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Abstract

top-down mass spectrometry data analysis.

Background: Database search has been the main approach for proteoform identification by top-down tandem mass
spectrometry. However, when the target proteoform that produced the spectrum contains post-translational
modifications (PTMs) and/or mutations, it is quite time consuming to align a query spectrum against all protein
sequences without any PTMs and mutations in a large database. Consequently, it is essential to develop efficient and
sensitive filtering algorithms for speeding up database search.

Results: In this paper, we propose a spectrum graph matching (SGM) based protein sequence filtering method for
top-down mass spectral identification. It uses the subspectra of a query spectrum to generate spectrum graphs and
searches them against a protein database to report the best candidates. As the sequence tag and gaped tag
approaches need the preprocessing step to extract and select tags, the SGM filtering method circumvents this
preprocessing step, thus simplifying data processing. We evaluated the filtration efficiency of the SGM filtering
method with various parameter settings on an Escherichia coli top-down mass spectrometry data set and compared
the performances of the SGM filtering method and two tag-based filtering methods on a data set of MCF-7 cells.

Conclusions: Experimental results on the data sets show that the SGM filtering method achieves high sensitivity in
protein sequence filtration. When coupled with a spectral alignment algorithm, the SGM filtering method significantly
increases the number of identified proteoform spectrum-matches compared with the tag-based methods in

Keywords: Mass spectrometry, Filtering algorithm, Spectrum graph

Background
Top-down mass spectrometry (MS) is an important
technology for identifying proteoforms with primary
sequence alterations, such as post-translational modi-
fications (PTMs) and mutations [1], because it pro-
vides “a bird’s eye” view of whole proteoforms. Reliable
identification of protein alterations plays an important
role in understanding biological mechanisms underlying
diseases [2].

Represented by tools such as ProsightPC [3, 4] and
TopPIC [5], database search [6, 7] is the dominant
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approach for top-down MS-based proteoform identifica-
tion, in which top-down tandem mass (MS/MS) spectra
are searched against a protein sequence database to iden-
tify the best matches between the spectra and protein
sequences in the database. Maping a query spectrum gen-
erated from a proteoform with multiple alterations to its
corresponding database protein sequence without alter-
ations is a challenging computational problem.

Methods for identifying proteoforms with alterations
are classified into two approaches. The first approach
is to use reported protein alterations in the literature
to build an extended proteoform database [4, 8]. For
example, phosphorylation, acetylation, ubiquitylation and
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sumoylation sites have been reported in the tumor protein
p53 [9], and the knowledge can be used to build a proteo-
form database of the protein. Using an extended database
simplifies database search if query spectra are generated
from proteoforms with known alterations in the database.
However, there are its limitations in extended database
approach. Many PTM sites of proteins are unknown
because the proteins have not been extensively studied.
Even if all PTM sites of a protein are known, the num-
ber of combinations of these PTM sites is an exponential
function of the number of sites because each PTM site
may or may not be present in a proteoform. As a result,
it is impractical to construct a complete extended protein
database.

The second approach uses spectral alignment algo-
rithms [5-7, 10-12] to align top-down MS/MS spectra
from modified proteoforms against unmodified database
protein sequences. Although spectral alignment is effec-
tive for single protein spectrum matches, it is very time
consuming to align thousands of query spectra to against
thousands of protein sequences in a large database. There-
fore, efficient protein sequence filtering algorithms are
critical for accelerating database search in proteome-level
proteomics research [6].

For a gene or a transcript, most protein databases, such
as RefSeq [13] and UniProt [14], contain only one unmod-
ified reference sequence. Given a query MS/MS spec-
trum and a database of unmodified protein sequences,
the object of a protein sequence filtering algorithm is
to quickly filter out most unmatched protein sequences
in the database while keeping the target one that pro-
duced the query spectrum. Fragment masses of the query
spectrum is more important than the precursor mass for
protein sequence filtration because the precursor mass
does not match the molecular mass of its corresponding
database protein sequence when the target proteoform
contains alterations.

In bottom-up and top-down MS [15-18], many fil-
tering methods have been proposed. A popular filtering
approach is to use sequence tags, which are partial protein
sequences extracted from mass spectra, to scan and filter
protein sequences [15-17]. A sequence tag extracted from
a query spectrum is correct if it is a substring of the pro-
tein sequence that generated the spectrum. Long correct
sequence tags are extremely useful in protein sequence
filtration because the chance that a long correct tag is
matched to a non-target protein sequence is low, but it’s
difficult to extract long correct tags from mass spectra due
to missing peaks.

To solve this problem, Jeong et al. introduced gapped
tags that can be extracted from spectra with missing
peaks [19]. Many MS/MS spectra do not contain cor-
rect long sequence tags but contain correct long gapped
tags. The introduction of gapped tags gave rise to the
blocked pattern matching problem, in which a gapped tag
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is searched against a text string to find matched substrings
[20, 21]. It is challenging to distinguish signal peaks from
noise ones due to the complexity of MS/MS spectra. Even
though the gapped tag approach solves the problem of
missing peaks in tag extraction, it is still highly possible
that many incorrect tags are reported because of noise
peaks.

This paper is an extension of the work originally
reported in [22]. In this paper, we propose the spectrum
graph matching (SGM) problem and a novel filtering algo-
rithm based on SGM, which constructs spectrum graphs
from subspectra of query spectra, and uses the spectrum
graphs to filter protein sequences. To our best knowl-
edge, we are the first to study the SGM problem. The
SGM filtering method simplifies protein sequence filtra-
tion by skipping tag extraction and selection steps. It
directly searches spectrum graphs generated from sub-
spectra with noise peaks against protein sequences. A
suffix tree based algorithm was proposed in [21] for
searching gapped tags against a text string. Our main
contribution in method development is to extend the algo-
rithm in [21] for searching spectrum graphs against a pro-
tein database. Experimental results on real top-down mass
spectrometry data demonstrated that the SGM filter-
ing method achieved high efficiency in protein sequence
filtration.

