
RESEARCH ARTICLE Open Access

Understanding the role of interactions
between host and Mycobacterium
tuberculosis under hypoxic condition: an in
silico approach
Tungadri Bose1,2, Chandrani Das1,2, Anirban Dutta1*, Vishnuvardhan Mahamkali1,3, Sudipta Sadhu1ˆ

and Sharmila S. Mande1*

Abstract

Background: Mycobacterium tuberculosis infection in humans is often associated with extended period of latency.
To adapt to the hostile hypoxic environment inside a macrophage, M. tuberculosis cells undergo several
physiological and metabolic changes. Previous studies have mostly focused on inspecting individual facets of this
complex process. In order to gain deeper insights into the infection process and to understand the coordination
among different regulatory/ metabolic pathways in the pathogen, the current in silico study investigates three
aspects, namely, (i) host-pathogen interactions (HPIs) between human and M. tuberculosis proteins, (ii) gene
regulatory network pertaining to adaptation of M. tuberculosis to hypoxia and (iii) alterations in M. tuberculosis
metabolism under hypoxic condition. Subsequently, cross-talks between these components have been probed to
evaluate possible gene-regulatory events as well as HPIs which are likely to drive metabolic changes during
pathogen’s adaptation to the intra-host hypoxic environment.

Results: The newly identified HPIs suggest the pathogen’s ability to subvert host mediated reactive oxygen
intermediates/ reactive nitrogen intermediates (ROI/ RNI) stress as well as their potential role in modulating host
cell cycle and cytoskeleton structure. The results also indicate a significantly pronounced effect of HPIs on hypoxic
metabolism of M. tuberculosis. Findings from the current study underscore the necessity of investigating the
infection process from a systems-level perspective incorporating different facets of intra-cellular survival of the
pathogen.

Conclusions: The comprehensive host-pathogen interaction network, a Boolean model of M. tuberculosis H37Rv
(Mtb) hypoxic gene-regulation, as well as a genome scale metabolic model of Mtb, built for this study are expected
to be useful resources for future studies on tuberculosis infection.
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Background
Invasion by pathogens is known to trigger an array of im-
mune responses in the host. Pathogens, in turn, try to
counter-act, subvert, or alter these responses [1, 2]. The
progression through different stages of infection therefore
involves an array of complex interactions between the host
and the pathogen proteins [3]. Virulent strains of Mycobac-
terium tuberculosis can evade the immune response and re-
main in a dormant (or latent) stage within the host cell for
prolonged periods (often for several years), without causing
any symptoms before reactivation [4, 5]. To adapt to the
‘hostile’ intra-cellular environment of the host, the cells of
M. tuberculosis undergo several physiological and metabolic
changes [6]. An elaborate response mechanism of M.
tuberculosis against hypoxic (low oxygen) conditions
is one of the primary features characterizing its state
during latency [7–9]. Mycobacterial proteins involved
in host-pathogen interactions are likely to play cru-
cial roles in sensing the host environment and sub-
sequently participate (directly or indirectly) in
regulatory events, leading to physiological/ metabolic
changes necessary for intra-cellular survival. Under-
standing of the M. tuberculosis survival strategies,
including changes in gene regulatory cascades as
well as metabolism, would therefore remain incom-
plete unless studied in context of the host-pathogen
interactions.
The following aspects pertaining to intra-cellular

hypoxic survival of M. tuberculosis inside human
macrophage cells have been investigated in this work.
(I) A comprehensive host-pathogen interactome net-
work, depicting the potential interactions between an
invading M. tuberculosis cell and a human macro-
phage, has been built. (II) A Boolean model of the
gene regulatory network controlling hypoxic response
in M. tuberculosis has been constructed and simulated
to understand the progression of hypoxia and its
downstream regulatory effects. (III) The metabolic
changes experienced by a M. tuberculosis cell during
hypoxic conditions have been simulated using FBA
(Flux Balance Analysis) models of M. tuberculosis
metabolism. Subsequently, the cross-talks between
these aspects have been investigated to understand
how the cellular and metabolic changes are driven
by the gene regulatory events as well as the
host-pathogen interactions.

Results
Host-pathogen interactions (HPI) between human and M.
tuberculosis H37Rv (Mtb)
A template protein-protein interaction (PPI) library was
constructed by collating PPI related information from differ-
ent public resources and potential HPIs between human
and Mtb proteins was obtained by interlogs mapping

approach (described in Additional file 1). The obtained set
of HPIs was further filtered based on the following informa-
tion curated from literature - (a) cellular localization of the
participating proteins, and (b) gene expression profiles of
the invading pathogen as well as that of the infected host
cells. The final set of HPIs comprised of 178 intra-species
PPIs involving 148 human and 30 Mtb proteins (Fig. 1) (also
see described in Additional file 2). The human and Mtb pro-
teins participating in HPIs were also observed to be well
connected with each other in the respective intra-species
PPI networks (background networks). The human-Mtb HPI
network, augmented with such intra-species interactions,
comprised of 178 nodes and 391 edges (data not shown). A
single large sub-network consisting of a majority of the pro-
teins participating in the predicted HPIs (142 out of 148 hu-
man proteins and 24 out of 30 Mtb proteins), and five small
sub-networks, each consisting of two or three nodes (pro-
teins), could be identified from this HPI network. Similar
network architecture of human-Mtb HPIs has also been re-
ported earlier [10]. Interestingly, the average degree of the
constructed network (4.4) was found to be comparable to
that of the organism specific (human as well as Mtb) PPI
networks.
The role of a number of the predicted interactions in

