 17 PPIs between plant and any
virus. Test dataset 5.3 (TS5.3): 143 PPIs between bacteria and any virus.
Test dataset 5.4 (TS5.4): 666 PPls between non-human host and any
virus (combined set of test datasets 5.1, 5.2, 5.3 and 18 PPIs with 15
other hosts)

In this study, we represent six different features of a
protein sequence in a feature vector. For representation,
we fist clustered twenty amino acids into seven groups,
(AGV}, {C}, {FILP}, {MSTY}, {HNQW}, {DE}, and {KR}
based on the dipoles and volumes of the side chains of
amino acids. The classification of amino acids is the same
as that of Shen et al. [9] and others [10]. In this classifica-
tion of amino acids, there are 7 x 7 x 7 = 343 possible
amino acid triplets.

For each pair of host and virus proteins, we represent
the relative frequency of amino acid triplets (RFAT) as a
feature vector with 686 elements (343 for a host protein
and 343 for a virus protein). The RFAT of the i-th amino
acid triplet is defined by Eq. 1. In the equation, f;, avgF, and
maxF denote the frequency of the i-th amino acid triplet,
the average, and the maximum frequency of amino acid
triplets in the protein sequence, respectively.

RFAT; = e(fi_“"gF) / (maxF—avgF) (1)

where avgF = avg {f1,f2, . . ., f343}
maxF = max {fl,fg, e ,f343}
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Another feature is the frequency difference of amino
acid triplets (FDAT) between virus and host proteins,
which is defined by Eq. 2. In Eq. 2, f; is the frequency
of the i-th amino acid triplet in the host protein of the
host-virus pair, and f,; is the frequency of the i-th amino
acid triplet in the virus protein of the same host-virus pair.
avgFD and maxFD denote the average and the maximum
frequency difference of amino acid triplets in a host-virus
pair, respectively.

EDAT; = e(lfhi—ﬂi|—ﬂVgFD) / (maxFD—avgFD) 2)

where  avgFD = avg {|fix — frl, - . ., fizas — fizazl}
maxFD = max {|fin — firl, .., [fiuzas — fzasl}

We also represent amino acid composition (AC) in each
pair of host and virus proteins (Eq. 3). AC; is the frequency
of the i-th amino acid present in a host-virus pair divided
by the maximum frequency of an amino acid in the
pair.

AC, = i 3)

max{fl,fg,...,fgg}

The above three features, RFAT, FDAT and AC were
developed in our previous study for inter-species PPIs
of a single type [11]. However, the previous study used
a different classification of amino acids and computed
the average and the maximum frequency from all pro-
teins in a dataset instead of a single protein being
encoded.

As additional features, we used composition, transition
and distribution of amino acid groups [10]. Composition
represents the normalized frequency of each amino acid
group in the protein sequence. Transition represents the
normalized frequency of transition between each amino
acid group in the protein sequence. Distribution is the
normalized position of the first, 25%, 50%, 75% and 100%-
th amino acid of each amino acid group in the protein

Table 2 The average sequence similarity between proteins in training datasets and those in test datasets

Average
Proteins in training datasets Target proteins in test datasets sequence

similarity
766 virus proteins in TR1,TR3 11 HINT virus proteins in TS1 9.6%
774 virus proteins in TR2,TR4 3 Ebola virus proteins in TS2 10.9%
3,924 human proteins in TR5 368 non-human animal proteins in TS5.1 10.7%
3,924 human proteins in TR5 13 plant proteins in TS5.2 10.6%
3,924 human proteins in TR5 106 bacteria proteins in TS5.3 10.4%
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sequence. A pair of host and virus proteins is represented
by a feature vector with 1,175 elements (686 for RFAT, 343
for FDAT, 20 for AC, 14 for compositions, 42 for transi-
tions, and 70 for distributions). Figure 3 shows an example
of a feature vector for a pair of host and virus proteins.

Results and discussion

Prediction models of virus-host PPIs

We built several support vector machine (SVM) models
using LIBSVM [12] to predict the interactions between
virus and host proteins. The radial basis function (RBF)
was used as a kernel function for training the SVM mod-
els, and the best values of parameters C and y were
found by running the grid search of LIBSVM on train-
ing datasets. Unless specified otherwise, the results shown
in this paper were obtained with C=32, y = 0.03125.
The SVM models take a pair of virus and host protein
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sequences as input. As output, the SVM models clas-
sify whether or not the virus protein interacts with the
host protein. The SVM models and supporting data are
available at http://bclab.inha.ac.kr/VirusHostPPI.

