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MHC class II restricted neoantigen peptides
predicted by clonal mutation analysis in
lung adenocarcinoma patients: implications
on prognostic immunological biomarker
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Abstract

Background: Mutant peptides presented by MHC (major histocompatibility complex) Class II in cancer are
important targets for cancer immunotherapy. Both animal studies and clinical trials in cancer patients showed that
CD4 T cells specific to tumor-derived mutant peptides are essential for the efficacy of immune checkpoint blockade
therapy by PD1 antibody.

Results: In this study, we analyzed the next generation sequencing data of 147 lung adenocarcinoma patients
from The Cancer Genome Atlas and predicted neoantigens presented by MHC Class I and Class II molecules. We
found 18,175 expressed clonal somatic mutations, with an average of 124 per patient. The presentation of mutant
peptides by an HLA(human leukocyte antigen) Class II molecule, HLA DRB1, were predicted by NetMHCIIpan3.
1. 8804 neo-peptides, including 375 strong binders and 8429 weak binders were found. For HLA DRB1*01:01,
54 strong binders and 896 weak binders were found. The most commonly mutated genes with predicted
neo-antigens are KRAS, TTN, RYR2, MUC16, TP53, USH2A, ZFHX4, KEAP1, STK11, FAT3, NAV3 and EGFR.

Conclusions: Our results support the feasibility of discovering individualized HLA Class II presented mutant
peptides as candidates for immunodiagnosis and immunotherapy of lung adenocarcinoma.
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Background
The efficacy of therapeutic effect of immune checkpoint
blockade such as PD1 and CLTA4 antibodies is hypothe-
sized to be dependent on mutant peptide epitopes which
cause the T cell dependent cytotoxicity toward tumor
cells. Epitopes for CD4 T cells are proposed to be a
major mechanism. In mouse models, both artificial pro-
tein antigens and mutant peptide antigens derived from
tumor cells were found to elicit tumorcidal T cell
responses [1–3]. Clinical trials using long peptides or
mRNA to deliver CD4 T cell epitopes to dendritic cells

have shown success in inducing mutant peptide-specific
CD4 T cells and their association with anti-tumor effi-
cacy [4–6].
In this study, we analyzed next generation sequencing

data from 147 lung adenocarcinoma patients deposited
in the Cancer Genome Atlas, to identify both the driver
and passenger mutations which may be presented by
HLA Class II molecules. Due to the complexity of poly-
morphisms of both alpha and beta chains of HLA Class
II molecules, we only studied the binding of mutant pep-
tides to HLA DRB1 molecules that pair with an invariant
alpha chain, HLA DRA.
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Methods
Standardization and tracking of mutation data from TCGA
We collected mutations of lung adenocarcinoma from
TCGA [7]. The data collection criteria was established
as follows: 1, Tumor and matched normal adjacent tissue
were included; 2, Samples that contain all somatic muta-
tion, expression, SNP (single nucleotide polymorphism)
array information were included; 3, Tumor samples from
same patients were removed; 4, Samples with purity
lower than 20% or ploidy larger than 6 were removed,
purity and ploidy were reported by AbsCN-seq [8].
To remove common sequencing artifacts or residual

germ line variation, each mutation was subjected to a
‘Panel of Normals’ filtering process using a panel of over
600 BAM files from normal samples. Mutations ob-
served more than 1% in the panel of normals, dbSNP [9]
or 1000G [10] were removed. Finally, all mutations with
covered reads less than 10X were filtered out.

Purity and ploidy analysis
Purity and ploidy were estimated by AbsCN-seq, a soft-
ware developed for WES (whole exon sequencing) data,
based on SNV (single nucleotide variations) frequency
and segment copy number.