Methods

The top-down MS/MS spectrum of a proteoform con-
sists of a precursor mass and a list of fragment ion peaks.
The precursor mass corresponds to the molecular mass
of the proteoform and the fragment ion peaks correspond
to fragments of the proteoform. Because of the existence
of highly charged fragment ions and isotopic peaks, top-
down MS/MS spectra are usually very complex. In data
preprocessing, spectral deconvolution tools [23, 24] are
used to converted fragment ion peaks into monoisotopic
fragment masses. The intensity of a monoisotopic mass is
computed as the sum of the intensities of its correspond-
ing fragment ions peaks.

Noise masses need to be removed from deconvo-
luted top-down MS/MS spectra to improve the accu-
racy of protein sequence filtering. Generally speaking,
low-intensity masses are more possible to be noise ones
than high-intensity masses. An intensity-based method
is used to remove noise masses from a deconvoluted
spectrum. For each mass x in the spectrum, we rank
all the masses in the interval [x — 100,x 4+ 100] with
a width of 200 Dalton (Da) in the decreasing order of
their intensities. If x is not one of the top A masses,
x is treated as a noise mass and removed, where A is
a user-specified parameter. All parameters used in the
SGM filtering algorithm are summarized in Additional
file 1.
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Spectrum graphs

Spectrum graphs have been used in sequence tag-based
protein sequence filtration to extract sequence tags from
mass spectra [25]. There are two steps to generate a spec-
trum graph from a deconvoluted query spectrum: (a) a
node is added to the graph for each fragment mass in the
spectrum, and (b) a directed edge from a node « to a node
v is added to the graph if mass(v) — mass(x) matches the
mass of one amino acid residue within an error tolerance,
where mass(#) and mass(v) are the masses corresponding
to u and v, respectively. The edge is labeled with the amino
acid explaining the mass difference (Fig. 1b). Each path in
a spectrum graph corresponds to a sequence tag, which is
the readout of the labeled amino acids on its edges. For
example, the only path from node v to v4 in the spectrum
graph in Fig. 1b corresponds to the sequence tag NVRS.
There are many existing methods for extracting sequence
tags for protein sequence filtration from spectrum
graphs [17, 26].

When a spectrum misses many fragment masses, the
mass differences of many node pairs in the spectrum
graph are explained by 2 or more amino acids, not single
amino acids. In this case, the spectrum graph approach
described in the previous paragraph may fail to extract
long correct sequence tags, which are extremely useful in
protein sequence filtration.

Blocked patterns [20] or gapped sequence tags [19] are
often used to address the missing peak problem in tag gen-
eration. To extract blocked patterns, we change step (b)
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in spectrum graph generation as follows: a directed edge
is added into the graph from a node u to a node v if the
mass difference mass(v) — mass(«) is explained by a com-
bination of several amino acids and is no larger than a
predefined bound « (& is chosen between 200 and 400 Da
in practice). The edge is labeled with the mass difference
mass(v) —mass(u) (Fig. 1c). Each path in a spectrum graph
with labeled masses corresponds to a mass sequence,
called a blocked pattern or a gapped sequence tag [20]. In
block pattern-based filtration, multiple blocked patterns
(gapped sequence tags) extracted from a spectrum graph
are searched against protein sequences to find candidate
ones. The number of blocked patterns in a spectrum
graph may be an exponential function of the length of the
longest blocked pattern, making it inefficient to explic-
itly extract all blocked patterns in the spectrum graph.
As a result, it is common to report only a limited num-
ber of paths and their corresponding blocked patterns in a
spectrum graph. Because of the existence of noise peaks,
it is a challenging problem to determine which paths in
a spectrum graph correspond to blocked patterns that
match the target protein sequence. We propose to circum-
vent the blocked pattern selection step and directly search
spectrum graphs against protein sequences for filtration.

The spectrum graph matching problem

For a gene or a transcript, most protein databases contain
only one unmodified reference sequence. To simplify the
description of the SGM filtering method, we assume that
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Fig. 1 Spectrum graph generation. lllustration of spectrum graph generation using an example deconvoluted MS/MS spectrum of the protein

LNRVSG. a In the spectrum, the mass of the N-terminal fragment LNR is missing, and there is a noise mass peak (bold) between the fragment masses
of LNR and LNRV. b In the spectrum graph, each node corresponds to a peak in the spectrum. Two nodes are connected by a directed edge if the
difference between their corresponding masses matches the residue mass of one amino acid; the edge is labeled with the amino acid. The
sequence tag NVRS extracted from the spectrum is incorrect because of the noise mass peak and its node v;. € In the spectrum graph, each node
corresponds to a peak in the spectrum. Two nodes are connected by a directed edge if the difference between their corresponding masses is less
than 400 Da and matches the residue mass of one or several amino acids; the edge is labeled by the mass difference. The mass sequence of a path is
a blocked pattern of the spectrum. For example, the bold path vg, v1, v3, v4 corresponds to a blocked pattern 114.04, 255.17, 87.03, which matches a
correct sequence tag NRVS because 255.07 is the sum of the mass 156.10 of R and the mass 99.07 of V




Yang and Zhu BMC Genomics 2018, 19(Suppl 7):666

protein databases used in spectral identification contain
only unmodified sequences and that amino acid residue
masses are integers. All amino acid residue masses are dis-
cretized by first multiplying the masses by a scale factor
(100 was used in the experiments) and then rounding the
results to integers.

