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Abstract

Background: Although different quality controls have been applied at different stages of the sample preparation
and data analysis to ensure both reproducibility and reliability of RNA-seq results, there are still limitations and bias
on the detectability for certain differentially expressed genes (DEGs). Whether the transcriptional dynamics of a
gene can be captured accurately depends on experimental design/operation and the following data analysis
processes. The workflow of subsequent data processing, such as reads alignment, transcript quantification,

normalization, and statistical methods for ultimate identification of DEGs can influence the accuracy and sensitivity
of DEGs analysis, producing a certain number of false-positivity or false-negativity. Machine learning (ML) is a
multidisciplinary field that employs computer science, artificial intelligence, computational statistics and information
theory to construct algorithms that can learn from existing data sets and to make predictions on new data set. ML—
based differential network analysis has been applied to predict stress-responsive genes through learning the
patterns of 32 expression characteristics of known stress-related genes. In addition, the epigenetic regulation plays
critical roles in gene expression, therefore, DNA and histone methylation data has been shown to be powerful for

method.

sensitivity of DEGs identification.

ML-based model for prediction of gene expression in many systems, including lung cancer cells. Therefore, it is
promising that ML-based methods could help to identify the DEGs that are not identified by traditional RNA-seq

Results: We identified the top 23 most informative features through assessing the performance of three different
feature selection algorithms combined with five different classification methods on training and testing data sets.
By comprehensive comparison, we found that the model based on InfoGain feature selection and Logjistic
Regression classification is powerful for DEGs prediction. Moreover, the power and performance of ML-based
prediction was validated by the prediction on ethylene regulated gene expression and the following qRT-PCR.

Conclusions: Our study shows that the combination of ML-based method with RNA-seq greatly improves the

Keywords: Machine learning, Differentially expressed genes (DEGs), Ethylene, Arabidopsis

Background

Differentially expressed genes (DEGs) have been widely
used to understand not only gene function but also the
molecular mechanisms underlying different biological
processes. A number of methods have been developed to
analyze differential gene expression, such as Real-time
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reverse transcription PCR (qRT-PCR) [1], cDNA micro-
array analysis [2], whole genome tiling array [3-5], RNA
sequencing (RNA-seq) [6-8]. As a result of the low cost
of next generation sequencing technologies and its
remarkable power and accuracy, RNA-seq has become
the most popular method for DEGs analysis.

Although different quality controls have been applied
at different stages of the sample preparation and data
analysis to ensure both reproducibility and reliability of
RNA-seq results, there are still limitations or bias on the
detectability for certain DEGs [9-11]. Whether the
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transcriptional dynamics of a gene can be captured
accurately depends on experimental design/operation
and the following data analysis processes [9, 12, 13]. The
workflow of subsequent data processing, such as reads
alignment, transcript quantification, normalization, and
statistical methods for ultimate identifying of DEGs can
influence the accuracy and sensitivity of DEGs analysis,
producing a certain number of false-positivity or
false-negativity [14—16].

Machine learning (ML) is a multidisciplinary field that
employs computer science, artificial intelligence, compu-
tational statistics and information theory to construct
algorithms that can learn from existing data sets and to
make predictions on new data set [17]. It is increasingly
a key tool for biological studies, including biological image
analysis [18], cancer study [19, 20], robust phenotyping
[21], as well as gene discovery [22—24]. ML—based differ-
ential network analysis has been applied to predict
stress-responsive genes through learning the patterns of
32 expression characteristics of known stress-related
genes [23]. In addition, the epigenetic regulation plays
critical roles in gene expression, therefore, DNA and his-
tone methylation data has been shown to be powerful for
ML-based model for prediction of gene expression in lung
cancer [19]. Therefore, ML-based methods are able to as-
sist with the identification of DEGs that are missed by a
regular RNA-seq data analysis method.

