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Abstract

Background: Cancer initiation genes (CIGs) are genes that can directly promote cell proliferation or induce cancer.
There are thousands of published studies identifying various CIGs; however, no systematic collection or description
is available.

Results: To construct a CIG reference for genetic screening, we have collected 177 human genes curated from 1507
PubMed abstracts. To facilitate data queries and browsing, the identified CIGs along with extensive bioinformatic
annotations were stored in an online database called CIGene. Initial functional analysis revealed an overlooked role for
cell motility in cancer initiation. Subsequent cross-referencing of known tumor suppressor genes and oncogenes
against the 177 CIGs identified 96 and 81 CIGs with and without known oncogenic roles, respectively. Successive
network analyses of all 177 CIGs determined that the two groups of genes were more likely to link within their group.
The distinct molecular functions for these groups were also confirmed with functional studies. While the 96 known
oncogenic genes had fundamental roles in gene regulation and signaling, the remaining 81 genes possessed more
ancillary functions, such enhancer binding. Further network and mutational analysis of the 96 known oncogenic genes
revealed that mutations in these genes were highly prevalent in multiple cancers. By focusing on breast cancer, we
found that 32 of the 96 genes with mutations in breast cancers were significantly associated with patient survival.

Conclusions: As the first literature-based online resource for CIGs, CIGene will serve as a useful gateway for the
systematic analysis of cancer initiation. CIGene is freely available to all academic users at http://soft.bioinfo-minzhao.
org/cigene/.
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Background
Cancer development is a dynamic cellular process driven
by multi-step acquisition of genetic mutations, clonal ex-
pansion, and selection [1]. The most critical step is the
establishment of initiating cells (clones), which lead to
sub-clonal diversification and adaption resulting in un-
controlled growth [2]. Though numerous mutations may
occur during cancer progression, resulting in genetic
heterogeneity, the somatic mutations that initiate cancer
inadvertently provide potent selective pressure for the

expansion of cancer clones [1]. Therefore the identifica-
tion of cancer initiation genes (CIGs) within and across
tumor types is critical for cancer diagnosis and for the
development of personalized therapies.
Genetically, the stepwise acquisition of defective tumor

suppressor genes (TSGs) and hyperactive oncogenes
(OCGs) greatly contribute to the dysregulation of cell
proliferation and apoptosis during oncogenesis [3]. Since
TSGs and OCGs influence cancer cell growth in oppos-
ite ways, they often exist as competitive controls on can-
cer progression [4]. To date, thousands of potential
cancer-related genes, including TSGs and OCGs, have
been identified in various cancer types; however, muta-
tions in these genes could be acquired during cancer
progression and might not have a specific role during
cancer initiation.
Over the past years, a number of genetic and epigen-

etic approaches have been used to identify CIGs for
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various cancers [5]. Thus, we set out to generate a col-
lection of CIGs from the literature to further our under-
standing of their function and to evaluate their roles
among different cancers. Our aim was to organize a col-
lection of CIGs and build the first literature-based CIG
database, CIGene. With the ability to cross-reference
with large-scale cancer expression and prognosis data-
bases, CIGene will serve as a valuable resource to effi-
ciently define cancer initiation events, including somatic
mutations, gene regulation, and gene interactions. In
total, we isolated 96 CIGs with known tumor suppres-
sive or oncogenic roles, and these genes may define an
important network involved in cancer initiation. Add-
itionally, we identified 81 novel CIGs without any known
tumor suppressor or oncogene roles, providing new can-
didates for developing novel cancer diagnostic strategies.

Methods
Literature curation
We collected CIGs from the GeneRIF and PubMed lit-
erature databases by searching the following expression:
“initiation [title] or initiating [title] or initiator [title]”
and “cancer or tumor or carcinoma or adenocarcinoma
or craniopharyngioma or glioblastoma or insulinoma or
leukemia or lipoma or lymphoma or melanoma or my-
oma or neoplasm or nephroblastoma or retinoblastoma
or sarcoma”. In all, 1507 relevant entries were retrieved
from PubMed (as of November 4, 2016), including the
PubMed ID, gene name, and the sentences with matched
keywords. We then manually checked all of the sen-
tences and the corresponding PubMed abstracts to iden-
tify the correct CIGs within the text. All Entrez gene IDs
were identified by searching for the gene name men-
tioned in the literature. For nonhuman genes, we
mapped them to their corresponding human homo-
logues using the NCBI HomoloGene database [6].