Performance measures

The performance of the prediction models were evalu-
ated by several measures: sensitivity, specificity, accuracy,
positive predictive value (PPV), negative predictive value
(NPV), Matthews correlation coefficient (MCC) and the
area under the ROC curve (AUC), which are defined as
follows

. P
Sensitivity = ————— (4)
TP + FN
TN
Specificity = ——— 5
pecficity = T Fp )

Host protein sequence

Host amino acid (HA) [M[ATATAJC]R[CJL]STEJLJL[L[S[T[C[V[A[Q[D[K]

Group index [4[ 1] 1[1]2] 7123141633131 414[2] 1] 1][5]6]7]

Virus protein sequence

Virus amino acid (VA) [M[P[N]L[W F D] K[ L[G|G[C[V[A[A[A[M[Q[R[R[R[F[L[L]V[C[V][WD[H[S[K

Group index [4[3[5[3]5[3[6] 7|3 L[ 1]2|1[L[1[1[4]5]7]7[7[3]3[3[1[2]1]5]6]5]4]7

35 Distributions

RFAT
343 RFATs 343 RFATs
HA triplet index | 111 112 777 VA triplet index | 111 112 777
Frequency 1 1 0 Frequency | 2 1 0
RFAT | 2.718 | 2.718 0.556 RFAT | 2.718 | 1.611 1.611
FAT
343 FDATs — 20 ACs —
Triplet index| 111 112 777 Amino acid A C w
Frequency 1 1 1 Frequency 7 5 2
FDAT | 1.599 | 1.599 1.599 AC| 0.875 | 0.625 0.250
- i
— 7 Compositions . ompasitions
HAgroupindex [ 1 [ 2 ] [ 7] VA grlf)up index é % ; { % ;
Frequency | 5 | 3 | [ 2 ] tequency
21 Transitions 21 Transitions —
HA Transition [ 1-2 [ 1-3 | [6-7 | VA Transition [ 1-2 [ 1-3 | [6-7 ]
Frequency [ 2 | 0 | [ 1 ] Frequency [ 4 | 2 | [ 1]
Distribution

35 Distributions

Position percentile [ 1 [ 25% [ 50%[ 75% [ 100% |

Position percenti]el 1 [25% [ 50%] 75% [ 100%

27

vector with 1175 elements

Position of HAgroup 1| 2 | 3 | 4 | 14 | 15 | Positionof VAgroup1[ 10 | 11 | 14 16 |
Position of HAgroup7[ 6 | 0 | 0 | 0 | 21 | Positionof VAgroup7[ 8 [ 19 [ 20 [ 21 [ 32 |
iy iy
1,175 elements
686 RFATs 343 FDATs ‘ 20 ACs |14 Compositions | 42 Transitions | 70 Distributions

Fig. 3 An example of a feature vector for a pair of host and virus proteins. RFAT: relative frequency of amino acid triplets. FDAT: frequency difference
of amino acid triplets between virus and host proteins. AC: amino acid composition. A pair of host and virus proteins is represented by a feature
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TP+ TN
Accuracy = (6)
TP + FP + TN + FN
TP
PPV = ———— (7)
TP + FP
TN
NPV = ————— (8)
TN + FN
(TP x TN) — (FP x FN)
MCC

~ /(TP 1 EP)(TP + EN)(IN 1 FP)(IN + EN)
)

In Egs. 4-9 true positives (TP) are host proteins that
are correctly predicted as interacting with a virus protein.
True negatives (TN) are non-interacting host proteins that
are correctly predicted as non-interacting with a virus
protein. False positives (FP) are non-interacting host pro-
teins that are incorrectly predicted as interacting with a
virus protein. False negatives (FN) are interacting host
proteins that are incorrectly predicted as non-interacting
with a virus protein.

Results of cross validation

We performed 10-fold cross validation of the SVM model
with several datasets which contain different ratios of
positive to negative data (1:1, 1:2 and 1:3). Due to the ran-
domness of selecting negative data, we constructed three
different datasets for each ratio of positive to negative
data. Table 3 shows the results of the cross validation.
The best performance of the SVM model was observed in
the balanced dataset with 1:1 ratio of positive to negative
data. As expected, running the SVM model on unbalanced
datasets resulted in lower performances than running
it on the balanced dataset with 1:1 ratio of positive to
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negative data. Datasets are available at http://bclab.inha.
ac.kr/VirusHostPPI.