Take plant response to ethylene as an example: ethyl-
ene is a small volatile hydrocarbon gas and regulates a
wide variety of developmental processes and stress
responses in plant cells. Signal transduction of ethylene
has been studied for more than 2 decades, mainly with
the model plant Arabidopsis, and a linear signal trans-
duction pathway has been proposed [25, 26]. Ethylene
regulated genes have been determined using RNA-seq in
Arabidopsis etiolated seedlings [6, 8, 27, 28], in which
many genes have been confirmed to be regulated by
ethylene treatment, such as CONSTITUTIVE TRIPLE
RESPONSE 1 (CTRI) [29], EIN3-BINDING F BOX PRO-
TEIN 2 (EBF2) [30], ETHYLENE RESPONSE 2 (ETR2)
[31] etc. However, some well-known ethylene regulated
genes, namely EIN3-BINDING F BOX PROTEIN 1
(EBFI) [30], WRKY 25 [32], WRK 26 [32] were not de-
tected by RNA-seq. Thus, ethylene-regulated transcrip-
tome is a good example to exploit the ML-based method
to assist the detection of additional genes overlooked in
RNA-seq.

Here, by using epigenomics and transcriptomics data
from 3-day-old etiolated Arabidopsis seedlings of Col-0
and ein2-5 we tested the performance of ML-based
identification of DEGs in response to ethylene. In brief,
468 features were collected from histone H3K9Ac,
H3K14Ac and H3K23Ac ChIP-seq data in Col-0 and
ein2-5 mutant seedlings that treated with or without 4 h
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of ethylene gas. We then identified the top 23 most in-
formative features through assessing the performance of
three different feature selection algorithms combined
with five different classification methods on training and
testing data sets. By comprehensive comparison, we de-
termined that the model based on InfoGain feature se-
lection and Logistic Regression classification is powerful
and robust for DEGs prediction. Moreover, the power
and performance of ML-based prediction on the ex-
pression of ethylene regulated gene were evaluated
by qRT-PCR. Taken all together, our study shows
that the combination of ML-based method with
RNA-seq significantly improved the sensitivity of
DEGs identification.

Methods

Plant growth conditions

Arabidopsis seeds were surface-sterilized in 50% bleach
with 0.01% Triton X-100 for 15 min and washed five
times with sterile, doubly distilled H,O before plating on
MS medium (4.3 g MS salt, 10 g sucrose, pH 5.7, 8 g
phyto agar per liter). After 3—4 days of cold (4 °C) treat-
ment, the plates were wrapped in foil and kept in at 24 °C
in an incubator before the phenotypes of seedlings were
analyzed. For propagation, seedlings were transferred from
plates to soil (Pro-mix-HP) and grown to maturity at 22 °C
under 16-h light/8-h dark cycles. Ethylene treatment of
Arabidopsis seedlings was performed by growth of seed-
lings on MS plates in air-tight containers in the dark sup-
plied with either a flow of hydrocarbon-free air (Zero
grade air, AirGas) or hydrocarbon-free air with 10 ppm
(ppm) ethylene as previously described [33].

ChIP-seq data analysis

Raw ChIP-seq data associated to histone H3K9Ac,
H3K14Ac and H3K23Ac from Arabidopsis Col-0 and
ein2-S5 etiolated seedlings treated with air or 4 h ethylene
gas were downloaded from NCBI GEO under GSE77396
[8] and GSE93875 [34]. The raw reads were mapped to
the Arabidopsis genome (TAIR10) [35] and uniquely
mapped sequencing reads were generated using bowtie
software (version 1.1.2) [36, 37]. For each histone modifi-
cation in each condition, mapped reads were pooled
across ChIP-seq replicates as described [8, 34, 38].

Extraction of segment associated features

The aligned reads were intersected with the relevant
segments of the transcript including upstream of the
transcription start site (TSS) (TSS1500 and TSS200),
downstream of the TSS (TSS + 200), UTR region (UTR5
and UTR3), first and last exon/intron, exon/intron body,
single exon/intron, full transcripts and full length of
gene (Fig. 1a), using the multicov tool in Bedtools toolkit
[39]. These data were further normalized over segment
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Fig. 1 Performance comparison of models with various feature selection and classification methods. a Segments associated with protein coding
genes. Features considered to predict differential gene expression are depicted on a segment-by-segment basis. From 5" to 3" end of the protein
coding genes, listed are transcription starting sites (TSS) upstream up to 1500 bp (TSS 1500) and 200 bp (TSS 200), TSS downstream 200 bp (TSS
+200), transcription termination sites (TTS) downstream 200 bp (TTS 200), first exon which may include 5" UTR, first intron, exon body, last intron,
and last exon which may include 3" UTR. A full transcript region is determined as the UTRs and coding region together. A full gene region is
determined as the UTRs, coding region and introns together. b-f The Receiver Operating Characteristic (ROC) curves and g Areas Under the
Curve (AUQ) are used to compare the performance of models with different combinations of feature selection (Red line, InfoGain; Blue line,
Correlation feature selection (CFS); Green line, ReliefF) and classification (b Logistic Regression, ¢ Classification Via Regression, d Random Forest,
e Logistic Model Trees (LMT) and f Random Subspace), on the training data with 10-fold cross-validation. The model with InfoGain based feature
selection and Logistic Regression classification is selected as the best model