Database construction
To further annotate the identified genes, we integrated
additional annotations from the Entrez Gene database,
including Gene ID, official symbol, gene aliases, chromo-
some location, functional description, gene ontology
(GO), and related pathways. The general information
and homologous sequences are crosslinked to the NCBI
Entrez and HomoloGene databases [7]. The mRNA ex-
pression profile data from both normal and tumor tis-
sues were imported from BioGPS [8]. To obtain
comprehensive pathway-related information, we anno-
tated the genes using BioCyc [9] and the KEGG collec-
tion of databases [10]. The other useful regulatory
information included post-translational modification
[11], methylation [12], and protein-protein interactions
[13]. All of the included functional and/or genomic

features were seamlessly integrated to produce a down-
loadable output available in a plain text format.
All of the literature and annotation data are stored in a

MySQL-based database for CIGene. CIGene offers two
data search functions: text-based query and sequence-
based BLAST search. The text-based query retrieves a list
of CIGs with annotations of interest. The sequence-based
BLAST is for annotating genes with DNA or amino acids
sequences. Furthermore, a browsing function was imple-
mented in a variety of ways, including access to annotated
gene information from the TSGene database [14],
highlighted KEGG pathway maps, and genomic positions.

Functional enrichment analysis
Gene set enrichment analysis was conducted by submitting
a list of genes of interest to the ToppFun online server [15].
ToppFun is a web server that allows users to explore gene
annotations, such as chromosome locations, associated dis-
eases, protein domains, molecular functions, cellular com-
ponents, biological processes, and pathways. The database
is updated regularly and annotates all input genes with bio-
logical pathway, GOs, protein family, and other predeter-
mined functional annotations from various resources. To
calculate statistical P-values for those enriched annotations
for the input genes, a collection of all human
protein-coding genes was used as the baseline. Subse-
quently, a hypergeometric test was applied to each annota-
tion term following multiple test corrections using the
Benjamini-Hochberg method. The corrected P-values were
used to filter out irrelevant annotations using the threshold
value of P < 0.01. Furthermore, over-representative GO
terms were visualized using the REVIGO online server [16].

Network and mutational analyses
To further explore the connection of CIGs to other cancer
genes, we separately mapped 96 and 81 CIGs with and
without oncogenic and tumor suppressive roles, respect-
ively. To this end, we downloaded a non-redundant hu-
man interactome from the PathCommons database [13],
containing 3629 proteins and 36,034 protein-protein inter-
actions. It is of note that we only used those
protein-protein interactions collected from pathway data-
bases (HumanCyc, Reactome, and KEGG pathway) [10,
17], which have clear biological significance, rather than
physical interactions without experimental validations. By
using a sub-network extraction pipeline implemented in
our previous study [18], we build a sub-network to link
the CIGs with other human genes based on those
pathway-based interactions. Briefly, the CIGs were
mapped into the prepared pathway-based interactome and
the sub-network was extracted according to the shortest
paths between those input CIGs and other genes. By cal-
culating the topological properties of the sub-network
using the Network Analyzer plugin in Cytoscape 3.4 [19],
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we were able to explore the potential global network prop-
erties of cancer initiation [20]. Here, the node degree dis-
tribution was used to characterize the total number of
connections for each gene in the network [20], and the
shortest path was calculated using the shortest length
from one node to another [20]. All network visualization
was drawn using Cytoscape 3.4. The node degree was used
to depict the node size in the network chart. Also, differ-
ent colors were used to differentiate those CIGs from our
input and the other linker genes bridging those CIGs. The
mutational analyses were all conducted using the cancer
genomics portal cBio [21].