Notations introduced by Deng et al. [21] are used in the
description of the SGM problem. An amino acid string
is represented as a list of discretized residue masses: the
mass representation of an amino acid string a;, ay, . . ., ay
is a residue mass string S = s1,52,...,8,, in which s; is
the discretized residue mass of a; for 1 < i < n. Residue
mass strings are called text strings in the following analy-
sis. The sum of all the masses in a substring s, si11,...,S;

of §, ie, Zlk:i Sk is called the mass of the substring. Two
substrings of S are called consecutive substrings if the first
residue mass of the second string directly follows the last
residue mass of the first string. For example, s;,5;11,...,5;
and sj41,5j42,...,5c are consecutive substrings of S. A
sequence of consecutive substrings Aj,As,..., A that
include all residue masses in S is called a partition of S.
The masses of the consecutive substrings in a partition
is called the mass string of the partition. For example,
let S = 114,156,99,87, A; = 114,A; = 156,99, and
As = 87, then A;,Ay, A3 is a partition of S and the
mass string of the partition is 114,255,87, where 255 is the
mass of Ap. A blocked pattern obtained from a path in a
spectrum graph is represented by a sequence of masses,
which are labels of the edges in the path. For example,
the blocked pattern corresponding to the bold path in
Fig. 1c is 114.04, 225.17, 87.03. A blocked pattern can be
further discretized to an integer sequence using the same
method for residue mass discretization. In the following
analysis, we assume that all blocked patterns are integer
ones. Unlike text strings, a blocked pattern contains not
only single amino acid residue masses, but also those of
combinations of several amino acids. A blocked pattern
P matches a text string S if P is the mass string of a par-
tition of S. For example, the blocked pattern 114,255, 87
matches the text string 114,156,99,87 because the
blocked pattern is the mass string of a partition of the text
string.

In protein sequence filtration, we search blocked pat-
terns extracted from a spectrum graph against a protein
database to find matched amino acid sequences (sequence
tags). All protein sequences in the database are concate-
nated and represented as a text string over an alphabet
¥ containing the discretized residue masses of the 20
common amino acids. Because the masses of leucine and
isoleucine are the same, the size of ¥ is 19 instead of 20.
Given a text string S over an alphabet ¥ and a blocked pat-
tern P, the blocked pattern matching problem is to find all
substrings of S that match P.

Page 30 of 102

Definition 1 Given a text string S over an alphabet
¥ and a pattern P, the blocked pattern matching
(BPM) problem is to find all substrings of S that
match P.

The SGM problem is an extension of BPM problem that
considering the noises in the spectrum. It is more complex
than the blocked pattern matching problem.

Definition 2 Given a text string S over an alphabet ¥
and a spectrum graph G, the spectrum graph matching
(SGM) problem is to find all substrings of S that match a
blocked pattern in G.

We first study a restricted version of the SGM problem,
in which a start node and an end node in G are speci-
fied and only paths from the start node to the end node
are used to find matched substrings of the text string. The
SGM problem is solved by enumerating all node pairs in
G as the start and end nodes in the restricted spectrum
graph matching (RSGM) problem.

Definition 3 Given a text string S, a spectrum graph G
over an alphabet X, a start node s, and an end node t,
the restricted spectrum graph matching (RSGM) problem
is to find all substrings of S that match a blocked pattern
corresponding to a path from s to t in G.

A suffix tree based algorithm for the RSGM problem

To solve the RSGM problem, we present a suffix tree
based algorithm that extends the algorithm proposed by
Deng et al. for the blocked pattern matching problem [21].
A suffix tree is used to represent the string S. We assume
that each edge in the suffix tree is labeled with only one
letter (integer residue mass) to simplify the algorithm
description.

We first review the algorithm for the blocked pat-
tern matching problem, which was proposed by Deng
et al. [21]. A blocked pattern is represented as a spec-
trum graph in which all edges are in one path. Let G =
{V,E} be the graph representation of a blocked pattern
P = p,ps....,pm where V. = {vg,v1...,vy} and
V0, V1,...,Vm is the only path from vy to v, in G. Each
prefix p1,po, . . ., pr of the blocked pattern P corresponds
to a path vg,v1,..., vk A text string over ¥ that matches
the prefix p1,p2, . . ., px is called a prefix text string of vy.
A prefix text string is identifiable if it is a substring of
S. For example, when P = 114,255, 87, both 114,156,99
and 114,99,156 are prefix text string of P. When S =
114,156, 99,87, the string 114,156,99 is an identifiable
prefix text string of P, but 114,99,156 is not. If a prefix text
string is not identifiable, then all text strings with the pre-
fix are not identifiable, making it not necessary to search
these text strings in S. Using identifiable prefix text strings



Yang and Zhu BMC Genomics 2018, 19(Suppl 7):666

significantly improves in the speed of searching a blocked
pattern against S represented as a suffix tree.

Let B; be the set of nodes in the suffix tree correspond-
ing to all identifiable prefix text strings of v; for 0 < i < m,
where m is the length of the blocked pattern. Specifically,
By contains only the root node of the suffix tree. The
blocking pattern matching algorithm progressively finds
the node sets By, ..., B, in the suffix tree. The node set
B, contains the solution to the blocked pattern matching
problem.

Unlike the blocked pattern matching problem with only
one blocked pattern, the spectrum graph G in the RSGM
problem contains many paths from the start node to the
end node, each path corresponding to a blocked pattern.
The number of all paths in a spectrum graph may be an
exponential function of the number of nodes. So it is an
inefficient approach to directly extract all paths in a spec-
trum graph and search each path against a suffix tree
separately.

Next, we describe our new algorithm for the RSGM
problem, which extends the blocked pattern matching
algorithm. Let V' = {vg,v1,...vy} be the set of nodes
in the increasing order of their corresponding masses, in
which the start node s is vg and the end node ¢t is v,;,. A
text string is a prefix text string of node v; if it matches
a blocked pattern corresponding to a path from vy to v;.
Let B; be the set of nodes in the suffix tree correspond-
ing to all identifiable prefix text strings of v;, and C(e) be
the set of all text strings whose masses match the labeled
mass of e (Table 1). In practice, a precomputed table is
used to quickly obtain C(e). Because the fragment masses
in query spectra have measured errors, an error tolerance
€ is allowed in generating the text strings in the table.
Denote E; C E the set of all edges whose tail nodes are v;.
For each edge e = (v}, v;) in E;, we search from each suffix
tree node in B; to find all the paths corresponding to a text
string in C(e) and add the end nodes of these paths to B;
(Algorithm 1).