host immunity and bacterial pathogenesis could be vali-
dated from previously published literature (details in
Additional file 2). For example, the predicted interaction
between the human protein CDC42 and bacterial Mtb
protein CipA/ Rv0479c (both up-regulated during infec-
tion – see Additional file 3) assumes importance given to
the role of CDC42 in cytoskeletal rearrangements of the
host cell. Cytoskeletal rearrangement of the host cells dur-
ing phagocytic uptake of invading pathogens has been re-
ported in earlier studies [11, 12]. Another predicted HPI
involving human nicotinamide phosphoribosyltransferase
(Visfatin) and the Mtb protein gamma-glutamyltransferase
(GGT/Rv2394) could be linked to a possible defensive strat-
egy of the pathogen against increased cellular levels of
glutathione (GSH). GSH on cleavage by GGT forms a di-
peptide [Cys(NO)-Gly] which has bactericidal effects [13].
While upregulation of Visfatin during infection may induce
higher cellular levels of GSH [14], downregulation of GGT
by Mtb is expected to play a protective role (see Additional
file 3). Among others, HPI pertaining to human protein
ninjurin (NINJ1) and nitrate reductase (NarH) of Mtb may
be noted for its probable role in reducing the nitrate medi-
ated stress exerted by the host cell through ninjurin activity
[15]. The superoxide dismutase protein (SodA) of Mtb was
predicted to interact with a number of human proteins,
re-emphasizing the role of SodA in Mtb pathogenecity. In
particular, HPI involving human HLA class I histocompati-
bility antigen and the Mtb SodA indicated the possibility of
the presence of a HLA specific epitopic region within the
mycobacterial SodA. This notion is also supported by
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existing literature [16] and assumes importance in antigen
presentation for triggering host immune responses.
The role of the human proteins (associated to the identi-

fied host-pathogen interactome) were investigated in con-
text of the KEGG pathways [17], in order to gauge the
effect of Mtb infection on host metabolic/ functional path-
ways (details in Additional file 4). Most of the interacting
host proteins (89 out of 148 human proteins involved in
HPIs) were seen to be associated with the KEGG Tubercu-
losis pathway (ko05152). In addition, host mechanisms as-
sociated with metabolic or biological functions like
apoptosis, Toll-like receptor signalling, NOD-like receptor
signalling, MAPK signalling, production of pro-inflamatory
cytokines and Type-I inteferons were seen to be perturbed
during Mtb infection.

Gene regulatory network (GRN) controlling hypoxic
response in M. tuberculosis H37Rv (Mtb)
A set of 286 genes (Additional file 5), encompassing the
dosR regulon and enduring hypoxic response (EHR), was
identified to be involved in hypoxic response through litera-
ture mining and were integrated into a comprehensive gene
regulatory network. The role of transcription factors (TF)

network which orchestrates the gene regulatory events dur-
ing Mtb hypoxic response was analysed using a multi-level
Boolean modelling (details in Additional files 6 and 7). A
model was constructed for the network comprising of 24
TFs belonging to dosR and EHR regulons. Simulations of
the model were performed using an initial state which
mimicked the biological state (gene expression levels) at the
beginning of hypoxic stress. For over 70% of the total TFs
(nodes) in the network, the stable state values obtained
from simulation were observed to be in coherence with the
experimental values (Additional file 8). Apart from captur-
ing the gradual changes in pattern of expression for most of
the TFs, the model could replicate the oscillatory gene
expression patterns of the two TFs (kstR and Rv0494)
which were observed in an earlier reported study [8]
(Additional files 8 and 9).
The constructed Boolean model was further utilized to

predict the key regulators that are essential for the sur-
vival of Mtb in the host intra-cellular environment. For
this purpose, the downstream target genes correspond-
ing to each of the 24 TFs were appended to the network
(details in Additional files 6 and 7). An analysis of the
topological properties of this extended network revealed

Fig. 1 Host-Pathogen Interaction (HPI) network. The constructed HPI network consisted of 174 interactions (edges) involving 148 human proteins
(green) and 30 M. tuberculosis H37Rv (Mtb) proteins (red)
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a number of high degree nodes, such as DosR, Rv0081,
Lsr2, CsoR and Rv0324. Earlier studies have indicated
DosR and Rv0081 to be important hub regulators of
Mtb hypoxic response [7–9, 18, 19]. Lsr2 has also been
proposed earlier to be a global transcriptional regulator,
which responds to variations in oxygen level, and thus
contributes to persistent infection [20]. It is also prob-
able that the other two high degree proteins (CsoR and
Rv0324), also act as hub regulators of hypoxic response
in Mtb due to the following reasons. CsoR has been re-
ported to be involved in copper homeostasis and plays a
probable role in intra-cellular survival and virulence of
the pathogen [21]. On the other hand, Rv0324 has been
suggested to modulate cholesterol metabolism through
enhancing the expression of another regulator KstR [22].
In addition to studying the static properties, the dy-

namic properties of the gene regulatory network (GRN)
were also investigated through simulation of in silico
mutant models (details in Additional files 6 and 7). Since
the steady state obtained from the simulations represents
the state of proteins in enduring (or late) hypoxic re-
sponse, analyses of such states pertaining to the mutants
are expected to help in deciphering importance of the TFs
in sustaining the response at late stages of infection. Simu-
lation studies (single gene knock-outs) revealed that muta-
tions in seven out of the 24 TFs, affected the behaviour of
downstream genes significantly, when studied in terms of
enriched pathways (details in Additional files 6 and 7).
These seven TFs included CsoR, Rv0081, Rv2034, Lsr2,
PhoP, Rv1985c and Rv0324. ΔcsoR was observed to have
the most prominent effect, altering the pathway enrich-
ment pattern of downstream genes by as much as ~ 37%