C for ethylene (C,H,) treatment, diff for the difference

length and total reads number. For the name of features
of the reads between them were divided by the average

in Additional file 1: Table S2, initials are used to repre-

sent the individual ecotype where the features come
from: C for the Col-0 seedlings and e for ein2-5 seed-
lings. Following the initial is a K started number repre-
senting the specific histone H3 acetylation marker: K9
for H3K9Ac, K14 for K3K14Ac, K23 for K3K23Ac. Next
to the histone marker is the represent the treatment or
comparison of histone modification: A for air treatment,

of the two [24], and log2FC for log(2)-transformed fold
change value between air and ethylene treatment
(log2(value of ethylene treatment / value of air treat-
ment)). As a result, features are named as seedling eco-
type, histone modification, treatment (or differential
histone modification) and segment (such as CK9A_UTR5,
CKadiff UTR5, CK9log2FC_UTRS5 etc.).
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Extraction of histone peak associated features

Peaks significantly enriched in ChIP-seq tags were
identified by Model-based Analysis for ChIP-Seq
(MACS2, version 2.1.0.20150603; parameters: --nomo-
del,-p 0.01) as previously described [40]. The nearest
gene was assigned if there was more than one gene
within 5 kilobases (kb) of the peak region [8, 28, 34].
Numbers of peaks assigned to one gene (such as num-
berpeaks_CK9A), average peak size of peaks assigned to
one gene (such as avg_peaksize_CK9A), average peak
fold enrichment against IgG control for peaks assigned
to one gene (avg FE_CK9A) and average distance of
peaks to the associated gene (such as avg_distan-
ce_CK9A) were then calculated.

Differential peaks between air and ethylene treat-
ment were identified using the MAnorm method [41].
For this method, the normalized M value (M =log2
(Read density in C,H, treated sample/Read density in
air treated sample)) represents log2-transformed fold
changes of enrichment intensities at each peak region
[40-42]. Thus, an absolute threshold value of M > 0.4
and P <0.05 were used to select differentially
enriched peaks as done previously [8, 34]. The nearest
gene was assigned if there was more than one gene
within 5 kilobases (kb) of the differential peak region
[8, 28, 34]. Numbers of differential peaks assigned to
one gene (such as numberpeaks_CK9diff), average
peak size of differential peaks assigned to one gene
(such as avg_peaksize_CK9diff), average peak fold
enrichment of ethylene against air treatment for the
differential peaks assigned to one gene (avg_FE_CK9-
diff) and average distance of differential peaks to the
associated gene (such as avg_distance_CK9A) were
then calculated.

RNA-seq data analysis

RNA-seq raw data were downloaded from NCBI GEO
under GSE77396 [8, 43]. Raw reads were aligned to
TAIR10 genome release using TopHat version 2.0.9
[44] with default parameters. Differentially expressed
genes were identified using Cufflinks version 2.2.1 fol-
lowing the workflow with default parameters [45].
Gene expression levels (RPKM, Reads Per Kilobase
per Million mapped reads) in air and ethylene condi-
tion were generated from the output files of cuffdiff
[45]. The log2 transformed RPKM values log2
(RPKM) was calculated, and then R scripts were used
to analyze the correlation between biological repli-
cates. The differentially expressed genes were then
classified as binary outcomes: either up-regulated or
down-regulated, once those for which relative fold
change values (RPKM) of larger than 1.5 and RPKM
value larger than 1 [34].
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Machine learning analysis

Weka 3 data mining software [46] was used for feature
selection, classifier training and evaluation. Heat maps,
Boxplots, Receiver Operating Characteristic (ROC) curves,
Venn diagrams were performed using R (version 3.2.2).