Table 1 An example set of text strings matched a mass 270.14

No. Amino acid string No. Amino acid string
1 QAA 7 GAAA

2 AQA 8 AGAA

3 AAQ 9 AAGA

4 RGG 10 AAAG

5 GRG 11 NR

6 GGR 12 RN

In proteoform identification, there are 20 common types of amino acids. The scaling
factor 100 is used for the discretization of the residue masses of the 20 amino acids.
The alphabet consists of 19 integers because leucine and isoleucine have the same
discretized mass 11308. There are a total of 12 text strings whose descritized masses
are 27014. For brevity, all masses in the text strings are represented by their
corresponding amino acids. For example, the text string 11404, 15610 is
represented by NR
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Algorithm 1 The RSGM Algorithm

Require: A text string S with length #, a spectrum graph
G = (V,E) where V. = {vg,v1,...,v} is the set of
nodes in the increasing order with respect to their cor-
responding masses, a start node s = vy, and an end
node t = v,,.

Ensure: All substrings in S that match a blocked pattern
corresponding to a path from s to ¢.

1: Use a suffix tree to represent S, initialize By as the
set containing only the root of the suffix tree, and
compute C(e) for each e € E.

2. fori=1tomdo

3. foreache= (v;,v;) € E;do

4 for each suffix tree node « in B; do

5

6

for each text string x € C(e) do
Search from the suffix tree node u to find a
path that spells out x. If there exists such a
path from u to &/, add ' into B;.

7: end for
8: end for
9:  end for

10: end for

11: Report all text strings corresponding to a suffix tree
node in B, and their positions in S.

After the last set By, is found, the RSGM problem is
solved by reporting all the text strings corresponding to
a suffix tree node in B,, and their positions in S, which
are stored in the suffix tree. Because the string S is rep-
resented by a suffix tree, the space complexity and time
complexity of the algorithm are both O(n), where 7 is the
length of the string S.

Time complexity

We use the idea proposed by Deng et al. to prove the time
complexity of the RSGM algorithm [21]. The preprocess-
ing step, in which the text S is represented as a suffix tree,
is implemented using the Ukkonen’s algorithm [27], and
its time complexity is O(n). Below we study the time com-
plexity of the pattern query steps in the RSGM algorithm
(Steps 2-11 of the algorithm in Algorithm 1).

We divide the set C(e) of text strings for an edge e in the
spectrum graph into subsets C(e, 1), C(e,2), ..., C(e 1),
where [ is the length of the longest text string in C(e).
The subset C(e,j) contains all text strings in C(e) with
length j. The expansion factor of the set C(e, j) is defined
as r(ej) = |C(e,j)|71‘, where |C(e, j)| is the size of C(e,j).
The largest expansion factor of all edges in G is denoted as
r = max;r(e,j). Let N be the maximum size of C(e) for
all edges in G, that is, N = max.cg |C(e)|.

The running time of the graph query (Steps 2 - 11) in
the RSGM algorithm is related to ) 7", |B;|, the sum of
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the sizes of the sets B;. Next we will describe how to com-
pute Y " |B;|. Let U be the set of all prefix text strings
of vi,..., v, and L be the length of the longest prefix text
string in U. We define X as the set of all length [ prefix
text strings in U, and Y] as the set of all length / identifi-
able prefix strings in U, for 1 </ < L. Each node in U}" | B;
corresponds to an identifiable prefix text string in ULI Yy,
thatis, > 1", |Bil = Zlel |Y;|. We compute the expecta-
tion of | Y| by multiplying the size of X; and the probability
that a length / text string can be found in S.

A path in G starting from node s is called a prefix path.
Let Q be a prefix path of G and X;(Q) the set all prefix
text strings with length / that match a prefix subpath of Q.
Deng et al. proved the following Lemma about the size of

X;(Q) [21].

Lemma 1 The size of X;(Q) is bounded by 2r),, where r
is the maximum expansion factor.

Based on Lemma 1, we give an upper bound of the size
of X;.

Lemma 2 The size of X; is bounded by (2rd), where d is
the maximum out-degree of the nodes in G.

Proof Each length [ prefix text string in X; matches at
least one prefix path. The total number of prefix paths in
G with length / is bounded by d’. Because of Lemma 1,
the number of prefix text strings in X; matching one prefix
path in G is bounded by (2r)!. As a result, the size of X; is
bounded by enld = @rd). O

Letg = |X| be the size of the alphabet X. Using the same
proof method in Lemmas 1 and 2 in the supplementary
material in [21], we can prove the following two lemmas.

Lemma 3 When 2rd < g, the expectation of |Y]| is
bounded by (2rd)"*%" = 1% ¥ where n is the length of
the text string S.

Lemma 4 When 1 < 2rd < g, the expectation of

S " |Bi| in the RSGM algorithm is bounded by c n'*%*®,

_ 2rd g
where ¢ = 5777 + g—2rd"

Theorem 1 When X is a finite set and 1 < 2rd < g, the
average-case time complexity of the graph query steps in
the RSGM algorithm is O(dNn* + M), where d is the max-
imum out-degree of the nodes in G, N = maxcr |C(e)|,
k = log,(2rd) < 1, and M is the number of matched
substrings in S.

Proof For each suffix tree node u in U ;B;, we find its
corresponding node v in the spectrum graph. In Step 6 of
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the RSGM algorithm, the length of the text string x is a
constant. In addition, the set B; is stored as a hash table,
and the number of operations to check if #’ exists in B; is
a constant. As a result, the time complexity of one search
in Step 6 is O(1). The total number of searches starting
from u is bounded by the out-degree of v multiplied by
the largest size of C(e) for all edges e whose head node is
v. That is, the number of searches of u is bounded by dN.
Because |Uf’;OBi| isO (nk), the total number of searches in

the algorithm is O (dNnk )- As aresult, the time complexity
of the algorithm is O (dNnk). O

Theorem 1 given the time complexity of the graph query
steps in the RSGM algorithm when 2rd is no larger than
the size of the alphabet X. In practice, the default value
of the parameter « (the maximum difference between the
masses corresponding to two nodes connected by an edge)
is 350 Da and the scale factor is 100. In this case, the value
of r is about 2.91. In addition, the out-degree of a node v
in G is restricted to be at most 3 by ranking all the edges
with the head node v in the increasing order with respect
to the labeled masses and keeping only the top 3 ones.
Because the maximum out-degree of the nodes in G is 3,
the condition 2rd < g (2rd < 18 < g = 19) is satisfied.
In the experiments, the maximum out-degree of nodes in
spectrum graphs was set to 3.