(when compared to the wild type). Interestingly, despite
being a high degree TF with a known role in hypoxic re-
sponse, the dosR mutant did not exhibit any appreciable
changes in the pathway enrichment patterns, when com-
pared to the wild type Mtb. This indicates that, although
DosR plays a crucial role in initiating hypoxic response, its
role in maintenance of bacteriostasis and enduring hyp-
oxic response is probably not very significant. An earlier
study had also indicated a nominal effect of dosR deletion
on bacteriostasis under hypoxic environment [8]. On the
other hand, the current observations further strengthens
our hypothesis of CsoR being a hub regulator (of hypoxic
response), influencing a number of pathways required by
the bacteria to survive under intra-cellular stress at late
stage of infection. In summary, the above observations
suggest probable roles of CsoR and Rv0324 as key regula-
tors of certain Mtb pathways which are required for adap-
tation to intra-cellular stress. However, a deeper probe
would be required to understand the exact mechanisms of
hypoxic regulation by these two TFs.
Functional analysis of the genes encompassing the

dosR regulon as well as enduring hypoxic response
(EHR), provided further interesting insights into pathway
level changes that are likely to occur in Mtb under hyp-
oxic stress. Despite a large set of genes pertaining to
both dosR regulon (33 out of 57) and enduring hypoxic
response (EHR) (160 out of 230) remains unannotated
till date, a majority of the ‘annotated’ set was observed to
be involved either in metabolic processes or stress re-
sponse pathways. A pathway enrichment analysis was
performed in order to identify the up and down regu-
lated pathways under hypoxic stress (Fig. 2). Apart from

Fig. 2 Pathways enriched in hypoxia associated genes of M. tuberculosis H37Rv (Mtb). Pathways (GO terms) in Mtb that are observed to be (a)
enriched in genes corresponding to enduring hypoxic response (EHR), (b) negatively enriched in EHR genes and (c) enriched in dosR regulon
genes involved in initial hypoxic response
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stress response, the pathways enriched during EHR mainly
included ether and glycerol metabolism as well as regula-
tion of metabolic process (Fig. 2a). This finding comple-
ments earlier literature, wherein lipid has been reported to
be the preferred energy source for intra-cellular survival of
pathogens [23]. On the other hand, the pathways observed
to be negatively enriched during EHR were found to be re-
lated to metabolism of DNA and amino acids (Fig. 2b). Re-
duced metabolism of DNA and amino acids are likely to
help the pathogen in controlling its growth, which in turn
may aid in evading the host immune response and maintain
dormancy [24].
The results of the analysis performed on the genes for

initial hypoxic response further revealed enriched path-
ways related to stress response and carbohydrate metab-
olism. Considering the imminent slower growth phase
the pathogen is likely to encounter in the subsequent
EHR stage, enhanced carbohydrate metabolism is con-
trary to expectations. Thus exact functional roles of the
genes contributing to the enriched carbohydrate meta-
bolic process were investigated. Only two initial hypoxic
response genes were observed to be associated to this
process, namely, otsB1 (Rv2006) and glpQ1 (Rv3842c).
OtsB1 has been suggested to act as a trehalose monomy-
colate phosphatase, which participates in the synthesis of
a cell-wall component arabinogalactan-mycolate [25].
However, no role in Mtb metabolism has been suggested
yet for GlpQ1, a putative glycerophosphoryl diester
phosphodiesterase [26]. These observations suggest that
the enrichment of carbohydrate metabolism during ini-
tial hypoxic response (indicated in our analysis) probably
pertains to maintenance or synthesis of the cell wall
components under intra-cellular stress, and may not sig-
nify an enhanced energy metabolism.
Pathways which were observed to be differentially

‘enriched’ during early and enduring hypoxic response
hinted at the distinct responsibilities shouldered by dosR
and EHR regulons during hypoxic adaptation. While the
pathogen, when exposed to host intra-cellular environ-
ment, initially employs certain stress response mecha-
nisms to counter the host immune system, later stages
of hypoxia is additionally characterized by gene regula-
tory events leading to a slower (or arrested) growth and
a preference for lipids as energy source.

M. tuberculosis H37Rv (Mtb) metabolism under hypoxic
conditions
The environment inside the macrophage is typically hyp-
oxic and is characterized by low pH [24, 27]. Earlier
studies have shown that Mtb undergoes a metabolic shift
from carbohydrates to lipids as the preferred source of
carbon for its viability during hypoxia [23, 28]. Observa-
tions made in the current analysis also suggested that
genes corresponding to ether and glycerol metabolic

processes could be enriched under hypoxic growth con-
ditions (described in previous section). In order to obtain
a deeper understanding of the effect of hypoxia on the
metabolism of Mtb, we performed an in silico flux balance
analysis (FBA) study (Additional files 10 and 11). As com-
pared to the steady state, metabolic pathways constituting
the central carbon metabolism (such as, TCA cycle, pyru-
vate metabolism and glycolysis) were seen to be perturbed
during hypoxia (Additional files 10 and 12). Further, fluxes
flowing through reactions of nucleotide metabolism
(mostly purine metabolism) and amino acids metabolic
pathways (pertaining to arginine, proline, glycine, serine
and threonine, etc.) were found to be altered. In addition,
redox reactions were also observed to carry differential
flux under simulated normal and hypoxic conditions. The
simulations could also reproduce the experimentally ob-
served assimilation of CO2 through anaplerotic pathways
[29, 30] leading to the production of oxaloacetate (OAA)
under glucose limiting conditions.
In order to adapt to the host intra-cellular environ-