Mutation clonality analysis
After estimating the tumor purity, we calculated the
CCF (cancer cell fraction) for each mutation. The CCF is
the percentage of tumor cells harboring a given muta-
tion. Clonal mutations have a true CCF of 1, and subclo-
nal mutations have a true CCF < 1. The observed allele
counts correspond to a probability density of the CCF,
which can be estimated with the following equation,
where q(m) is the local copy number at the given muta-
tion m, a is purity, and CCF ranges from 0 to 1. pdf is
probability density function, alt is the alternate allele
counts, ref. is the reference allele counts [11].

pdf CCF;mð Þ ¼ βpdffCCF�α; alt mð Þ=½2� 1� αð Þ

þ α�q mð Þ� þ 1; ref mð Þ þ 1g

Neo-peptides prediction
We first confirmed that the mutated genes were
expressed by RNA-seq data. Genes with 3 or more reads
covered were defined as expressed according to Kandoth et
al. [12]. 29-mer polypeptides centered on mutated
residues were scanned to identify candidate peptides bind-
ing to MHC Class I or II molecules [13], i.e., peptide

Fig. 1 Flow chart of clonal mutation analysis and HLA-binding neo-antigen prediction for lung adenocarcinoma patients
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sequences surrounding mutated amino acids resulting
from missense mutations, frame-shift or non-frame-shift
indels. The affinity of 8–11 peptides binding to MHC Class
I molecules were predicted using the NetMHCPan2.4 bind-
ing algorithm [14]. The affinity of 15 mer peptides binding
to MHC Class II molecules were predicted using the
NetMHCIIPan3.1 binding algorithm [15]. Threshold for

strong binding peptides is defined as half-maximum inhibi-
tory concentration (IC50) < 50 nM; Threshold for weak
binding peptides is defined as IC50 < 500 nM [15–17].
MHC Class II molecules include HLA DP, DQ, and

DR molecules. These molecules are composed of alpha
and beta subunits. For DP and DQ molecules, both
alpha and beta subunits are polymorphic. DR molecules

Table 1 Top mutated genes with predicted HLA DRB1 binding neo-peptides in lung adenocarcinoma patients in this study

Gene No. of strong-binding
neo-antigens

No. of weak-binding
neo-antigens

Other mutant
peptides

Total mutated
peptides

Frequency of neo-antigens
in 147 samples

KRAS 0 48 3 51 32.65%

TTN 1 44 101 146 22.45%

RYR2 0 36 43 79 20.41%

MUC16 2 35 58 95 20.41%

TP53 1 25 37 63 17.01%

USH2A 1 24 25 50 13.61%

ZFHX4 1 21 42 64 14.29%

KEAP1 1 19 10 30 13.61%

STK11 1 17 17 35 11.56%

FAT3 0 15 14 29 7.48%

NAV3 2 14 16 32 10.20%

EGFR 0 14 10 24 8.16%

SPTA1 0 13 31 44 8.84%

ANK2 0 13 14 27 7.48%

ADAMTS12 0 13 22 35 6.12%

PXDNL 0 12 11 23 8.16%

DMD 0 12 14 26 8.16%

ASPM 0 12 6 18 8.16%

LPHN3 1 11 10 22 8.16%

DNAH9 0 11 15 26 6.12%

Fig. 2 Predicted HLA-DRB1-binding neo-antigen mutant peptides in 147 lung adenocarcinoma patients. Somatic mutations were predicted by
NetMHCIIPan3.1. All patients were lined up according to numbers of HLA-DRB1-binding neo-antigen mutations, including both strong-binders
(SB, blue color) and weak-binders (WB, red color). Gray color indicates other mutations which do not bind to MHC Class II molecules. Smokers
and non-smokers were analyzed separately
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are composed by a polymorphic beta subunit and an in-
variant alpha subunit. In this study, we focused on HLA
DRB1, the most prevalent beta subunit of HLA DR [18].
The frequencies of other DRB molecules (DRB3, 4 and
5) are 5 to 10 fold lower than DRB1 (reference [18]).
Clearly DRB1 molecules are significantly more frequent
in presenting neo-antigens.

Results
To ensure high quality mutation calls for lung adenocar-
cinoma, stringent filters (Methods) were applied in sam-
ple and mutation collecting. A total of 40,229 somatic

mutations in 147 lung adenocarcinomas were included
for downstream analysis, including 26,296 missense,
8965 silent, 2061 nonsense, 911 splice site, 98 non-stop/
read through, 1735 frame shift insertions/deletions
(indels) and 163 inframe indels.
We assessed the CCF(cancer cell fraction) of each

mutation as described in Carter et al. [19] to assess
whether mutations are clonal (i.e., present in all cancer
cells). Mutations are considered clonal if the CCF is
close to 1. To determine the CCF, we calculated the
sample purity (i.e., the percentage of tumor cells in sam-
ple), ploidy (i.e., a measure of the number of