When 2rd > g, the number of the suffix tree nodes
searched by the algorithm is O(n), that is, the number of
searched nodes is bounded by the size of the suffix tree.
Each suffix tree node u corresponds to a spectrum graph
node v. The total number of searches starting from u is
bounded by the out-degree of v multiplied by the largest
size of C(e) for all edges e whose head node is v. Therefore,
the number of searches starting from u is bounded by dN,
and the time complexity of the algorithm is O(dNn).

The RSGM algorithm gives all substrings in S that
match a path from vy to v; by reporting the suffix tree
nodes in B;. That is, the algorithm reports all substrings
in S that match a path starting from vg. We execute
the RSGM algorithm m — 1 rounds to solve the SGM
problem. In the ith round, the start node is set to v;
and the end node to v,,. All matched substrings in the
m — 1 rounds are combined as the solution to the SGM
problem.

In practice, we are interested in finding only text strings
that match a long path in G. Let V; be the set of nodes
v in G such that the sum of the labeled masses on the
shortest path from vy to v is no larger than g, where g
is a user-specified parameter. Let V; be the set of nodes
v in G such that the sum of the labeled masses on the
shortest path from v to v, is no larger than 8. We only
report text strings that match a path from anode in Vs to a
node in V.
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Protein sequence filtration

The spectrum graph of a top-down MS/MS spectrum usu-
ally consists of several disconnected components because
the spectrum often has low fragment coverage. Based
on this observation, we propose to extract y mass inter-
vals (subspectra) that are abundant with fragment masses
from a query spectrum and construct a spectrum graph
for each extracted mass interval, where y is a user-
specified parameter. In practice, the value of y is chosen
between 1 and 20. The spectrum graphs are searched
against the protein database separately and the search
results are combined to find the best sequence candi-
dates. The filtering algorithm is called the SGM filtering
algorithm.

In mass interval selection, mass intervals with the same
width § are reported and the width § is a user-specified
parameter. In practice, the value of § is chosen between
500 and 1400 Da so that each reported mass interval cor-
responds to a sequence tag with 5 — 14 amino acids. (See
“Parameter settings” section) The score of a mass interval
is defined as the number of masses in it. The overlap-
ping ratio of two intervals [a,a + §] and [, b + 5] with
a < b < a+ § is defined as the ratio between the width
of the overlapping region [ b, a + 8] and the interval width
§, that is, %*b. Ifa < a+ 8§ < b, the overlapping
ratio is 0. A greedy approach is employed to find multi-
ple top-scoring mass intervals. First, the top-scoring mass
interval of the spectrum is reported. Second, we remove
all mass intervals that have an overlapping ratio > p with
the reported one, where p is a user-specified parameter,
and then report the best scoring one from the remaining
mass intervals. The second step is performed iteratively
until a total of y mass intervals are reported or no candi-
date mass intervals can be reported. In addition, only mass
intervals with at least 6 fragment masses are reported.

We use reversed mass intervals to find text strings
that match suffix fragment masses in the query spec-
trum. Let by, by, ..., by be the masses in a mass interval
[ my, m,] extracted from a collision-induced dissociation
(CID) MS/MS spectrum with a precursor mass M. We
generate a reversed mass interval as follows: (a) the mass
interval [my, m,] is converted into [M — m,,M — m],
and (b) for each mass b;, 1 < i < k, a reversed mass
M — b; is added to the reversed mass list. For example, the
reversed mass interval of a mass interval [ 100, 400] with
masses 114,213 and a precursor mass 644 is [ 244, 544]
with masses 431, 530. Each extracted mass interval is fur-
ther reversed to obtain a reversed mass interval in which
suffix fragment masses are converted into prefix frag-
ment masses. We search the spectrum graphs generated
from the extracted and reversed mass intervals against the
protein database represented by a suffix tree.

We describe three functions for assigning scores to frag-
ment masses. For a fragment mass (x, 1) with a mass value
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x and its intensity / in a query spectrum, the first function
assigns the score 1 to the mass, that is, score(x,h) = 1.
The second function uses the logarithm function to nor-
malize mass intensities to compute scores of masses. We
find the lowest mass intensity b in the query spectrum,
the score for the mass (x, k) is computed as score(x, h) =

log, (%) The constant number 2 in the function is to

guarantee that all scores are positive. The third function
is based on the rankings of mass intensities. The fragment
masses in the query spectrum are sorted in the increasing
order of their corresponding intensities. Let i be the rank
of the mass (x, ). The score of the mass (x, /1) is defined
as score(x, 1) = 1+ i/k where k is the total number of
fragment masses in the spectrum. The score of the low-
est intensity mass is about 1 and the score of the highest
intensity mass is 2. The three scoring functions are called
the mass count score, log intensity score, and rank score,
respectively. The score of a node in a spectrum graph is
assigned as the score of its corresponding fragment mass.

Here we introduce a similarity score between a query
spectrum and the protein sequence. A protein sequence
matches a blocked pattern P if its text string represen-
tation contains a substring that matches P. The score of
the pattern P is the number of the nodes in the corre-
sponding path in the spectrum graph. The similarity score
between a protein sequence and a spectrum graph is the
score of the best scoring pattern extracted from the graph
that matches the protein sequence. Let G, Gy, . .., Gi be
the set of spectrum graphs extracted from a query spec-
trum, the similarity score between a protein sequence and
the query spectrum is the best similarity score between
the protein sequence and G, Gy, . . ., Gi.