We also examined the contribution of features to the
prediction performance of our SVM model. Table 4 com-
pares different combinations of features in 10-fold cross
validation of the SVM model with the 1:1 dataset of
Table 3. Among the single features, RFAT was better than
the others (i.e., FDAT, AC, composition, transition, and
distribution) in all performance measures. With RFAT
alone, the SVM model achieved an accuracy above 83%
and an MCC above 0.668, which indicates that RFAT
is a very powerful feature in predicting virus-host PPIs.
Although RFAT is a powerful feature, performance gain
was obtained with it was used with combination of other
features. For example, using three features of RFAT, FDAT
and AC showed a better performance than using RFAT
alone. The best performance of the SVM model was
observed when all six features were used.

Applying the prediction model to new viruses

Table 5 shows the results of testing the prediction model
on 2 independent datasets of PPIs of HIN1 and Ebola
virus, which were not used in training the models. As dis-
cussed earlier, proteins of HIN1 virus have a sequence
similarity of 9.6% to those of other viruses, and proteins
of Ebola virus have a sequence similarity of 10.9% to other
viruses on average. Despite such a low sequence similarity
of proteins in test datasets to those in training datasets, all
prediction models trained with TR1-TR4 showed a rel-
atively high performance in independent testing. Predic-
tion models trained with host-virus PPIs (TR2 and TR4)
showed a slightly better performance than those trained
with human-virus PPIs (TR1 and TR3) in both HIN1 and
Ebola viruses. The models showed a higher sensitivity for

Table 3 Results of 10-fold cross validation of SYM model on 12,157 PPIs between any host-virus PPIs with different ratios of positive to

negative instances

P:N Dataset SN(%) SP(%) ACC(%) PPV(%) NPV(%) MCC AUC
1 84.93 86.03 8548 85.87 85.09 0.709 0.926

1:1 2 84.92 86.06 85.49 85.89 85.09 0.701 0.926
3 85.36 85.92 85.64 85.84 85.44 0.712 0.925
mean £ SD 85.07+0.3 86.00+0.1 85.54+0.1 85.87+£0.0 85.21+0.2 0.71+£0.0 0.93+0.0
1 7891 91.17 87.08 81.72 89.64 0.707 0.923

1:2 2 78.29 91.03 86.78 81.36 89.34 0.700 0.921
3 7822 91.18 86.86 81.59 89.33 0.701 0.920
mean £ 5D 7847+04 91.13£0.1 86.91£0.2 81.56£0.2 89.44+£0.2 0.70£0.0 0.92+£00
1 74.55 9332 88.63 78.82 91.66 0.691 0.920

1:3 2 7461 93.56 88.82 7943 91.70 0.696 0.919
3 74.62 9341 88.72 79.07 91.69 0.693 0.920
mean £ SD 7459%£0.0 9343+0.1 88.72+0.1 79.11£03 91.68 £0.0 0.69+0.0 0.92+0.0

SN: sensitivity, SP: specificity, ACC: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, AUC: the area under the ROC
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Table 4 Results of 10-fold cross validation with datasets of virus-host PPIs using different combinations of features

Features SN(%) SP(%) ACC(%) PPV(%) NPV(%) MCC AUC
RFAT 82.85 84.04 83.45 83.84 83.05 0.668 0.903
FDAT 68.34 57.84 63.11 61.86 64.65 0.264 0.689
AC 59.85 68.11 63.98 65.24 62.92 0.281 0.698
Composition 71.79 55.79 63.79 61.89 66.42 0.279 0.685
Transition 74.05 55.72 64.88 62.58 68.23 0.302 0.713
Distribution 71.79 31.55 51.67 51.19 52.80 0.036 0515
RFAT+FDAT+AC 84.73 85.62 85.18 85.49 84.86 0.703 0.920
Composition+Transition +Distribution 76.51 61.72 69.12 66.65 7243 0.386 0.787
All 6 features 85.36 85.92 85.64 85.84 85.44 0.712 0.925

SN: sensitivity, SP: specificity, ACC: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, AUC: area under the ROC

Ebola virus than for HIN1 virus. Detailed information is
available at http://bclab.inha.ac.kr/VirusHostPPIL.