Table 2 Number of predicted neo-antigen peptides presented by MHC Class II molecule HLA DRB1

HLA allele No. of strong-binding
neo-antigens

No. of weak-binding
neo-antigens

Total neo-
antigens

HLA frequency in
Caucasian population

P value Q value

DRB1*01:02 88 1174 1262 1.40% 1.57E-24 4.86E-23

DRB1*12:01 98 1046 1144 1.60% 9.03E-24 1.40E-22

DRB1*11:04 48 756 804 2.90% 4.04E-23 4.18E-22

DRB1*01:01 54 896 950 8.60% 1.93E-22 1.50E-21

DRB1*01:03 4 392 396 1.20% 1.11E-06 6.86E-06

DRB1*13:03 3 385 388 1.10% 6.80E-05 3.51E-04

DRB1*16:02 22 293 315 0.15% 2.52E-01 1.00E + 00

DRB1*03:01 4 303 307 12.20% 4.31E-01 1.00E + 00

DRB1*11:03 2 248 250 0.61% 9.68E-01 1.00E + 00

DRB1*08:03 3 225 228 0.24% 1.00E + 00 1.00E + 00

DRB1*07:01 6 217 223 13.40% 1.00E + 00 1.00E + 00

DRB1*04:05 3 217 220 0.67% 1.00E + 00 1.00E + 00

DRB1*04:01 2 213 215 8.80% 1.00E + 00 1.00E + 00

DRB1*08:04 7 190 197 0.20% 1.00E + 00 1.00E + 00

DRB1*10:01 12 179 191 0.85% 1.00E + 00 1.00E + 00

DRB1*09:01 4 175 179 1.00% 1.00E + 00 1.00E + 00

DRB1*04:04 0 151 151 3.90% 1.00E + 00 1.00E + 00

DRB1*13:05 4 137 141 0.25% 1.00E + 00 1.00E + 00

DRB1*13:02 0 137 137 4.90% 1.00E + 00 1.00E + 00

DRB1*16:01 1 124 125 1.40% 1.00E + 00 1.00E + 00

DRB1*08:01 2 121 123 2.30% 1.00E + 00 1.00E + 00

DRB1*11:01 4 116 120 5.60% 1.00E + 00 1.00E + 00

DRB1*13:01 0 116 116 5.60% 1.00E + 00 1.00E + 00

DRB1*11:02 0 113 113 0.28% 1.00E + 00 1.00E + 00

DRB1*04:08 0 107 107 0.39% 1.00E + 00 1.00E + 00

DRB1*15:01 2 103 105 13.50% 1.00E + 00 1.00E + 00

DRB1*14:01 1 88 89 2.60% 1.00E + 00 1.00E + 00

DRB1*15:02 0 55 55 0.72% 1.00E + 00 1.00E + 00

DRB1*04:07 0 54 54 1.10% 1.00E + 00 1.00E + 00

DRB1*04:03 1 49 50 0.79% 1.00E + 00 1.00E + 00

DRB1*04:02 0 49 49 1.10% 1.00E + 00 1.00E + 00

MHCII molecules which are significantly more frequent in presenting neo-antigens were labelled as bold according to P values. Significant levels were calculated
using one sided Mann-Whitney U test
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Table 3 Predicted HLA DRB1-binding neo-peptides of KRAS, EGFR, TP53, and MUC16 in lung adenocarcinoma patients in this study

Gene Mutation HLA MHC affinity score(nM) Neo-peptide Frequency of neoantigens in
147 samples