In detail, important features were first identified with
three feature selection algorithms: Information Gain
(InfoGain) [47]; Correlation Feature Selection (CES) [24,
47, 48] and ReliefF, [49]. Then, to predict genes in the
up and down categories, five widely used classifiers -Lo-
gistic Regression, Classification Via Regression, Random
Forest, LMT, Random Subspace- were employed, which
have been applied to solve various classification and pre-
diction problems in biology, showed comparable or even
higher performance than other commonly used machine
learning algorithms (Additional file 1: Table S4 and S6)
[23, 24, 50-52]. To perform this analysis, we first split
the data sets into training data set and testing data set,
with 80% of differentially expressed genes for training
data set, and the remaining 20% genes for testing data
set. Next, to achieve the best combination, 10-fold cross
validation on various combinations of feature selection
and classification methods were performed. Finally, to
predict differentially expressed genes, the top 3 powerful
combinations were applied to the candidate gene list. Bio-
logical functions of associated genes were assessed by
Gene Ontology Consortium [53, 54] and agriGO [55, 56].

Real-time PCR

Total RNA was extracted using a Qiagen Plant Total
RNA Kit (Sigma) from 3-day-etiolated seedlings treated
with air or 4 h ethylene gas. First-strand cDNA was
synthesized using Invitrogen Superscript III First-Strand
¢DNA Synthesis Kit. PCR reactions were performed in a
total volume of 20 uL, containing 2 pL each 5-mM
primer and 10 pL SYBR Green PCR Supermix in trip-
licate on a Roche 96 Thermal cycler according to the
manufacturer’s instruction. The cycling program com-
prised an initial denaturation step at 95 °C for
10 min, followed by 50 cycles of 95 °C for 10 s, 60 °C
for 10 s, and 72 °C for 20 s. All qRT-PCR values were nor-
malized using the cycle threshold value corresponding to
the reference gene. The relative expression levels of the
target gene were calculated using 2(-Delta Delta C(T))
method [57]. The sequences of all primers are listed in
Additional file 1: Table S1.

Results

Summary of input data and features

Previous studies revealed that H3K9Ac, H3K14Ac and
H3K23Ac were involved in the regulation of gene ex-
pression in the response to ethylene [8, 34]. To further
assess the connection between these histone modifica-
tions and transcriptional regulation systematically, we
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employed machine learning approach to analyze the fea-
tures related to the regulation of gene expression.
ChIP-seq data of three histone H3 modification markers
(H3K9Ac, H3K14Ac and H3K23Ac) and RNA-seq data
from Col-0 and ein2-5 etiolated seedlings treated with
or without ethylene gas were used to extract the fea-
tures. Totally, we collected 468 features which can be di-
vided into two categories (Fig. 1la and Additional file 1:
Table S2): (1) histone acetylation over different gene
segments, including upstream of the transcription start
site (TSS) (TSS1500 and TSS200), UTR region, first and
last exon/intron, exon/intron body, single exon/intron,
full transcripts and full length of gene. (2) histone
peak-associated features, including peak numbers, average
peak size, average peak fold enrichment and average
distance between peak and the nearest gene.