Results
Data collection and web interface for the CIGs database
To survey all known CIGs, we performed extensive lit-
erature curation utilizing the GeneRIf and PubMed data-
bases. We then extracted the relevant sentences by
keyword matching. By carefully curating all the sen-
tences, we identified all CIGs clearly defined within the
literature. For nonhuman studies, we mapped the identi-
fied genes to their human homologs using the NCBI
HomoloGene database. By formalizing the gene alias to
the official gene symbol we could then map the
curated genes to a public human gene database and
integrate functional annotations. The final stage of
our literature curation resulted a list of 177 non-re-
dundant CIGs Additional file 1: (Table S1).
After importing all the curated CIGs and annotations

into the database, we then developed a user-friendly web
interface to query all the information. As shown in Fig. 1,
a typical gene entry in the CIGene database contains
seven categories of information, assessed by clicking the
labels at the top, including General information, Litera-
ture, Expression, Regulation, Mutation, Homolog, and
Interaction. Marked abstracts of the curated papers are
provided in the “Literature” page. The “Homolog” page
is used to map the human CIGs to other model species,
including mouse, rat, zebrafish, and fruit fly. Addition-
ally, the “Regulation” page provides regulatory informa-
tion about the genes, including interactions with
transcription factors, post-translational modification,
and methylation. Importantly, all of the information, in-
cluding functional features, is formatted in plain text for
downloading. Together, these comprehensive annota-
tions and the pre-computed regulatory information pro-
vide a basis for the systematic analysis of CIGs to aid in
the elucidation of cancer initiation.

Biological pathways associated with cancer initiation
To define the molecular functions and mechanisms of
CIGs, we utilized functional enrichment analysis to iden-
tify over-represented biological information within the list
of genes of interest based on P-values. The initial analysis

included the annotation of GO terms and KEGG path-
ways. Subsequently, hundreds of hypergeometric tests
within the set of genes were conducted, generating hun-
dreds of P-values. Using Benjamini-Hochberg correction,
we further adjusted the enrichment analyses and identified
those pathways and disease entries with adjusted P-value
less than 0.01 Additional file 2: (Table S2). In total, we
identified 2470 pathway or GO terms significantly associ-
ated with the 177 CIGs. This identified the critical roles of
CIGs as being involved in a majority of basic cellular pro-
cesses. Some enriched pathways and functional terms
were cancer related and included “proteoglycans in can-
cer” (adjusted P-value = 3.96E-22), “pathways in cancer”
(adjusted P-value = 1.46E-30), “microRNAs in cancer” (ad-
justed P-value = 1.30E-16), and “ras pathway” (adjusted
P-value = 7.45E-16). Notably, 47 CIGs were shown to be
associated with the positive regulation of locomotion, cell
motility, cellular component movement, and/or cell mi-
gration (all adjusted P-values < 0.01; Additional file 2:
Table S2).

Identification of a novel cancer initiation mechanism by
mapping to known tumor suppressors and oncogenes
To further explore the roles of CIGs in cancer progres-
sion, we cross-referenced the genes in our curated data-
base with known OCGs [22] and TSGs [3]. This analysis
identified 96 CIGs reported as either OCGs or TSGs
(Fig. 2a). To assess the associated cellular events of these
CIGs at the system level, we constructed the first inter-
actome related to CIGs (Fig. 2b). Since many CIGs are
related to fundamental cellular processes, they may pos-
sess thousands of predicted protein interaction partners.
To focus on those interactions of biological significance,
we only include the most reliable interactions from cu-
rated resources, such as the KEGG and Reactome data-
bases, as previously implemented [3]. A subnetwork of
CIGs was then extracted from all of the human-based
interactomes. The reconstructed CIG interactome con-
tained 196 genes and 567 gene–gene interactions based
on current evidence from known biological pathways
(Fig. 2b). Of the 196 nodes, 161 were CIGs and the
remaining 35 were genes that potentially bridge CIGs to
fully implement a given cellular function. By categorizing
the TSGs and OCGs, we found the 96 CIGs with known
tumor suppressor or oncogenic roles are more likely to
connected compared to the remaining 81 CIGs without
any defined roles as TSGs or OCGs. This observation
suggests that these two groups of CIGs may have dis-
tinct functions in cancer initiation (Fig. 2b).
To further explore the differences between the two CIG