KRAS p.G12C DRB1*01:01 214.21 VGACGVGKSALTIQL 14.97%

p.G12 V DRB1*01:02 81.75 VVGAVGVGKSALTIQ 10.20%

p.G12A DRB1*12:01 220.77 KLVVVGAAGVGKSAL 2.72%

p.G12D DRB1*11:03 280.09 KLVVVGADGVGKSAL 0.68%

p.G12F DRB1*08:04 89.1 LVVVGAWRRQECLDD 1.36%

p.G12R DRB1*11:04 181.75 VVVGARGVGKSALTI 0.68%

p.G12S DRB1*12:01 216.22 KLVVVGASGVGKSAL 1.36%

p.G12Y DRB1*08:04 89.1 LVVVGAWRRQECLDD 0.68%

MUC16 p.A5415T DRB1*08:03 491.36 TMHHSTNTAVTNVGT 0.68%

p.D1142Y DRB1*01:02 467.11 PYPGSARSTWLGILS 0.68%

p.D9418Y DRB1*01:02 42.61 SRGPEYVSWPSPLSV 0.68%

p.E11272V DRB1*12:01 72.72 ISLVTHPAVSSSTLP 0.68%

p.E14134Q DRB1*08:03 201.38 QLISLRPQKDGAATG 0.68%

p.E8581D DRB1*04:04 399.26 FFSTLPDSISSSPHP 0.68%

p.G13025 V DRB1*01:02 161.1 TNLQYGGHASPWLQE 0.68%

p.G13669C DRB1*04:05 479.01 KFNTTERVLQCLLRS 0.68%

p.G1530 V DRB1*12:01 162.76 GIRSLGRTVDLTTVP 0.68%

p.G3326R DRB1*01:02 379.94 VSLESPTARSITRTG 0.68%

p.G6740C DRB1*04:01 419.34 TIITRTCPPLGSTSQ 0.68%

p.H12349N DRB1*04:04 254.12 NSLYVNGFTNQSSVS 0.68%

p.H14021N DRB1*01:03 422.78 HELSQQTNGITRLGP 0.68%

p.L12891I DRB1*08:03 420.3 LQGLIGPMFKNTSVG 0.68%

p.L2407I DRB1*11:04 376.36 SSSPSIFSSDRPQVP 0.68%

p.L8172I DRB1*04:03 461.25 GFAQITVSPETSTET 0.68%

p.M3792 T DRB1*04:01 445.39 ITSAVTPAATARSSG 0.68%

p.N787Y DRB1*12:01 57.97 ATSPERVRYATSPLT 0.68%

p.P1203A DRB1*01:02 129.39 TTSLTASNIPTSGAI 0.68%

p.P12152H DRB1*03:01 473.39 RPDHEDLGLDRERLY 0.68%

p.P242H DRB1*12:01 266.64 YSSFLDLSHKGTPNS 0.68%

p.P2978fs DRB1*01:02 395.63 VPLQEQGTLDMPQRA 0.68%

p.P841L DRB1*12:01 26.68 STLSLLSVSGVKTTF 0.68%

p.P8502A DRB1*11:03 392.32 AESAITIETGSAGAT 0.68%

p.S13403I DRB1*12:01 253.18 DPKIPGLDRERLYWK 0.68%

p.S1887C DRB1*04:01 315.03 KSLCMGNSTHTSMTY 0.68%

p.S3428Y DRB1*04:01 396.78 TSYWSDQTSGSDITL 0.68%

p.S490Y DRB1*01:01 88.64 TTGSTYGRQSSSTAA 0.68%

p.S586Y DRB1*01:02 479 TYADTLIGESTAGPT 0.68%

p.S6935F DRB1*11:04 66.51 TSMSVFSETTKIKRE 0.68%

p.S7304Y DRB1*16:02 107.01 MLPEIYTTRKIIKFP 0.68%

p.S8560C DRB1*13:03 414.19 VEEASCVSSSLSSPA 0.68%

p.T12805S DRB1*11:03 420.91 NGIKELGPYSLDRNS 0.68%

p.T435 K DRB1*13:03 301.6 EGTLNKSMTPLETSA 0.68%

p.T7989R DRB1*13:03 492.12 SRLPESISSSPLPVT 0.68%
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chromosomes in a cell) and absolute copy number by
Abs-CNseq. We further identified clonal mutations
based on beta distribution. In total, we identified 21,710
clonal mutations (Fig. 1), including the known
proliferation-related genes (e.g., TP53, KRAS, EGFR).