ment (especially under hypoxia), the invading Mtb is ex-
pected to undergo substantial changes in its metabolism.
We made an attempt to identify the key enzymes which
could be pivotal in bringing about these changes. A sys-
tematic gene knock-out simulation study under low oxy-
gen conditions was performed using the iNJ661 FBA
model after incorporating the missing reactions for chol-
esterol metabolism. Figure 3 shows the relative growth
rates of the simulated Mtb bacilli when different single
(in silico) gene-knock out studies was performed.
The growth of the simulated Mtb cell was seen to be

most affected in the mutants lacking genes from the gly-
colysis or gluconeogenesis pathways (viz., Δfba, Δpgi,
ΔglpX, Δgap, Δpgk, and Δtpi mutants). In particular, the
bacterial cells failed to grow in the absence of fba, pgi, and
glpX. It may be noted that these three enzymes, apart from
contributing to glycolysis/ gluconeogenesis pathways, are
also key components of the pentose phosphate shunt path-
way (PPP) which has been reported to play an important
role in Mtb survival under low pH conditions and oxidative
stress [31]. The growth of the Mtb cell was also seen to be
severely compromised in the ΔglpK and ΔfolD mutants.
glpK encodes for glycerol kinase and is a key enzyme in the
regulation of glycerol uptake and metabolism [32]. Our ob-
servation is in line with an earlier study reporting dysgonic
growth of ΔglpK Mtb cells [33]. FolD, on the other hand, is
a bi-functional enzyme and plays important role in inter-
mediary metabolism and respiration, and has been reported
to be essential for the survival of Mtb under in vitro hyp-
oxic conditions [26]. The present result also suggests that
ΔfolD mutants are severely compromised for growth under
intra-cellular hypoxic conditions. In addition, mutations
pertaining to enzymes from the TCA cycle, oxidative phos-
phorylation, and pyruvate metabolism were also seen to
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affect the growth of the Mtb cell to a certain degree. To
summarize, certain enzymes corresponding to the PPP
were found to be crucial for the survival of Mtb during
hypoxia. Re-routing of metabolic flux through the PPP gen-
erates reducing equivalents (in the form of NADPH) which
may help the Mtb cells to counter the oxidative stress
asserted by the host during hypoxia.

Cross-talk between M. tuberculosis H37Rv (Mtb) HPI
network and gene regulatory network under hypoxic
condition (hypoxic-GRN) with different cellular processes
M. tuberculosis H37Rv (Mtb) cellular processes associated
with the HPI network
To probe whether the Mtb proteins participating in the
predicted HPIs, as well as those involved in the hypoxic
gene regulatory network (GRN), can influence other bio-
logical pathways/ processes, gene ontology (GO) enrich-
ment analyses were performed (see Additional file 6).
Additional file 13 lists the enriched GO terms identified
when the set of mycobacterial proteins involved in HPIs,
along with their 1st degree neighbours, were considered.
A majority of the enriched GO terms pertained to bio-

logical processes like ‘generation of precursor metabolites
and energy’ and ‘carbohydrate catabolic process’. Amongst
these, the glycolytic process (GO:0006096) was observed
to be up-regulated only during the early time points of in-
fection. It is likely that intermediates of carbohydrate cata-
bolic process are utilized for generation of ATP during
early stages of infection. However, since prolonged
hypoxia-induced glycolysis may have toxic effects on
mycobacteria [34], a subsequent reduction in glycolytic
processes may be necessitated by the cell during later
stages of infection. It may further be noted in this context,
that the metabolic pathway enrichment study also indi-
cated enrichment of carbohydrate metabolic processes

during early phases of hypoxia (as discussed in an earlier
section). This apparent enrichment of carbohydrate meta-
bolic processes could be attributed to trehalose produc-
tion, which contributes to cell wall synthesis.
Pentose-phosphate shunt pathway (GO:0006098) was

also observed to be enriched during the early stages of in-
fection. This pathway is known to provide reducing equiva-
lents for reductive biosynthetic reactions in Mtb [28], and
it’s up-regulation may play a possible role in balancing
ROI/RNI stress induced by the host cell. It is interesting to
note that the up-regulation of the pentose phosphate path-
way was also not sustained by the myobacteria till late in-
fection time points. Further analysis on the gene expression
profiles of the infecting mycobacterial cell as well as that of
the host phagocyte (macrophage) revealed that the regula-
tion of pentose-phosphate pathway (in Mtb) was temporally
correlated with the human respiratory burst mechanism
(Additional files 2 and 3). Given that the human respiratory
burst mechanism is responsible for inducing ROI/RNI
stress [35], our observations indicate a fine balance between
the host response to invasion and the self defence mecha-
nisms of the pathogen.
The iron-sulfur cluster assembly process of Mtb

(GO:0016226) was found to be up-regulated during all
stages of infection. Given that vital cellular processes like
electron transport, energy metabolism and DNA synthesis
require iron-containing cofactors, this observation is in
line with expectations. In addition, it is also likely that this
up-regulation confers resistance to iron limitation and
oxidative stress, as suggested in an earlier report [36].