groups, we conducted the functional enrichment analyses
separately (Fig. 3a-b). For the 96 genes that intersected
with TSGs or OCGs, we found 2380 over-represented
pathways or GO terms based on adjusted P-values < 0.01
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Additional file 3: (Table S3), and among these functional
terms, 715 and 350 contain the keyword “regulation” or
“signaling,” respectively. The top over-represented signal-
ing transduction terms included enzyme linked receptor
protein signaling pathway, transmembrane receptor pro-
tein tyrosine kinase signaling pathway, Rap1 signaling
pathway, signaling by interleukins, ErbB1 downstream sig-
naling, signaling events mediated by hepatocyte growth
factor receptor (c-Met), signaling pathways regulating
pluripotency of stem cells, etc. In addition, these genes
were involved in many fundamental processes, including
stem cell proliferation, cell aging, regulation of cell cycle

and division, cell junction, and migration (Fig. 3a). We
additionally found a number of novel pathways, such as
response to corticosteroid (adjust P-value = 6.34E-13),
with corticosteroids representing a class of steroid
hormones with anti-inflammatory, immunosuppressive,
anti-proliferative, and vasoconstrictive effects.
Additionally, the 81 genes that did not map to

known OCGs or TSGs may provide novel insights
due to their relevance to cancer initiation. Enrich-
ment analysis associated the 81 genes with 482 path-
ways and GO terms (Additional file 4: Table S4; all
adjusted P-values < 0.01). Many of these 81 genes

Fig. 1 CIGene web interface. a The basic information on each CIG page. b Browsing the genes in CIGene using chromosomes, cancer sub-types,
literature support, tumor suppressor, oncogenes, and KEGG pathways
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associated with over-represented cancer-related pro-
cesses, such as positive regulation of angiogenesis
and regulation of stem cell proliferation (Fig. 3b).
Furthermore, these genes also represented key regu-
lators of gene expression, including regulation of
chromatin modification (adjust P-value = 1.39E-06)
and enhancer sequence-specific DNA binding (adjust
P-value = 7.38E-05). In addition, the regulation of
cytokine secretion (adjust P-value = 1.33E-05) and re-
sponse to interleukin-1 (adjust P-value = 3.44E-03)
were also associated with these genes, indicating
novel aspects of extracellular regulation may be in-
volved in cancer initiation.

Network and mutational analysis of 96 CIGs with known
tumor suppressor or oncogenic roles reveal important
hub genes associated with patient survival
From our analysis of the 96 CIGs that mapped to known
OCGs or TSGs, we extracted a sub-network containing
99 genes and 382 gene–gene interactions (Fig. 4a). Of
the 99 nodes, 88 were CIGs; the remaining 11 were
linker genes that may potentially bridge CIGs to fully
implement their cellular functions. The majority of the
CIGs were linked to each other in a highly modular
structure, and this was concluded by comparing the ex-
ponent value with that of whole human PPI network.
The connections of all nodes in the biological network

Fig. 2 CIGs with tumor suppressor and oncogenic roles. a Venn diagram of three cancer-associated gene datasets: cancer initiation genes,
oncogenes, and tumor suppressors. b A reconstructed network with 177 CIGs
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often follow a power law distribution P(k)~k-b, where
P(k) is the probability that a gene has connections with
other k genes and b is an exponent with an estimated
value. For the sub-network of CIGs, the degree (the
number of connections) and number of nodes followed
an exponential function of y = 15.14x−0.716 (R2 = 0.697;
Fig. 4b), while most nodes in human PPI networks are
sparsely connected with the exponent value of 2.9 [23].
Moreover, the characteristic path length of the CIG
sub-network was 3, indicating only three steps between

most node connections, which is substantially smaller
than the average for the human PPI network (Fig. 4c).
This finding supports the accuracy of our data and also
shows that the 96 CIGs are highly interconnected and
form a high-density cellular modulus. By prioritizing the
node degree for all of the genes, we found a number of
genes with high connectivity acting as hub genes, includ-
ing SRC, PIK3CA, ERBB2, and EGFR.
Using published TCGA mutational data, we produced