High-affinity candidate T cell epitopes were identified
in silico by scanning of the mutant peptides resulting
from missense mutations, frame-shift or non-frame-shift
indels. T cell epitopes presented by MHC Class I mole-
cules were predicted by NetMHCPan2.4 binding

Table 3 Predicted HLA DRB1-binding neo-peptides of KRAS, EGFR, TP53, and MUC16 in lung adenocarcinoma patients in this study
(Continued)
Gene Mutation HLA MHC affinity score(nM) Neo-peptide Frequency of neoantigens in

147 samples

p.T8159A DRB1*01:02 487.68 VSRTEVASSSRTSIS 0.68%

p.V11743 M DRB1*01:02 292.47 SPGAPEMMTSQITSS 0.68%

TP53 p.A161V DRB1*13:02 344.62 RVRAMVIYKQSQHMT 0.68%

p.A69fs DRB1*08:03 238.65 QLRFPSGLLAFWDSQ 0.68%

p.C135F DRB1*04:07 85.99 LNKMFFQLAKTCPVQ 0.68%

p.C176F DRB1*12:01 140.21 YKQSQHMTEVVRRFP 0.68%

p.C176Y DRB1*12:01 163.66 YKQSQHMTEVVRRYP 0.68%

p.C277F DRB1*11:04 200.58 VRVCAFPGRDRRTEE 1.36%

p.D281E DRB1*11:04 412.76 VRVCACPGRERRTEE 0.68%

p.D281Y DRB1*01:02 286.24 RVCACPGRYRRTEEE 0.68%

p.E271K DRB1*11:04 283.03 GRNSFKVRVCACPGR 0.68%

p.E285K DRB1*11:04 418.37 VRVCACPGRDRRTKE 0.68%

p.F270 V DRB1*13:03 401.66 NLLGRNSVEVRVCAC 0.68%

p.G245C DRB1*08:04 255.62 NSSCMGCMNRRPILT 0.68%

p.G334 V DRB1*03:01 268.4 DGEYFTLQIRVRERF 0.68%

p.M237I DRB1*07:01 251.46 DCTTIHYNYICNSSC 0.68%

p.N239S DRB1*07:01 246.03 YNYMCSSSCMGGMNR 0.68%

p.P152fs DRB1*01:01 230.65 PVQLWVDSTPRPAPA 0.68%

p.P278H DRB1*11:04 318.15 VRVCACHGRDRRTEE 0.68%

p.R158L DRB1*12:01 329.17 STPPPGTRVLAMAIY 0.68%

p.R175H DRB1*01:02 468.06 MTEVVRHCPHHERCS 1.36%

p.R273C DRB1*01:02 494.42 EVCVCACPGRDRRTE 0.68%

p.R280I DRB1*01:02 445.57 VRVCACPGIDRRTEE 0.68%

p.R337L DRB1*01:01 225.82 FTLQIRGRELFEMFR 0.68%

p.S127C DRB1*16:01 380.13 VTCTYCPALNKMFCQ 0.68%

p.V73 fs DRB1*01:02 15.9 WPLHQQLLHRRPLHQ 0.68%

EGFR p.709_710ET > D DRB1*16:02 411.98 SGEAPNQALLRILKE 1.36%

p.773_774insH DRB1*12:01 281.83 VMASVDNPHVCRLLG 0.68%

p.ELR746del DRB1*01:02 169.33 ELREATSPKANKEIL 1.36%

p.ELREA746del DRB1*01:02 77.85 KELREATSPKANKEI 0.68%

p.K754I DRB1*01:03 230.19 ELREATSPIANKEIL 0.68%

p.L858R DRB1*08:03 205.08 ITDFGRAKLLGAEEK 1.36%

p.L861Q DRB1*09:01 464.7 TDFGLAKQLGAEEKE 0.68%

p.Q432H DRB1*16:01 363.6 LEIIRGRTKHHGQFS 0.68%

p.S768I DRB1*03:01 212.84 AYVMAIVDNPHVCRL 0.68%

p.TSPKANKE751del DRB1*01:01 95.63 IKELREATSPKANKE 0.68%

p.V769 L DRB1*04:04 253.85 VMASLDNPHVCRLLG 0.68%
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algorithm (Additional file 1: Table S1, Additional file 2:
Table S2 and Additional file 3: Table S3). T cell epitopes
presented by MHC Class II molecules were predicted by
NetMHCIIPan3.1 binding algorithm. We focused on
HLA DRB1, the most prevalent beta subunit of HLA DR
which pairs with invariant alpha subunit HLA DRA [18].
In total, 8804 neo-peptides, including 375 strong binders
and 8429 weak binders were found (Fig. 2). For
DRB1*01:01, 950 neo-peptides, including 54 strong
binders and 896 weak binders were found. The most
commonly mutated genes with predicted neo-antigens
are KRAS, TTN, RYR2, MUC16, TP53, USH2A, ZFHX4,
KEAP1, STK11, FAT3, NAV3 and EGFR (Table 1). The
exact mutated sequences are listed in Additional file 4:
Table S4. The frequency of neo-peptides varies widely in
individual patients of lung adenocarcinomas, from 0 to
523 (Fig. 2). Table 2 shows the distribution of neo-antigens
in different HLA DRB1 alleles. DRB1*01:02, DRB1*12:01,
DRB1*11:04, DRB1*01:01 were found to be the most
frequent DRB1 alleles which present neo-antigens. High
frequency of neo-peptides were found in hotspots of KRAS