Influence of M. tuberculosis H37Rv (Mtb) hypoxic GRN on
cellular processes
While evaluating the influence of hypoxic gene regula-
tion on cellular processes, the set of proteins which are

Fig. 3 Comparative growth rates of different mutants of M. tuberculosis H37Rv (Mtb) compared to wild type bacilli. Relative simulated growth
rates (obtained through FBA simulations mimicking hypoxia) of different in silico gene knock-outs of Mtb as compared to the wild type bacilli.
Biological functions associated to the knocked-out genes are also indicated in the plot
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downstream to the transcription factors controlling hyp-
oxia, and were ‘active’ (i.e. ‘turned-on’) during the hyp-
oxic steady state (obtained through Boolean model
simulations – see Supplementary Results), were consid-
ered for GO enrichment. The enriched GO terms thus
obtained consisted of pathways like sulfate assimila-
tion, metabolic compound salvage, cell cycle, etc.
(Additional file 14). Amongst these, the sulfate assimi-
lation pathway (GO:0000103) was observed to be
around five fold up-regulated. This process has been
reported to facilitate sulfate uptake from host and
subsequently help in combating oxidative stress [37].
Interestingly, the iron-sulfur cluster assembly process
(GO:0016226), was also obtained as one of the
enriched (as well as up-regulated) pathways in the set
of HPI associated Mtb proteins (as discussed in an
earlier section). The results therefore indicate the role
of iron-sulfur cluster assembly process and sulfate as-
similation in conferring protection to Mtb against
oxidative stress at late stages of infection.
The current analysis also showed around five fold

up-regulation of nucleotide, nucleoside and purine con-
taining compound salvage pathways (GO:0043174,
GO:0043173 and GO:0043101 respectively) at late stage
of infection. The role of pyrimidine salvage pathway in
intra-cellular survival of Mtb at latent state has been im-
plicated earlier [38]. Thus the observed enrichment of
salvage pathways may pertain to the pathogen’s strategy
for survival inside the host cell, while minimizing ex-
penditure of cellular resources in de novo synthesis of
the respective compounds.
In addition to the above mentioned pathways, cell cycle

(GO:0007049) was also observed to be enriched, as well as
up-regulated. Since this observation is contrary to the antici-
pated non-replicating physiology of Mtb inside the host cell,
the exact roles of the genes/ proteins contributing to the ob-
served enrichment were investigated. Out of six such pro-
teins, three (EccC2, EccC3 and EccC5) were found to be
homologs of a cell division protein FtsK. These proteins
have been reported to belong to the ESAT-6 Secretion Sys-
tem (ESX), involved in virulence and viability of the patho-
gen [39, 40]. Wag31, one of the other proteins contributing
to enrichment of cell cycle, was found to have a role in miti-
gation of oxidative stress [41] in addition to its role in cell
division and cell shape regulation. Furthermore, the
remaining two proteins from the list, viz. murC and murX,
have been reported to be involved in peptidoglycan biosyn-
thesis [42]. Therefore, the observed enrichment/
up-regulation of the ‘cell cycle’ process probably pertains to
up-regulated pathogenic processes like ESX, mitigation of
oxidative stress, cell shape regulation and peptidoglycan bio-
synthesis, and may not be indicative of cell replication.
Overall, the above observations suggest an up-regulation/

enrichment of cellular functions in Mtb which are helpful

to counter the hostile environment of the host macrophage.
This includes pathways for cell wall synthesis, sulfur assimi-
lation, and oxidative stress mitigation. In addition, in an at-
tempt to minimize its energy expenses, the Mtb cells
probably utilize salvage pathways, especially for acquisition
of nitrogen, iron and sulfur when present inside the
macrophage.

Influence of HPI network and GRN on hypoxic metabolism
of M. tuberculosis H37Rv (Mtb)
The previous sections pertained to understanding three
different aspects of Mtb adaptation to the host
intra-cellular environment. While the Mtb proteins in-
volved in HPIs are expected to play a major role in sens-
ing the host environment, its GRN is likely to govern
the necessary adaptive changes. In other words, the shift
in the metabolic paradigm during intra-cellular/ hypoxic
adaptation can be expected to be driven by an altered
flow of information through the host-pathogen interac-
tome network and the gene regulatory cascade.
In order to gauge the possible paths of information

flow through and between (A) HPI-network, (B) the
Mtb hypoxic-GRN, and (C) the hypoxic-metabolism net-
work of Mtb during its sustenance inside the host cell, a
‘shortest-path analysis’ connecting individual compo-
nents of the functional modules A, B and C was per-
formed (details in Additional files 15). It was assumed
that the shortest paths through the background PPI net-
work would be the most optimal for carrying information
from one functional module to the other. Information
from the STRING database was utilized to build the back-
ground PPI network (details in Supplementary Methods).
All shortest paths (of path-length < =5) between proteins
involved in different modules were computed. Further, to
ensure that the identified shortest paths had some rele-
vance in flow of information between the studied mod-
ules, they were filtered based on gene expression of
constituent nodes (during infection). Paths, wherein
at-least 50% of the constituent genes were perturbed
during hypoxia, were considered for further analysis
(Additional file 3). The numbers of identified shortest
paths between different modules are reported in Fig. 4.
An integrated network of Mtb genes and proteins
which could be involved in mediating information be-
tween (A) HPI-network, (B) the Mtb hypoxic-GRN,
and (C) the hypoxic-metabolism network is presented
in Additional files 16 and 17.
It was interesting to observe that a significant number