a mutation map across various cancers for the 96 inter-
connected CIGs. This analysis was conducted using
cBioPortal (Fig. 4d). To ensure reliability, the cancer
types with a total number of samples of less than 50
were excluded. The CIGs demonstrated high variation
counts across multiple cancers, including breast cancer,
brain cancer, ovarian cancer, thyroid cancer, and prostate
cancer. These results confirmed the importance of the
initial genes in cancer development, implying their po-
tential application for clinic diagnosis.
We chose to further focus on breast cancer, as it had the

most mutational correlation with the 96 CIGs. We plotted
the sample-based mutational profile to find the genes
within this group with a high mutation rate (Fig. 5a). The
breast cancer dataset included 1904 tumor samples/pa-
tients with sequencing and copy number variance (CNV)
data; genetic alterations were discovered in 83% of cases
(1580 out of 1904). In total, we found 32 genes to have
genetic alterations in the breast cancer cohort. Some top
mutated genes included PIK3CA, MYC, KDM5B, ATF3,
PTP4A3, LAPTM4B, and ERBB2, with alternation rates of
44, 27, 25, 23, 22, 21, 20, and 18%, respectively (Fig. 5a).
Subsequent survival analysis revealed statistically different
survival times between the patients with or without any
mutation in these 32 genes (Fig. 5b).
Interestingly, though PIK3CA had a very high muta-

tional rate among all cohorts, the survival analysis indi-
cated no substantial difference between the patients with
or without PIK3CA mutations. This may indicate that
though the PIK3CA gene mutation is important to the
occurrence of breast cancer it is not influential to the
survival time of patients. In contrast, the patients with
the ERBB2 mutation had substantially different surviving
curves, with a sharper decreasing survival rate at the
early period and a shorter median survival in months
compared to patients without this genetic alteration (Fig.
5c). Taken together, these results highlight the potential
roles of these CIGs in the progression of breast cancer.
We also built a network for the 81 novel CIGs without

oncogenes and tumor suppressive roles Additional file 5:
(Table S5). The network may reveal a hierarchical regu-
latory mechanism between those CIGs and some linker
genes. Among the input 81 genes, 77 CIGs are con-
nected by 22 linker genes. Interestingly, some of genes
are in the top regulatory level with multiple connections

Fig. 3 The enriched gene ontology (GO) terms for the 96 genes
with tumor suppressor and oncogenic roles (a) and the remaining
81 genes (b). The scatterplot presents the summarized GO terms.
Circles indicate the GO clusters and are plotted in two-dimensional
space according to other GO terms’ sematic similarities. X-axis shows
the log10 P-value; the small corrected p-values are plotted in the
left. The circle colour represents the same information of log 10
P-value; the blue direction implies the smaller P-values. Y-axis
represents semantic similarities of gene ontology terms
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such as EZR, AICDA. Both genes are frequently detected
in the early-stage cancer, which may imply their import-
ant roles for cancer initiation.
To further evaluate the significance of our curated 177

CIGs related to the cancer survival, we applied an empirical
re-sampling approach on the precomputed survival correl-
ation results in 21 TCGA cancer types. Here, we take the
TCGA Lower Grade Glioma (LGG) dataset as an example.
First, we counted how many CIGs are significantly correlate

with LGG patient survival based on the precomputed Cox
analysis (P-values < 0.05) from oncoLnc database [24]. The
number of these survival-related genes for our 177 CIGs is
102. Next, for all the 18,616 genes with survival analysis
results from oncoLnc, we randomly selected 177 genes and
checked over the number of genes with significant
correlation with patient survival (P-values < 0.05). The
randomization processes were repeated for 10,000 times.
Then, we counted the number of random selected node