Feature selection and evaluation

The Illumina RNA-seq reads files from two biological
replicates of Col-0 etiolated seedlings treated with or
without ethylene gas were analyzed following the canon-
ical pipeline [58—60] after quality control (Additional file
2: Figure S1). We then split the differentially expressed
genes into training and testing data sets, with 2139 genes
as training set, and the remaining 535 genes kept as
testing set (Additional file 1: Table S3). To identify the
most informative features, F measure was calculated
through Classification Via Regression method [61] in
combination with three different feature selection algo-
rithms, including Correlation Feature Selection (CES)
[47, 48], ReliefF [49] and Information Gain (InfoGain)
[47], which showed comparable or even better perform-
ance than other commonly used machine learning
feature selection algorithms (Additional file 1: Table S4).
Next, we examined the F measure performance when
the number of the selected features is the top 1, 2, 3, 4,
5, 6,7, 8,9, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100%,
using 10-fold cross-validation on the training data set.
Optimal performance was achieved with 4-6% top
features used (InfoGain acquires the highest F measure
0.774 with 4% top features; CFS acquires the highest F
measure 0.772 with 5% top features; ReliefF acquires the
highest F measure 0.768 with 6% top features; Additional
file 2: Figure S2). Thus, the top 23 features (top 5%,
Additional file 1: Table S5) that further evaluated by five
classification methods showed much better performance
than other commonly used classification algorithms
(Fig. 1, Additional file 1: Table S6). Overall, InfoGain
[47] showed a better performance than the other
two feature selection algorithms with optimal
Receiver Operating Characteristic (ROC) curve and
Area Under the ROC Curve (AUC) (Fig. 1 b-g and
Additional file 1: Table S4 and S6), the maximum ac-
curacy, and the highest Matthews Correlation Coefficient
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(MCC) (Fig. 1g and Additional file 1: Table S4). Among
the five classification methods examined (Logistic Regres-
sion, Classification via Regression, Random Subspace,
Random Forest and Logistic model trees (LMT)), Logistic
Regression showed the best performances, with an AUC
of 0.839 and accuracy of 78.6% for training data (F meas-
ure =0.78, MCC = 0.53, Fig. 1 and Additional file 1: Table
S4). Taken together, the model based on InfoGain feature
selection and Logistic Regression classification was con-
sidered the best for the following analysis.

Analysis of selected features
To examine the association of informative features with
gene expression regulation in response to ethylene, we
analyzed the profile of top 23 features that were selected
by InfoGain out of 468 features (Additional file 1: Table
S2). Interestingly, all of the selected features were associ-
ated with ChIP-Seq data from wild type but not ein2-5
mutant, which is completely ethylene insensitive (Fig. 2a
and Additional file 1: Table S5), indicating their close re-
lationship to gene expression in response to ethylene.
Recent studies have shown a global increase of histone
acetylation at H3K14 and H3K23, but not H3K9 in
response to ethylene [8]. Consistent with these findings
[8], up to 70% of the selected features were associated
with differential H3K14Ac and H3K23Ac signals be-
tween air and C,H, at H3K14 and H3K23 (Fig. 2a and
Additional file 1: Table S5). Furthermore, some features
associated with H3K14Ac and H3K23Ac signals in gene/
transcript with ethylene treatment, or H3K9Ac and
H3K23Ac signals in 1500 bp upstream of TSS regions
with ethylene treatment, or H3K9Ac signals in 1500 bp
upstream of TSS regions without ethylene treatment
were selected by InfoGain model (Fig. 2a and Additional
file 1: Table S5), indicating the roles of these histone
markers in the determination of ethylene regulated genes.
Indeed, H3K9Ac before ethylene treatment has been
reported to be a potential pre-exist marker for distinguish-
ing up- and down- ethylene regulated genes [34].
Dominant features, if any, would provide insight into
the underlying biological process of transcriptional regu-
lation. Hence, we assessed the contribution of top 10
individual features to DEGs identification. Interestingly,
none of the top 10 features had a correlation to gene
expression score higher than 0.4 (Fig. 2b). We then
selected two of top 10 features (CK23_Log2FC_full_gene
and CK14diff full _gene) to compare its distribution in
up- and down- regulated genes. The distributions of
differential signals of H3K23Ac and H3K14Ac were
distinct in ethylene up-regulated gene from ethylene
down-regulated genes. However, a significant overlap
was also detected (Fig. 2c and d), suggesting that a single
feature is not sufficient to predict the gene expression.
However, the correlation increased with 23 features
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incorporated into the model (Fig. 2b). This additive
effect of combined features in classification indicated
unrevealed interplay among epigenetic markers, which
in turn addressed the usefulness of machine learning in
such complicated biological contexts.

Comparison of prediction using different models

Next, we compare the performance of the models that
were defined as the top 3 powerful ones, that are the
model based on InfoGain feature selection and Logistic
Regression classification, Classification Via Regression
and Random Subspace classification for genes prediction
(Additional file 1: Table S4) by using the high or
medium (top 60%) expressed genes, including most of
ethylene regulated genes (97.8%) [34]. The genes pre-
dicted by each classifier were ranked by class probability
estimation from high to low, and were then grouped
with 200 genes per bin. Furthermore, the predicted pre-
cision of true positive genes in known ethylene regulated
genes in each bin was calculated. The precision de-
creased with the decreasing of probability estimation for
the genes predicated by each classifier (Fig. 3a-c),

showing a good performance of data processing. We
then calculated the total predicted genes with a standard
that total precision larger than 0.95 with predicted can-
didate genes. Finally, 2600, 4600 and 6400 genes were
predicted by the above, respectively (Additional file 1:
Table S7). Majority of predicated genes by the model
based on InfoGain feature selection and Logistic Re-
gression classification were overlapped with that pred-
icated by Classification Via Regression and Random
Subspace (Additional file 2: Figure S3a).