of shortest paths (13151) connected the components of
(A) HPI with (C) the enzymes identified to be the key
modulators of metabolic flux during hypoxia. In con-
trast, the flow of information between (B) the TFs from
hypoxic-GRN and (C) the metabolic enzymes, was medi-
ated through 4035 shortest-paths. 2554 shortest-paths
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were observed between (A) the HPIs and (B) the
hypoxic-GRN. One would expect that (B) the gene regu-
latory network controlling hypoxic response would have
a significant effect on (C) the hypoxic metabolism. How-
ever, the above observations suggest that the effect of
(A) the HPIs on (C) hypoxic metabolism may be far
more pronounced. The findings are probably indicative
of the fact that many TFs that could be responsible for
adaptation of Mtb to hypoxia are not yet known or char-
acterized. Consequently, the shortest paths between (A)
HPI and (C) hypoxic-metabolism were screened to as-
certain whether they consisted of any TFs which have
not been reported to be associated with hypoxic gene
regulation in any earlier study. Six Mtb TFs could be
identified which are not part of (B) the hypoxic-GRN
presented in this attempt. Two of these TFs, viz. Rv3676
and Rv3862c have been implicated in hypoxic response
in recent studies [43, 44]. However, the exact regulatory
cascades haven’t been identified yet. No literature evi-
dence of association to hypoxia could be found for the
remaining four identified TFs (Rv0097c, Rv1287, Rv1460

and Rv2359). However it was interesting to note that
while Rv2359 has regulatory role in cell starvation
(Bacon et al., 2014), Rv1460 is reported to be involved in
mobilization of sulfur [36], both the processes being as-
sociated with intra-cellular survival of Mtb.
To further assess whether the connections (shortest

paths) between (A) the HPI network and (C) metabolism
were actually relevant in driving metabolic changes dur-
ing hypoxia, the lengths of the paths connecting each of
the metabolic enzymes (to the HPI network) with the
fold-changes observed in the corresponding reaction
fluxes during hypoxia were computed. The observations
(Fig. 5) indicate that a shorter path-length corresponded
to a higher fold change of flux, thereby emphasizing the
probable ‘regulatory’ role of the HPI network on hypoxic
metabolism.

Discussion
In order to obtain a holistic view of the molecular
changes that occur in M. tuberculosis H37Rv (Mtb) dur-
ing the course of its adaptation to the host intra-cellular

Fig. 4 Number of identified shortest paths. Paths (of length≤ 5) connecting (a) HPI-network, (b) the M. tuberculosis H37Rv (Mtb) hypoxic-GRN,
and (c) the hypoxic-metabolism network of Mtb during its sustenance inside the host cell. The (shortest) paths were traced through a Mtb PPI
network (derived from STRING database), and paths wherein at least 50% of the constituent nodes (genes/proteins) were observed to be
perturbed during hypoxia were selected
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environment, we have analyzed various pertinent aspects
using different computational approaches. These include
– (i) the components (genes/proteins) that participate in
interactions between the pathogen (Mtb) and the human
(host), (ii) the Mtb gene regulatory network that may
drive the adaptation of Mtb to hypoxia, and (iii) alter-
ations in the metabolic pathways of Mtb in response to
hypoxia.
Mtb as well as human components involved in the pre-

dicted set of HPIs were observed to be substantially con-
nected, probably helping it to trigger a cascade of
molecular events that are required for intra-cellular adap-
tation of Mtb once it senses the changes in environment.
While some of these predicted HPIs provided important
insights into probable pathogenic strategies (such as, HPI
involving Mtb CipA-Human CDC42), others indicated at

the host immune response (such as, HPI involving Mtb
SodA-Human HLA) (also see Additional file 2). Further,
the ‘KEGG Tuberculosis pathway (ko05152)’ was seen to
encompass 89 (out of 148 human proteins) which were
predicted to be involved in the HPIs. These findings
re-emphasize the relevance of the predicted interactions
and the proteins involved therein.
A key aspect of Mtb’s survival in the intra-cellular en-

vironment is its adaptation to hypoxia. Earlier studies
dealing with this aspect of Mtb survival had identified
several genes involved in the process through computa-
tional as well as experimental studies [7–9]. Given that
most of these studies were disparate, an attempt was
made to (a) collate all relevant information through lit-
erature mining, and (b) built a simulable model to study
hypoxic gene regulation in Mtb. The genes regulated by

Fig. 5 Plots depicting change in reaction fluxes during hypoxia versus lengths of shortest paths connecting metabolic enzymes to HPI and GRN
networks. Plots depicting the magnitude of change in reaction fluxes during hypoxia (obtained using FBA simulations) versus the lengths of
shortest paths (path lengths) connecting the corresponding enzymes to (a) M. tuberculosis H37Rv (Mtb) proteins involved in HPIs, and (b)
transcription factors in the hypoxia gene regulatory network of Mtb. The median (red line), IQR (box), 1.5 × IQR (whisker), and outliers (red
asterisks) corresponding to flux fold change values are indicated in the plot. The plot indicates that metabolic enzymes associated with reactions
experiencing higher fold changes during hypoxia are more closely connected (in terms of shorter path lengths) to the proteins involved in HPIs,
as compared to the transcription factors known to regulate hypoxic response
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dosR-induced initial response were seen to be enriched
in functions like maintenance of cell wall, thereby indi-
cating the pathogen’s preference to optimize resource or
energy utilization for cell protection, before the onset of
metabolic re-routing to utilize lipids and attain a viable
but non-growing phenotype during the subsequent EHR
stage. Further, simulation results identified a novel role
for CsoR (Rv0967), which was observed to be a hub
regulator of EHR. Given the known role of copper in
mitigating oxidative stress (through SodC-mediation) in
Mtb [45], further experiments investigating the regula-
tory effects of CsoR is likely to provide additional in-
sights into Mtb virulence.
The hypoxic metabolism of Mtb was studied using FBA