Applying the prediction model to new hosts

In order to examine the applicability of our prediction
model to new hosts, we tested it on PPIs of viruses with
new hosts, which were not used in training the model.
As described earlier, the model trained with human-virus
PPIs was tested on PPIs of viruses with non-human (i.e.,
non-human animal, plant and bacteria). As shown earlier
in Table 2, the average sequence similarity of human pro-
teins to non-human animal, plant, and bacteria is 10.7%,
10.6%, and 10.4%, respectively. Despite the low sequence
similarity, tests of the model on new hosts showed a
reasonable good performance (Table 6), but its perfor-
mance for new hosts was slightly lower than that for new
viruses.

The difference seems ascribed to the difference in the
number of target proteins in test datasets and to the dif-
ference in the number of partner proteins of the target
proteins, which are shared by training and test datasets.
Test datasets TS1 and TS2 have 381 interactions of 11
HI1NT1 virus proteins and 150 interactions of 3 Ebola virus
proteins with human proteins, respectively (Fig. 1 and
Table 2). Test datasets TS5.1, TS5.2 and TS5.3 have 488

interactions of 368 non-human animal proteins, 17 inter-
actions of 13 plant proteins and 143 interactions of 106
bacteria proteins with virus proteins, respectively (Fig. 2
and Table 2).

On average, a test dataset for new viruses has (381 +
150)/2 = 266 PPIs and a test dataset for new hosts has
(488 + 17 4 143)/3 = 216 PPIs. Thus, the difference
in the average number of PPIs of the two types of test
datasets is not large. However, there is a big difference
in the number of target proteins in the test datasets and
in the number of proteins common to training and test
datasets. The average number of virus proteins in a test
dataset for new viruses is only (11+3)/2 = 7, whereas the
average number of host proteins in the test datasets for
new hosts is (368 + 13 4 106)/3 = 162. Thus, virus-host
PPIs in the test datasets for new viruses share many host
proteins in the training datasets (248 host proteins com-
mon to TR1 and TS1, 129 host proteins common to TR2
and TS2, 248 host proteins common to TR3 and TS1, and
129 host proteins common to TR4 and TS2) even though
no virus proteins are shared by the test and the training
datasets. In contrast, virus-host PPIs in the test datasets
for new hosts share a much smaller number of virus pro-
teins in the training datasets (85 virus proteins common
to TR5 and TS5.1, 0 common to TR5 and TS5.2, 2 virus

Table 5 Results of testing the prediction model on PPIs of new viruses

Dataset SN(%) SP(%) ACC(%) PPV(%) NPV(%) MCC AUC

TR1-TS1 89.76 66.14 7795 7261 86.60 0.575 0.886
TR2-TS2 90.67 65.33 78.00 7234 87.50 0.579 0.867
TR3-TS1 88.98 65.88 7743 72.28 85.67 0.564 0.884
TR4-TS2 94.67 68.67 81.67 7513 92.79 0.656 0.890

TR1: training dataset of PPIs between human and any virus except HIN1. TS1: test dataset of PPIs between human and HINT virus. TR2: training dataset of PPIs between
human and any virus except Ebola virus. TS2: test dataset of PPIs between human and Ebola virus. TR3: training dataset of PPIs between any host and any virus except HINT.
TR4: training dataset of PPIs between any host and any virus except Ebola virus. SN: sensitivity, SP: specificity, ACC: accuracy, PPV: positive predictive value, NPV: negative

predictive value, MCC: Matthews correlation coefficient, AUC: area under the ROC
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Table 6 Results of testing the prediction models trained with human-virus PPIs (TR5) on PPIs of new hosts

Dataset SN(%) SP(%) ACC(%) PPV(%) NPV(%) MCC AUC
TR5-TS5.1 66.39 65.98 66.19 66.12 66.26 0324 0.733
TR5-TS5.2 7647 5882 67.65 65.00 7143 0.359 0.761
TR5-TS5.3 5944 74.83 6713 70.25 64.85 0.347 0.736
TR5-TS5.4 64.87 67.87 66.37 66.87 65.89 0.327 0.731

TS5.1: test dataset of PPIs between non-human animal and any virus. TS5.2: test dataset of PPIs between plant and any virus. TS5.3: test dataset of PPIs between bacteria and
any virus. TS5.4: test dataset of PPIs between any non-human host (non-human animal, plant, bacteria and 15 other hosts) and any virus. SN: sensitivity, SP: specificity, ACC:
accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, AUC: the area under the ROC

proteins common to TR5 and TS5.3, and 87 virus proteins
common to TR5 and TS5.4).