After finding the best scoring pattern from Gy,
Gy, ..., Gy that matches a substring of the protein
sequence, we compute the mass shift between the exper-
imental fragment masses in the spectrum and the the-
oretical fragment masses of the protein sequence. By
shifting all theoretical masses by the mass shift, we recom-
pute the similarity score between the experimental masses
and shifted theoretical ones. The new score is called the
extended similarity score between the protein sequence
and the query spectrum, which is used to rank and filter
protein sequences.

Results

Java was used to implement the SGM filtering algorithm.
A 64-bit Linux desktop PC with an Intel 3.4 GHz CPU and
16 GB memory was the platform for testing all algorithms.

Data sets

The SGM filtering algorithm was evaluated on two data
sets. The first is a top-down MS data set with 2027 CID
and 2027 electron-transfer dissociation (ETD) MS/MS
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spectra from Escherichia coli (EC) K-12 MG1655. The EC
sample was analyzed by a liquid chromatography system
coupled with an LTQ Orbitrap Velos mass spectrometer.
MS and MS/MS spectra were collected at a 60000 resolu-
tion and the top 4 ions in each MS spectrum were selected
for MS/MS analysis.

The second top-down MS data set was generated
from MCEF-7 cells. MCF-7 cells were obtained from
American Tissue Culture Collection (ATCC) and main-
tained in minimum essential media with 5% charcoal-
dextran treated fetal calf serum. In the MS experiment,
soluble MCEF-7 intact proteins were separated using
the bead-beating based cell lysis approach followed by
a filter-based desalting step. A liquid chromatograph
system with a home-made long column was directly
coupled with an LTQ Orbitrap Velos Pro mass spec-
trometer with a customized ion source. A total of
5309 CID MS/MS spectra were collected at a 60000
resolution.

Protein spectrum-matches for evaluation

The EC raw data were centroided using msconvert in Pro-
teoWizard [28] and deconvoluted using MS-Deconv [24].
The Escherichia coli K-12 MG1655 proteome database
(September 12, 2016 version, 4306 entries) was down-
loaded from the UniProt database [14] and was concate-
nated with a shuffled decoy database of the same size.
TopPIC [5] was employed to search the deconvoluted
spectra against the target-decoy database. In TopPIC,
unexpected modifications were not allowed in identified
proteoforms, and the error tolerances for precursor and
fragment masses were set to 15 part per million (ppm).
With a 1% spectrum-level false discovery rate (FDR), a
total of 1866 proteoform spectrum-matches were identi-
fied. Because of the stringent FDR cutoff, we assume that
all the matches are correct in the following analysis. The
1866 proteoform spectrum-matches are referred to as the
EC evaluation data set.

The SGM filtering algorithm was employed to search
the spectrum in each of the 1866 matches against the EC
proteome database and report 20 top scoring proteins. If
the top 20 proteins contain the protein in the proteoform
spectrum-match reported by TopPIC, we say the filter-
ing is efficient. The filtration efficiency rate of the filtering
algorithm is defined as the ratio between the number of
efficiently filtered spectra and the number of all spectra in
the experiment.

Parameter settings

The EC evaluation data set was used to test the per-
formance of the SGM filtering algorithm with various
settings of the parameters (Additional file 1). In the exper-
iments, the mass count score for fragment masses was
used, only one spectrum graph was extracted from each
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query spectrum (y = 1), and reversed mass intervals were
not included.

We first evaluated the filtration efficiency with various
settings of the three parameters «, 8 and 4. In the fil-
tering algorithm, no masses are removed in the spectral
preprocessing (. = 00), the error tolerance € was set to
0.02 Da. To test the 3 parameters, we fixed the settings of
2 parameters and compared the performances with vari-
ous settings of the third parameter. First, the parameters
a and B were set to « = 300 Da and § = 200 Da, and
the parameter § was set to various values between 500 to
1400 Da. The algorithm obtained the best filtration effi-
cient rate (29.21%) when § = 900 Da (Fig. 2). Although
the running time decreases as the value of § increases,
there is no significant difference in the running time when
8 > 900 Da.

Similarly, we evaluated the performance of the SGM fil-
tering algorithm with various settings of g between 0 and
400 Da and fixed settings § = 900 Da and ¢ = 300 Da
(Fig. 3) and that with various settings of « between 200
and 500 Da and fixed settings § = 900 Da and 8 = 250 Da
(Fig. 4). The algorithm achieved the best filtration effi-
ciency when 8 = 250 Da in the first experiment and when
a = 350 Da in the second experiment. The best filtration
efficiency rate 33.07% was obtained when = 350 Da,
B = 250 Daand § = 900 Da.

In practice, the error tolerance € in the SGM filter-
ing algorithm is determined by the precision of the mass
spectrometer. By using the following parameter settings:
o = 350 Da, B = 250 Da, § = 900 Da, A = o0, we com-
pared the performances of the filtering algorithm on the
EC evaluation data set with various settings of the error
tolerance € in [ 0,0.05] Da. The best filtration efficient rate
was achieved when € = 0.02 Da (Table 2).

We also tested how the parameter A in spectral pre-
processing affects the performance of the SGM filtering
algorithm. We set « = 350 Da, § = 250 Da, § = 900 Da,
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Fig. 2 Influence of the parameter § on the SGM filtering algorithm.
The filtration efficiency and running time of the SGM filtering
algorithm are compared on the EC evaluation data set with various
settings of the parameter § from 500 to 1400 Da and fixed parameter
settings @ = 300 Da, B = 200 Da, & = oo (no masses are removed in
the spectral preprocessing), and the error tolerance € = 0.02 Da
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Fig. 3 Influence of the parameter B on the SGM filtering algorithm.
The filtration efficiency and running time of the SGM filtering
algorithm are compared on the EC evaluation data set with various
settings of parameter 8 from 0 to 400 Da and fixed parameter
settings § = 900, @ = 300, A = oo (no masses are removed in the
spectral preprocessing), and the error tolerance € = 0.02 Da

€ = 0.02 Da, and compared the performances of the filter-
ing algorithm on the EC evaluation data set with various
settings of the parameter A between 2 and 12. By setting
A = 8, we achieved the best filtration efficiency (Table 3).
Based on the experimental results, the default settings of
the parameters «, 8, §, €, and X are given in the Additional
file 1.