simulations. In contrast to earlier attempts [46], a minimal
set of constraints (low oxygen uptake and a change in pri-
mary energy source) were employed to decipher the in-
trinsic pattern of flux re-routing during hypoxia (also see
Additional file 10). Such changes are solely driven by the
network architecture of the metabolic network and are ex-
pected to be the strongest determinant of metabolic
changes during hypoxic adaptation. Mutant strains of Mtb
lacking genes for glycolysis or gluconeogenesis and PPP
were seen to be challenged for growth/ metabolism during
hypoxia. These observations probably hint at a mechanism
wherein Mtb counters the intra-cellular oxidative stress by
generation of reducing equivalents through the PPP. Fur-
ther, the scarcity of available sugars (coupled by arrested
growth during infection) probably triggers Mtb to reverse
the flow of flux through its glycolytic pathways to store
glycogen for future use.
In addition to looking at the genes/ proteins/ enzymes

directly involved in the investigated HPI, GRN or the
metabolic network, the functional aspects of their neigh-
bours were assessed in order to understand the influence
of the former on other cellular processes. Despite no
overlap between the constructed HPI network and the
24 TFs controlling hypoxic gene regulation, key cellular
processes enriched in the ‘downstream’ PPI cascade of
both these networks pertained to iron and sulfur assimi-
lation and carbohydrate metabolism pathways involved
in synthesis of cell wall components. Other processes as-
sociated with the HPI network which probably play an
active role during intercellular survival of Mtb included
PPP and synthesis of precursor metabolites. The
hypoxic-GRN on the other hand had sulfate uptake,
metabolic salvage pathways, and cell cycle amongst its
list of downstream pathways/ processes that were seen
to be modulated during hypoxia. While sulfate uptake
and metabolic salvage pathways have obvious implica-
tion in a phagocytosed Mtb cell sourcing precursor me-
tabolites from the host, redirection of flux towards cell
wall synthesis and gluconeogenesis have earlier been re-
ported in other studies [22, 47] as well as in our

investigations into hypoxic metabolism. These hints in-
dicating the possible overlap and inter connections be-
tween different cellular processes involved in Mtb’s
intra-cellular survival led us to probe the links deeper
through a shortest PPI path analysis. The results indi-
cated a significantly enriched set of PPIs connecting the
HPI network to the Mtb’s hypoxic metabolism. This was
particularly intriguing, given that one would expect the
GRN controlling hypoxic response to exert a more
prominent effect on hypoxic metabolism. While our ob-
servations strengthen the premise of a concerted effort
of different sensory and regulatory networks of Mtb in
driving the metabolic changes during hypoxic adapta-
tion, it raises a question regarding the completeness of
our current understanding of TFs and gene regulation
pertaining to hypoxia.
Experimental validation of certain interesting regulatory

and metabolic aspects identified in this study can potentially
enrich our current understanding of tuberculosis infection.
Amongst the identified HPIs, proteins pertaining to two of
the predicted interactions (‘Human Visfatin-Mtb GGT’ and
‘Human NINJ1-Mtb NarH’) with suspected role in subver-
sion of host defence mechanisms, have been partially vali-
dated based on available literature and are potential
candidates for further experimental validation. Experiments
directed towards understanding the interaction dynamics of
another predicted HPI, ‘Human p53-Mtb YchF’, would be in-
triguing given the critical role of p53 in cell cycle and viru-
lence associated role of YchF. Further, validation of
predicted interactions involving Mtb SodA and human im-
mune system proteins could offer a new perspective on
SodA-mediated mechanisms of immune modulation. With
respect to the hypoxic gene regulatory network, the pre-
dicted crucial roles of the Mtb regulators CsoR and Rv0324
would be interesting aspects for experimental validation,
which may aid in designing control strategies against latent
tuberculosis. The in silicometabolic simulations in this work
suggest that mutant strains of Mtb lacking genes for glycoly-
sis or gluconeogenesis and PPP could be susceptible to im-
peded growth/ metabolism during hypoxia. Experimental
validation of the above observation, by studying Δfba, Δpgi,
and ΔglpX mutants in particular, can provide further under-
standing of Mtb metabolism during latency and stress.

Conclusion
The role of HPIs and Mtb transcription factors in driving
metabolic changes during hypoxic adaptation of Mycobac-
terium tuberculosis have been investigated in the current
study. The insights obtained from the three connected as-
pects of intra-cellular survival of Mtb are expected to aug-
ment our current understanding of tuberculosis infection
and guide in experimental design towards deeper investi-
gations into host-pathogen interplay. In addition, the
host-pathogen interaction network, the Boolean model of
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Mtb hypoxic gene-regulation, as well as the genome scale
metabolic model of Mtb, presented in this study are ex-
pected to be useful resources for future studies on tuber-
culosis infection.

Methods
A detailed methodology adopted for the various analysis
performed in this study is provided in Additional files 1, 6,
10 and 15. In brief, the HPIs were predicted using an
‘interlogs’ based approach from a template PPI library as
was reported in an earlier study [48]. The template PPI li-
brary was constructed from experimentally validated PPIs
from various public databases (Additional file 1). In this
method, for a given template PPI, A↔B (i.e., protein A
interacting with protein B), the human/ Mtb orthologs of
both A and B (A’ and B′ respectively) were first identified.
Based on the inferred orthology, the following HPIs were
inferred – (a) A ↔ B′ or (b) A’ ↔ B, where one of the
interacting proteins belong to the host (human) and the
other belong to the pathogen (refer to Figure S1.1). The
predicted interactions were subsequently filtered (Add-
itional file 1) based on several biologically relevant criteria
(such as sub-cellular localization and expression levels of
the interacting proteins) and finally collated into a
host-pathogen interaction network.
A total of 286 genes/ proteins associated to hypoxia