To further examine the performance of selected
model, we used 23 features in Col-0 to test the predic-
tion of gene expression in ein2-5 mutant, which is ethyl-
ene insensitive. To ensure a more accurate assessment,
we only used differentially expressed genes with absolute
fold change larger than 4 in ein2-5 for further analysis.
Moreover, the same number of predicted genes with
Col-0 was selected for further analysis. All the predicted
genes by the model based on InfoGain and Logistic Re-
gression showed the same regulation by ethylene as the
result from RNA-seq (Referred to as true positive genes,
TP, Fig. 3d), and 4 of them are known differentially
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expressed genes in ein2-5 [62]. In contrast, by using
Classification Via Regression and Random Subspace
methods, almost half of the known predicted genes
failed to match RNA-seq results (Referred to as false
positive genes, FP, Fig. 3d). To evaluate whether the
number of predicted genes selected affects the accuracy
of prediction, we compared the performance of these
three methods when the same number of predicted
genes were selected. We found that the model based on
InfoGain and Logistic Regression was the most powerful
one to achieve the largest numbers of TP genes and low-
est numbers of FP (Additional file 2: Figure S3b). Taken
together, these results indicate that the model based on
InfoGain and Logistic Regression has the best perform-
ance on DEGs prediction, and these predicted genes are
highly likely differentially regulated by ethylene in etiol-
ated Arabidopsis seedlings.

Analysis and validation of newly predicted genes

Among 2600 genes predicted by InfoGain and Logis-
tic Regression in Col-0, 742 genes were well-known
ethylene regulated, including CONSTITUTIVE TRIPLE
RESPONSE 1 (CTRI) [29], EIN3-BINDING F BOX

PROTEIN 2 (EBF2) [30], and ETHYLENE RESPONSE
2 (ETR2) [31] (Fig. 4a, p-value =3.97E-116, Hypergeo-
metric Distribution test), thus confirmed the reliability of
our method. Remarkably, among the 1858 newly predicted
genes, EIN3-BINDING F BOX PROTEIN 1 (EBFI) [30],
WRKY 25 [32], WRKY 26 [32] and YUCCAG6 [63] that
were missed by RNA-seq were presented, showing the
power of our model in prediction. Consistent with previ-
ous reports, more down-regulated genes were predicted
than up-regulated ones (Fig. 4b). Nonetheless, there is
still room for improvement in accuracy of our model,
as the predicted down-regulated WEAK ETHYLENE
INSENSITIVE 8 (WEI8/CKRCI) has been reported to
be induced by ethylene [64].

Gene ontology (GO) enrichment analysis revealed that
the group of predicted up-regulated genes was enriched
with genes involved in response to ethylene (Fig. 4c and
Additional file 1: Table S8). And the predicted
down-regulated genes were more involved in response
to abiotic and endogenous/hormone stimulus, cell wall
modification, and basic metabolic/biosynthetic processes
(Fig. 4d and Additional file 1: Table S8). Further GO
enrichment analysis showed that ethylene-associated
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genes were overrepresented in those genes broadly
annotated as “response to hormone” in predicted
down-regulated genes (Additional file 1: Table S8).

We next divided predicted ethylene-regulated genes
marked by H3K9Ac, H3K14Ac and/or H3K23Ac into
two groups as ethyleneup-regulated genes (n =360) and
ethylene down-regulated genes (n =1508), and analyzed
the signals of H3K9Ac, H3K14Ac and H3K23Ac associ-
ated with them. In the absence of ethylene, peak
breadths of H3K9Ac were larger in the predicted ethyl-
ene up-regulated genes than in down-regulated genes,
but no difference were detected for H3K14Ac and
H3K23Ac (Fig. 5a). In the presence of ethylene, the peak
breadths for each of the three histone marks in predicted
up- and down- regulated genes were elevated, and the
peak breadths became larger in up-regulated genes than
that in down-regulated genes (Fig. 5a). Interestingly, all
these ethylene-induced changes in Col-0 were not de-
tected (or strongly decreased in H3K23Ac) in ein2-5
mutant (Fig. 5b). Although none of the peak
breadth-related features were used for the prediction,
these results were consistent with the peak breadth dis-
tribution of known ethylene regulated genes except the
H3K9Ac in the presence of ethylene [34].