Multiple spectrum graphs

The methods described in “Protein sequence filtration”
section was used to extract multiple spectrum graphs
with two parameters: the number y of extracted spec-
trum graphs and the maximum overlapping ratio p
between two mass intervals. We compared the perfor-
mances of the SGM filtering algorithm with various set-
tings of the two parameters: y = 1,3,5,10,20, and
p = 0%,20%,50%, 80%. Other parameters were set to the
default values. By using the parameter settings y = 20
and p = 50%, the best filtration efficiency was obtained
(Table 4), but the running time with the setting was
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Fig. 4 Influence of the parameter « on the SGM filtering algorithm.
The filtration efficiency and running time of the SGM filtering
algorithm are compared on the EC evaluation data set with various
settings of parameter a from 200 to 500 Da and fixed parameter
settings § = 900, B = 250, A = oo (no masses are removed in the
spectral preprocessing), and the error tolerance € = 0.02 Da
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Table 2 The filtration efficiency and running time of the SGM
filtering algorithm with various settings of the error tolerance €
from 0 to 0.05 Da and fixed parameter settings & = 350,

B = 250,8 = 900, and A = oo are compared on the EC data set

Error tolerance (Da) Filtration efficiency Running time (ms)

0 8.04% 1.64
0.01 31.14% 4.81
0.02 33.07% 7.87
0.03 31.30% 14.03
0.04 2947% 20.62
0.05 28.19% 2558

about 7 times longer than that with the setting y = 20
p = 20% (Table 5). Because the numbers of fragment
masses in many query spectra are limited, the total num-
ber of spectrum graphs reported from a query spectrum
often depends on the maximum allowed overlapping ratio.
When the maximum overlapping ratio is 0%, that is, only a
few no overlapped spectrum graphs are generated in most
cases. When the maximum overlapping ratio is 80%, more
spectrum graphs are generated, significantly increasing
the running time. This is the reason why the parameter
setting y = 20 and p = 20% achieved a good balance
between the filtration efficiency and speed.

Reversed mass intervals

To evaluate the performance of the SGM algorithm with
reverse mass intervals. The spectrum graphs generated
from reversed mass intervals were used to improve the
filtration efficiency. When y = 20 and p = 20%, experi-
ments showed the filtration efficiency rate (71.01%) of the
SGM filtering algorithm with reversed mass intervals was

Table 3 The filtration efficiency and running time of the SGM
filtering algorithm with various settings of the parameter A from
2 to 12 Da and fixed parameter settings o = 350, 8 = 250,

8§ =900, and € = 0.02 Da are compared on the EC data set

A Filtration efficiency Running time (ms)
3 2551% 1.98
4 29.64% 328
5 31.94% 4.19
6 33.82% 5.04
7 34.03% 5.60
8 34.35% 6.01
9 33.82% 6.55
10 33.60% 6.65
1 33.55% 717
12 33.55% 7.57

No reserve 33.07% 7.87
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Table 4 Filtration efficiency rates of the SGM filtering algorithm
with various settings of the parameters y and p on the EC
evaluation data set

p

0% 20% 50% 80%
14
1 34.35% 34.35% 34.35% 34.35%
3 48.23% 47.91% 47.96% 44.53%
5 51.93% 51.82% 52.57% 49.73%
10 53.84% 54.13% 56.48% 54.45%
20 53.48% 54.44% 57.88% 57.88%

much higher than that (54.44%) without reversed mass
intervals.

Scoring functions

Using the parameter settings in Additional file 1, we
compared the performances of the SGM filtering algo-
rithm with three scoring functions: the mass count score,
the log intensity score, and the rank score, on the EC
evaluation data set. The mass count score and the rank
score obtained the same filtration efficiency rate 71.01%,
which was higher than that of the log intensity score
(65.38%). When the query spectrum contains several
very high intensity fragment masses, many random text
strings that match these masses may have high scores
and the target protein may be missed in the reported
top proteins. This might be the reason that using the
log intensity score does not achieve good filtration effi-
ciency. In addition, the extended similarity score (see
“Protein sequence filtration” section) based on mass count
scores further improved the filtration efficiency rate to
76.63%. Based on the experimental results, we use the
extended mass count score as the default scoring function
in the SGM filtering algorithm.

Comparison with other filtering algorithms

Two tag-based algorithms for protein sequence filtra-
tion were compared with the SGM filtering algorithm
on the MCF-7 data set. The first tag-based algorithm
is implemented in MS-Align+Tag (http://bioinf.spbau.ru/

Table 5 The average running time in millisecond (ms) per
spectrum of the SGM filtering algorithm with various settings of
the parameters y and p on the EC evaluation data set

p 0% 20% 50% 80%

y

w 601 601 601 601

3 1408 15.66 2229 1955
5 2188 31.82 6263 3791
10 3206 63.18 23441 135.17
20 33.15 7641 50878 557.72
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proteomics/ms-align-plus-tag) and referred to as TAG-1;
the second tag-based algorithm is implemented in
MSPathFinder [29] and referred to as TAG-2. The two tag-
based algorithms were implemented in C++. The MCF-7
raw data was centroided using msconvert in ProteoWizard
[28] and deconvoluted using MS-Deconv [24]. The human
proteome database (July 9, 2016 version, 20191 entries)
was downloaded from the UniProt database and con-
catenated with a shuffled decoy database with the same
size.

The SGM filtering algorithm was coupled with the
spectral alignment algorithm in TopPIC for spectral iden-
tification. The coupled method consists of four steps:
(1) the SGM filtering algorithm reports 20 top scoring
protein sequences for each query spectrum, (2) the 20
protein sequences are aligned with the query spectrum
to report the best scoring proteoform spectrum-match,
(3) an E-value of the best scoring match is computed,
and (4) the target-decoy approach [30] is used to esti-
mate FDRs and filter identified proteoform spectrum-
matches with a 1% spectrum-level FDR. Similarly, the
two tag-based algorithms were coupled with the spectral
alignment for spectral identification. The three filtering
algorithms were compared on the number of proteoform
spectrum-matches identified from the MCF-7 data set.