Fig. 4 The CIGs interactome generated from pathway-based protein-protein interaction data. a The 88 genes in yellow are the CIGs; the remaining 11
genes in pink are linker genes that connect the 88 CIGs. The size of the nodes represents the number of connections in the network, b the degree
distribution, and (c) the path length frequency. d Mutation map of the 96 CIGs in all cancers. X axis: cancer types in TCGA. Y axis: altered counts of the
96 genes that correspond to the cancers represented on the X axis. The different colors indicate different cancer types based on their tissues of origin
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sets (N) whose number of survival-related genes was higher
than the observed 102 in our 177 CIGs. Finally, an empir-
ical P-value was calculated based on the N/10000 for the
LGG dataset. The similar approaches were applied to all
the remaining 20 TCGA cancer types and the final summa-
rized P-values on all the 21 cancer types were provided in

Additional file 6: Figure S1. As shown in the Table, all the
P-values are less than 0.05 except the Pancreas adenocar-
cinoma (PAAD) dataset (P-value = 0.091). This result sup-
ports that our collected 177 CIGs are significantly related
to cancer survival comparing to any random selected genes
in TCGA pan-cancer data.

Fig. 5 Sample-based mutations of the 96 CIGs in the METABRIC breast cancer dataset. a OncoPrint for breast cancer. Only genes with a mutation
rate over 0.5% are shown in the figure. Multiple alterations: more than one type of mutation. Survival analyses for all 32 genes (b) and ERBB2 (c).
Survival characteristics of the genes in (a)
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Discussion
In this study, we constructed the first literature-based
CIGene database, which currently contains 177 human
genes curated from 1507 PubMed abstracts. CIGene has
user-friendly interface, which can provide users with in-
quiries about functional and genomic features of CIGs.
Our systematic analysis associated CIGs with cell

motility. Intuitively, cell motility is important for can-
cer invasion and metastasis [25]; however, by review-
ing the literature to date, we found that the critical
role of cell motility in cancer initiation has been over-
looked [26]. Moreover, the prolactin-signaling pathway
was also identified as another overlooked aspect of
cancer initiation, which was highly enriched in our
CIGs (adjusted P-value = 2.07E-20). Although prolactin
has a well-known role in lactation, recent studies
have reveal that the 16 kDa isoform derived from na-
tive prolactin has inhibitory effects on angiogenesis
and tumorigenesis in breast and prostate cancers [27].
Thus, our systematic literature curation was able to
identify diverse biological roles for CIGs, including a
number of novel biological processes not previously
explored in cancer initiation.
Furthermore, by overlapping 177 curated CIGs with

the OCGs and TSGs datasets, we found that 96 CIGs
with fundamental roles in cancer initiation associated
with oncogenic or tumour suppressive processes.
Additional mutation analysis revealed that mutations
in 96 CIGs are highly prevalent in multiple cancers.
It was also found that among the 96 CIGs, 32 genes
with higher mutation rates were significantly associ-
ated with patient survival. Further functional enrich-
ment analysis for the 96 CIGs and the remaining 81
CIGs may represent novel mechanisms involved in
the process of cancer initiation such as non-coding
RNA related mechanisms [28].

Conclusions
In conclusion, our systematic curation of the litera-
ture related to cancer initiation yielded 177 CIGs in
humans. By cross-referencing known cancer genes, we
explored the functional, network, and mutational fea-
tures of those CIGs with and without tumor suppres-
sor or oncogenic roles. Since most these CIGs
themselves were highly interconnected, only a few
linking genes were added to construct a complete
network. As such, special attention in future analyses
should be paid to the linking genes PRKCA, PTPN14,
POU2F1, and TGFBR1, because of their possible roles
in cancer initiation. The complete list of CIGs avail-
able in the CIGene database provides a resource for
cancer researchers to perform high-throughput gen-
etic and clinical screens to aid in cancer diagnosis
and treatment.

Additional files

Additional file 1: Table S1. Details of the 177 human CIGs. (XLS 46 kb)
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CIGs with identified tumor suppressor or oncogenic roles. (XLS 377 kb)
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CIGs without identified tumor suppressor or oncogenic roles. (XLS 100 kb)

Additional file 5: Table S5. Empirical P-values of survival significance of
CIGs in 21 TCGA cancer types. (XLS 33 kb)

Additional file 6: Figure S1. The interactome for the 81 novel CIGs
without oncogenic and tumor suppressive roles. The 77 genes in purple
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connect the 77 CIGs. (TIF 3130 kb)
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