In the presence of ethylene, the H3K9Ac signal was not
altered in those predicted genes (Fig. 5¢c), which was similar
as in those known ethylene-regulated genes reported

previously [8], whereas, the levels of H3K9Ac were higher
in the ethylene up-regulated genes than that in the
down-regulated genes. In contrast to H3K9Ac, the levels
of H3K14Ac and H3K23Ac over the predicted genes showed
a positive association with the gene expression in the re-
sponse to ethylene (Fig. 5¢). Interestingly, the predicted ethy-
lene-induced alterations in gene expression in Col-0 were
reduced or not detected in ein2-5 mutant (Fig. 5d). Taken
together, these results suggest that the prediction of changes
in gene expression conducted by our model based on Info-
Gain and Logistic Regression achieved an impressive level
of accuracy. To confirm the accuracy of the ML-based gene
prediction, we randomly selected 15 predicted up and down
genes for qRT-PCR assay. More than 60% of the selected
genes behaved consistently between the prediction and
qRT-PCR validation (Fig. 6a and b).

ML based methods application on other organisms

To test the performance of ML based methods on other or-
ganisms, we downloaded data from the ENCODE Consor-
tium  (http://genome.ucsc.edu/ENCODE/downloads.html)
for two human cell lines: lymphoblastoid cells (Gm12878)
and Hela S3 cells. We collected genome-wide histone
modification for H3K4me3, H3K9Ac and H3K27me3, as
well as differentially expressed genes from RNA-seq data
between these two cell lines. Totally, we collected 114 fea-
tures which included histone modification on different
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Fig. 5 Histone acetylation patterns in predicted genes. a and b Boxplot showing the correlation of peak breadths and ethylene up-regulated
genes (U, n=360) or ethylene down-regulated genes (D, n=1508) in a Col-0 or b ein2-5 under air and ethylene treatment. The ** indicates P < 0.001
by t-test. ¢ and d Boxplot showing the histone mark enrichment (RPKM) in 1000 bp around TSSs in ethylene up-regulated genes (U, n = 360) and
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gene segments and histone peak-associated features, as
mentioned before. After F measure evaluation for three
feature selection algorithms (InfoGain, CFS and ReliefF),
the top 46 features (top 40%, Additional file 2: Figure S4a)
were further studied by five classification methods. Over-
all, the model based on InfoGain feature selection and
RandomForest classification was considered the best
model for the following analysis (AUC = 0.996 for training
data sets, Additional file 2: Figure S4b), and the top 60%
highly expressed genes were used for prediction
(Additional file 2: Figure S4c). Considering the better
performance of ML based method on human cells
than Arabidopsis (such as better AUC on training
data and predicted data), the precision greater than
0.9995 was used to select predicted candidate genes
(Additional file 2: Figure S4d and S4e). Among
13,200 predicted candidate genes, 5260 (~40%) genes
are known DEGs (Additional file 2: Figure S4f),
and only two false positive genes were predicted. GO
terms from predicted candidate genes were enriched
in the regulation of cell proliferation and

developmental process, biological functions related
pathways, which is consistent with a previous study
[65]. Overall, the result shows that ML based method
is also applicable in human cells.

To further validate our approach, we downloaded data
from Gene Expression Omnibus database (accession
number GSE68299) for two rice samples [66]: wild type
(Oryza sativa) and SET DOMAIN GROUP 711 RNAi
plants (SDG711RNAi). We collected genome-wide
histone modifications for H3K4me3 and H3K27me3,
and differentially expressed genes from RNA-seq data
between these two rice lines. Totally, 84 features were
collected and the top 25 features (top 30%, Additional
file 2: Figure S5a) were further studied by five classifica-
tion methods. Overall, the model based on InfoGain
feature selection and RandomForest classification was
considered as the best model for the following analysis
(AUC =0.718 for training data sets, Additional file 2:
Figure S5b). We used top 40% highly expressed genes
for prediction (Additional file 2: Figure S4c) and the
precision greater than 0.99 was used to select the
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predicted candidate genes (Additional file 2: Figure S5d).
Among 5600 predicted candidate genes, 831 (~ 15%)
genes are known DEGs (Additional file 2: Figure S5e), in
which only has 8 false positive genes were predicted.
Consistent with the function of SDG711 that affect
panicle size [66], many development and cell growth/size
related genes were enriched in GO analysis (Additional
file 2: Figure S5f).