This is a known problem with pair-input methods,
which was first reported by Park and Marcotte [13],
but not widely known to researchers. According to their
study [13], prediction methods that operate on pairs of
objects such as PPIs perform much better for test pairs
that share components with a training set than for those
that do not. Thus, our prediction model showed a bet-
ter performance in testing for new viruses which share
more partner proteins (i.e., host proteins) with train-
ing datasets than in testing for new hosts which share
fewer partner proteins (i.e., virus proteins) with training
datasets.

Comparison to other methods

We compared our method with two other methods, DeN-
ovo [6] and Barman’s method [14], using their datasets.
For comparison with DeNovo’s SVM model, we tested
our SVM model on DeNovo’s SLiM testing set, which
contains 425 positive and 425 negative PPIs (Supple-
mentary file S12 used in DeNovo’s study ST6). While
DeNovo’s SVM model showed an accuracy of 81.90%,
sensitivity of 80.71%, specificity of 83.06%, our SVM
model achieved an accuracy of 84.47%, sensitivity of
80.00%, and specificity of 88.94% (Table 7). Our model
showed a slightly lower sensitivity, but showed a higher
specificity and accuracy. The dataset used for compar-
ison of our SVM model with DeNovo is available at
http://bclab.inha.ac.kr/VirusHostPPI.

In Barman’s study [14] three machine learning meth-
ods (SVM, Naive Bayes, and Random Forest) were used
to predict virus—host PPIs using several features such as
domain—domain association in interacting protein pairs
and composition of methionine, serine, and valine in

viral proteins. In a 5-fold cross validation with virus—host
PPIs from VirusMINT [15], their SVM showed higher
sensitivity and F1 score than Naive Bayes and Random
Forest. Thus, we tested our SVM model on the same
dataset used in Barman’s study, which contains 1035 pos-
itive and 1,035 negative interactions between 160 virus
proteins of 65 types and 667 human proteins. As shown
in Table 8, our SVM model outperformed Barman’s SVM
model in all performance measures. The dataset used for
comparison of our SVM model with Barman’s SVM model
is available at http://bclab.inha.ac.kr/VirusHostPPL

Conclusion

Most computational methods of predicting PPIs are
intended for interactions within a species rather than for
interactions across different species such as interactions
between virus and host cell proteins. A small number of
computational methods which were recently developed
for predicting PPIs between virus and host are limited to
interactions of single virus or single host, and therefore a
separate prediction model is required to predict PPIs of
new viruses or hosts. However, proteins of new viruses or
hosts often exhibit quite a low sequence similarity to pro-
teins of known viruses or hosts, and little information is
available for new viruses or hosts.

In this study, we developed a prediction model of virus-
host PPIs, which is applicable to new viruses and hosts.
We tested the prediction model on independent datasets
of virus-host PPIs, which were not used in training the
model and have a very low sequence similarity to any
protein in training datasets of the model. Despite a low
sequence similarity between proteins in training datasets
and target proteins in test datasets, the prediction model
showed a high performance comparable to the best per-
formance of other methods for single virus-host PPIs. Our

Table 7 Results of testing our SYM and DeNovo's SVM [6] on DeNovo's dataset of 425 positive and 425 negative PPIs

SN(%) SP(%) ACC(%) PPV(%) NPV(%) MCC AUC
Our SYM 80.00 88.94 84.47 87.86 81.64 0.692 0.897
DeNovo's SYM 80.71 83.06 81.90 - - - -

SN: sensitivity, SP: specificity, ACC: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, AUC: the area under the

ROC, "~": not available
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Table 8 Results of 5-fold cross validation of our SVM and Barman'’s SVM [14] with Barman’s dataset of 1035 positive and 1035 negative

PPIs

SN(%) SP(%) ACC(%) PPV(%) NPV(%) MCC AUC F1(%)
Our SYM 76.14 83.77 79.95 8246 77.80 0.601 0.858 7917
Barman’s SYM 67.00 74.00 71.00 72.00 - 0.440 0.730 69.41

SN: sensitivity, SP: specificity, ACC: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, AUC: the area under the

ROC, F1 = 2x(SNXPPV)/(SN+PPV), “~": not available

prediction model will be useful in finding potential PPIs of
new viruses with new hosts, for which little information is
known.
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