were mined from literature and subsequently categorized
based on the time of gene expression into one of (i) dosR
regulon genes, (ii) enduring hypoxic response (EHR)
genes, and (iii) unclassified (genes lacking any time
series expression data) as mentioned in Additional file 5.
In addition, gene regulatory data (a total of 345 interac-
tions) was retrieved through exhaustive literature search
(Additional file 6). The hypoxia GRN comprising of 24
TFs (wherein each TF had interaction with at least one
other TF) was then constructed and simulated using
GINsim [49], a mathematical modelling tool using (mul-
ti-state) Boolean logics. Further, an extended GRN com-
prising of the ‘target’ genes (downstream genes) which
are regulated by each of the 24 TFs in the above men-
tioned TF network were identified based on the TF-gene
pairs collated from literature (Additional file 7). The ex-
tended GRN was also explored using a Boolean model in
GINsim [49].
The available whole genome metabolic network of Mtb,

iNJ661 (augmented with additional enzymes and reactions
for lipid/ cholesterol metabolism) was used in the present
study (details in Additional file 10). The augmented iNJ661
model (provided in Additional file 11) was simulated (using
a COBRApy framework) for growth (with biomass as the
objective function) using constraints mimicking M9 min-
imal media and varying carbon sources.
Shortest-paths connecting (A) the HPI-network, (B)

the Mtb hypoxic-GRN, and (C) the hypoxic-metabolism

network of Mtb were computed from the Mtb PPI net-
work (as obtained from STRING database [50] and fil-
tered for a combined score cut-off of 900), using the
biological network analysis tool CompNet [51]. Further,
paths having a maximal path-length of five and wherein,
at least 50% of the genes were observed to be perturbed
were considered as shortest-paths carrying information
(details in Additional file 15). Subsequently, the statis-
tical significance of the identified shortest-paths con-
necting any two modules (among A, B and C) was
evaluated through t-tests.

Additional files

Additional file 1: Details of the method used for prediction of host-
pathogen interactions (HPIs) between human and M. tuberculosis H37Rv
(Mtb) proteins. (DOCX 96 kb)

Additional file 2: Details of the Host-Pathogen Interactions (HPI) that were
predicted between human and M. tuberculosis H37Rv (Mtb) cells. (DOCX 50 kb)

Additional file 3: Perturbations in (A) M. tuberculosis H37Rv (Mtb) and
(B) human gene expression at different time-points post infection. The
mean of expression values of a gene from different experimental datasets
(collected from literature) has been considered. Expression values exhibit-
ing at least 2-fold differential expression are indicated. (XLSX 2703 kb)

Additional file 4: Human pathways (KEGG biological pathways)
associated with the host-pathogen interaction network. (DOCX 635 kb)

Additional file 5: List of genes involved in hypoxic response regulation
of M. tuberculosis H37Rv. (XLSX 14 kb)

Additional file 6: Detailed method for analysis of gene regulatory
network (GRN) controlling hypoxic response in M. tuberculosis H37Rv.
(DOCX 412 kb)

Additional file 7: List of interacting “transcription factor - gene” pairs of
M. tuberculosis H37Rv collated from literature. (XLSX 102 kb)

Additional file 8: Comparison of results of the multi-level Boolean model
simulation with experimentally obtained gene expression data. (DOCX 71 kb)

Additional file 9: Results of the analysis on gene regulatory network
(GRN) controlling hypoxic response in M. tuberculosis H37Rv. (DOCX 14 kb)

Additional file 10: Details of the adopted method and corresponding
results of Flux Balance Analysis (FBA) of M. tuberculosis H37Rv metabolism
during hypoxia. (DOCX 27 kb)

Additional file 11: The metabolic network model of M. tuberculosis
H37Rv (Mtb) which was used for metabolic simulations in the current
study (.xml format, can be used with MATLAB - COBRA toolbox or
COBRApy framework; url- https://opencobra.github.io/). (XML 1043 kb)

Additional file 12: List of metabolic reactions in M. tuberculosis H37Rv
which were significantly perturbed (over 2-fold) during hypoxia as com-
pared to aerobic condition (results obtained through FBA simulations)
(.xlsx format). (XLSX 14 kb)

Additional file 13: Significantly enriched GO biological process terms in
the set of M. tuberculosis H37Rv proteins involved in HPIs are listed. Up-
regulation or down-regulation of the biological processes during early and
late infection time points, as inferred from the expression profiles of the
genes constituting the respective processes, are also indicated. (XLSX 13 kb)

Additional file 14: Significantly enriched GO biological process terms in
the set of M. tuberculosis H37Rv proteins, which were observed to be
‘active’/ switched ON in the ‘hypoxic’ stable state. This stable state was
obtained through simulation of Boolean model corresponding to the
gene regulatory network collated in the present study. (XLSX 10 kb)

Additional file 15: Details of the methodology adopted for identifying
the shortest-paths among (A) the HPI-network, (B) the M. tuberculosis
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H37Rv hypoxic- gene regulatory network, and (C) the hypoxic-
metabolism network of M. tuberculosis H37Rv. (DOCX 19 kb)

Additional file 16: M. tuberculosis H37Rv (Mtb) interaction network
demonstrating the cross-talks between (A) HPI-network, (B) the Mtb
hypoxic-GRN, and (C) the hypoxic-metabolism network during hypoxic
adaptation. (XLSX 179 kb)

Additional File 17: M. tuberculosis H37Rv (Mtb) interaction network
demonstrating the cross-talks between (A) HPI-network, (B) the Mtb
hypoxic-GRN, and (C) the hypoxic-metabolism network during hypoxic
adaptation (.cys format to be viewed using Cytoscape; url- http://www.cy-
toscape.org/). (CYS 313 kb)
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