Discussions

Although remarkable power of RNA-seq has been
achieved in the past few vyears, currently available
methods leave rooms for improvement in terms of
sensitivity and efficiency that are greatly affected by
experimental design/operation and the following data
analysis processes [9, 67, 68]. To fill in this gap, two
strategies have been employed: to improve experimental
design/performance and to develop better algorithms/
softwares [13, 14, 16, 67, 68]. Machine learning based
methods provide a new way that could avoid the inher-
ited limitations existed in experimental design or data
analysis processes in RNA-seq. It has been used to pre-
dict stress-related genes in Arabidopsis [23] or cancer

related genes in human [24]. In this study, we found that
more than 70% of the predicted genes were never before
reported as DEGs in the response to ethylene, thus pro-
vided us a greatly enlarged candidate pool for future re-
search and showed the power of machine learning based
method in the predcition of novel DEGs.

To validate our prediction, we examined the
expression of the newly identified genes by qRT-PCR.
Up to 60% of newly predicted genes were confirmed to
be regulated by ethylene (Fig. 6). Yet, the accuracy of
machine learning based method still needs improve-
ment. Given the close relationship among gene expres-
sion, histone methylation [69], histone acetylation [70],
DNA methylation [71] RNA methylation [72], and post
transcriptional regulation, further studies including add-
itional features such as other histone modifications,
DNA modification, RNA modification or post transcrip-
tional regulation would help improve the accuracy of
prediction. In addition, we were not able to estimate
gene expression quantitatively based on binary classifica-
tion methods, which could be realized by emerging ad-
vanced models in deep learning, such as MultiLayer
Perceptron and Stacked Denoising Auto-encoder [73].
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The result in our study indicates that the 23 features
including all H3K9Ac, K14Ac and K23Ac data were
selected by InfoGain feature selection method contribute
to the gene expression regulation in the response to
ethylene (Fig. 2a). Differential acetylation levels of
H3K14 and H3K23 are the largest two groups among se-
lected features by InfoGain and Logistic Regression. In
addition, the level of H3K9Ac in air condition was se-
lected as an important feature as well. Indeed, recent
studies have shown that the global increase in histone
H3K14Ac and H3K23Ac was tightly associated with
ethylene-regulated gene expression [8], whereas the levels
of H3K9Ac were not regulated by ethylene. However, the
levels of H3K9Ac in the ethylene up-regulated genes
were significantly higher than that in the ethylene
down-regulated genes. Therefore the H3K9Ac levels are
considered as a potential pre-exist marker for distinguish-
ing up- and down- regulated genes in the ethylene re-
sponse [34]. It is well known that the promoter regions
are critical for transcriptional regulation, histone modifica-
tion in the promoter regions is one of the most important
features for the prediction of gene expression. Our results
obtained by using the model based on InfoGain and Lo-
gistic Regression demonstrate that the genomic locations
that relative to each transcript including promoters, exons
and gene bodies (Additional file 1: Table S5) can provide
useful information for the prediction of gene expression.

Conclusion

RNA-seq is a widely used technique for transcriptome pro-
filing, but there are still inherited limitations on the detect-
ability for certain DEGs due to the limitations in
experimental or data analysis processes. By comprehensive
comparison, we determined that the model based on Info-
Gain feature selection and Logistic Regression classification
is powerful and robust for DEGs prediction. Moreover, the
power and performance of ML-based prediction on ethyl-
ene regulated gene expression were evaluated by qRT-PCR.
Taken all together, our study shows that the combination
of ML-based method with RNA-seq data analysis signifi-
cantly improved the sensitivity of the DEGs identification.
Further studies should be conducted to improve perform-
ance of ML based methods by using more epigenomics
data and advanced models in deep learning.
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