Both TAG-1 and TAG-2 use spectrum graphs without
gaps to obtain sequence tags. TAG-1 first finds the longest
path in a spectrum graph and then generates all sub-
strings with a fixed length / of the longest path as sequence
tags. TAG-2 generates all possible sequence tags with a
length in [ lyin, lnax] from a spectrum graph, where [,
is a minimum length and /,;,,, is a maximum length. To
find the best parameter settings, we compared the per-
formances of TAG-1 with various settings / = 3,4, 5 and
those of TAG-2 with various settings of the parameters
byin = 3,4,5,6 and [, = 7,8,9. The error tolerance
for matching a mass difference to an amino acid residue
in spectrum graph generation was set as 15 ppm. Experi-
mental results showed that the TAG-1 algorithm reported
the largest number of identifications when / = 4 (Fig. 5)
and that the TAG-2 algorithm achieved the best perfor-
mance when [,,;, = 4 and l,,,, = 9 (Table 6). These
parameter settings in the tag-based algorithms were used
in the following comparison. The parameter settings of
the SGM filtering algorithm are given in Additional file 1.
The parameter setting of TopPIC were the same as those
in Additional file 2 except that at most 1 unexpected mass
shift was allowed in an identified proteoform.

The average running time (540 ms) of the SGM algo-
rithm for a query spectrum was about 2 times of the
tag-based algorithms (TAG-1: 250 ms; TAG-2: 166 ms).
Because the SGM algorithm has a larger search space
compared with the tag-based algorithms, it is reasonable
that its running time is longer than TAG-1 and TAG-2.


http://bioinf.spbau.ru/proteomics/ms-align-plus-tag
http://bioinf.spbau.ru/proteomics/ms-align-plus-tag
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Fig. 5 Comparison of the performances TAG-1 with various settings
of the tag length /. With a 1% spectrum level FDR, the numbers of
proteoform spectrum-matches identified by the TAG-1 filtering
algorithm with various settings of the tag length / are compared on
the MCF-7 data set. The TAG-1 filtering algorithm is coupled with the
spectral alignment algorithm in TopPIC for spectral identification

With a 1% spectrum-level FDR, the SGM, TAG-1, TAG-2
filtering algorithms identified 897, 439, and 597 proteo-
form spectrum-matches, respectively. A total of 346 spec-
tra were identified by all the three methods. TAG-1 missed
506 spectra and TAG-2 missed 390 spectra which were
identified by the SGM method (Fig. 6), showing that the
filtration efficiency of the SGM algorithm is much better
than the two tag-based algorithms.

Discussion

Many software tools for top-down mass spectral iden-
tification use protein sequence filtering methods based
on sequence tags or gapped tags. But these methods
often fail to achieve high sensitivity because of miss-
ing peaks and noise peaks in spectra. The proposed
SGM filtering method provides to a solution to the
problem of noise peaks by skipping the step of deter-
mining which peaks are signal ones. Compared with
the methods based on gapped tags, the SGM filter-
ing method includes all possible gapped tags in tag-
sequence matching, increasing the sensitivity of protein

Table 6 The numbers of proteoform spectrum-matches
identified from the MCF-7 data set by TAG-2 filtering algorithm
with various settings of the minimum tag length /mj, and the
maximum tag length /max

fmax 7 8 9
Imin

3 498 506 514
4 593 594 597
5 580 578 583
6 461 460 459

The TAG-2 filtering algorithm is coupled with the spectral alignment algorithm in
TopPIC for spectral identification

SGM TAG-1

TAG-2

Fig. 6 Comparison of the numbers of identifications of SGM, TAG-1,
and TAG-2. With a 1% spectrum-level FDR, the numbers of
proteoform spectrum-matches identified by the SGM, TAG-1, and
TAG-2 filtering algorithms are compared on the MCF-7 data set. The
three algorithms are coupled with spectral alignment algorithm in
TopPIC for spectral identification

sequence filtration. Although the SGM filtering algorithm
is more complex than the blocked pattern match algo-
rithm, its speed is still acceptable. The main reason is
that high accuracy fragment masses efficiently filter out
most candidate substrings in the intermediate steps in
the search.

The SGM filtering method can be combined with other
methods to further improve the performance of protein
sequence filtration. For example, a tag-based method is
used as the first filtering method for spectral identifi-
cation, and only spectra that are not identified in the
first found are searched by the SGM filtering method.
Because the tag-based method is fast and the SGM filter-
ing method is sensitive, the combined approach is capable
of achieving both high speed and high sensitivity.

The SGM filtering method still has some limitations.
First, it often reports many candidate proteins for spec-
tra with many noise peaks. As a result, the target protein
may be missed when only a limited number of proteins
are reported as filtering results. Second, the three scor-
ing functions used in the SGM filtering method are not
powerful in distinguishing correct matches between spec-
tra and protein sequences from incorrect ones. Advanced
machine learning methods are needed to design a good
scoring function.
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Conclusions

In this paper, we proposed an efficient spectrum graph-
based filtering algorithm for top-down mass spectral iden-
tification and tested the algorithm on two real top-down
MS data sets. Compared with tag-based methods, the
SGM filtering algorithm circumvents the steps of tag gen-
eration and directly searches spectrum graph against the
protein database, simplifying data processing and increas-
ing filtration efficiency. The experimental results on the
real data demonstrate that the SGM filtering algorithm
outperforms the two tag-based algorithms in filtration
efficiency.

Additional files

Additional file 1: A summary of parameters and their default values of
the SGM filtering algorithm. (PDF 28 kb)

Additional file 2: The parameter settings of TopPIC used in the
experiments. (PDF 13 kb)
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