(Table 3, G12C or G12 V). INDEL mutations were found in
most patients (Fig. 3). However, no linear correlation was
found between SNV and INDEL mutations.

Discussion
Several groups have proposed to predict HLA Class II
presented neo-antigens through next generation sequen-
cing for cancer immunotherapy [1–6]. In both mouse
models and human patients, the function of predicted
neo-antigens have been verified,by measuring CD4 T cell
responses or tumor rejection.

In this study, we have predicted the HLA Class
II-presented neo-antigen peptides in lung adenocarcin-
oma. An average of 59 HLA DRB1-presented
neo-antigen mutations were predicted per lung cancer
patient. This prediction is based on the assumption that
all HLA DRB1 alleles may be the MHC class II molecule
to present mutated peptides in a patient. Since a specific
cancer patient only express one HLA DRB1 allele, the
actual mutant peptide epitope presented by a cancer
patient is much lower. Unfortunately, the HLA DRB1 al-
lele data are not available in public TCGA database for
the lung cancer patients we have studied. Assuming
HLA DRB1*01:01 is the HLA DRB1 allele, 54 strong
binders and 896 weak binders were found in 147 pa-
tients. In average, 5 mutant peptides were found per pa-
tient with HLA DRB1*01:01 allele.
van Buuren et al. reported that the sensitivity of

neo-epitope prediction from analysis of exonic SNVs in
cancer exome sequencing data requires little improve-
ment [20]. Our analysis on mutant peptides presented
by HLA Class I molecules in lung cancer patients is con-
sistent with this conclusion (Additional file 1: Table S1
and Additional file 5: Table S5, top mutated genes with
predicted epitopes binding to HLA Class I molecules).
A weakness of our analysis is that the expression of

predicted neo-epitopes could not be determined. As we
described, genes with 3 or more reads covered in
RNA-seq data were defined as expressed according to
Kandoth et al. [12]. Although the normal copy of a gene
may be expressed, its variants may not be expressed, es-
pecially truncating variants that may undergo nonsense-
mediated transcript decay. Mass spectrometry-based
new technologies are emerging to verify predicted

Fig. 3 Predicted HLA-DRB1-binding INDEL mutant peptides in 147 lung adenocarcinoma patients
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neo-epitopes [21–23], through analysis of eluted pep-
tides from HLA molecules purified from cancer tissues.
K-Ras, TP53, and EGFR mutants are well known

vaccine candidates which are currently in clinical trials
[24–27]. Our data suggest that such mutations in
proliferation-related genes are also candidate for CD4
epitopes. In addition, neo-antigens of passenger muta-
tions are also attractive targets for individualized preci-
sion therapy. There is urgent need for technologies
which may help to determine whether the predicted
neo-antigen mutations are presented by HLA Class II
molecules. Technical platforms include ELISPOT assay
by synthetic candidate peptide epitopes, T cell stimula-
tion assay by using antigen presenting cell lines express-
ing specific HLA DRB1 molecules, and tetramer
staining-based sorting of neoantigen-specific T cells.

Conclusions
This study used clonal mutation analysis to predict HLA
DRB1 molecule presented neo-antigen mutant peptides
which are expressed at RNA level. Genes discovered
here provide clues for identifying CD4 T cell epitopes
for immune monitoring and therapy.
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