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Abstract

Background: Antimicrobial peptides are a promising alternative for combating pathogens resistant to conventional
antibiotics. Computer-assisted peptide discovery strategies are necessary to automatically assess a significant amount
of data by generating models that efficiently classify what an antimicrobial peptide is, before its evaluation in the wet
lab. Model's performance depends on the selection of molecular descriptors for which an efficient and effective
approach has recently been proposed. Unfortunately, how to adapt this method to the selection of molecular
descriptors for the classification of antimicrobial peptides and the performance it can achieve, have only preliminary
been explored.

Results: We propose an adaptation of this successful feature selection approach for the weighting of molecular
descriptors and assess its performance. The evaluation is conducted on six high-quality benchmark datasets that have
previously been used for the empirical evaluation of state-of-art antimicrobial prediction tools in an unbiased manner.
The results indicate that our approach substantially reduces the number of required molecular descriptors, improving,
at the same time, the performance of classification with respect to using all molecular descriptors. Our models also
outperform state-of-art prediction tools for the classification of antimicrobial and antibacterial peptides.

Conclusions: The proposed methodology is an efficient approach for the development of models to classify
antimicrobial peptides. Particularly in the generation of models for discrimination against a specific antimicrobial
activity, such as antibacterial. One of our future directions is aimed at using the obtained classifier to search for
antimicrobial peptides in various transcriptomes.

Keywords: Antimicrobial peptides, Feature weighting, Molecular descriptors, Classification, Multi-objective
evolutionary algorithm, Peptide representation

Background

Antimicrobial peptides (AMPs) are components of
the host defense mechanism against bacteria and
fungi, including multi-drug resistant pathogens such
as Methicillin-resistant Staphylococcus aureus and
vancomycin-resistant Enterococci [1]. AMPs also exhibit
other biological properties like antitumor, antiviral, and
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antiparasitic activities. With the rapid increase in number
of antibiotic-resistant bacteria, AMPs have received much
attention as a template for the development of new drugs
for the treatment of infectious diseases.

From the computational point of view, Virtual Screen-
ing (VS) [2-4] is usually applied at early stages of the
drug discovery process. It contributes to the identifica-
tion of putative AMPs from large peptide libraries [3, 5].
In this context, Quantitative Structure-Activity Relation-
ship (QSAR) is of great importance for models’ generation

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-018-5030-1&domain=pdf
mailto: cbrizuel@cicese.mx
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Beltran et al. BMC Genomics 2018, 19(Suppl 7):672

to classify active (AMPs) and inactive (non-AMPs) pep-
tides [6]. QSAR modeling defines mathematical relation-
ship between the peptides’ physicochemical properties
(molecular descriptors) to their biological activity [6] to
classify the activity of new peptides. Machine learning
approaches are tools for the generation of models that
describe this relationship from a set of peptides with
known activities. Admittedly, the model’s performance
depends on the selection of molecular descriptors since
they define the chemical space in which each peptide is
projected. The selection of appropriate molecular descrip-
tors to discriminate between AMPs and non-AMPs is a
hard goal to achieve due to the large number of molec-
ular descriptors that can be calculated in peptides and
to their complex interrelationships. Furthermore, new
features can be added to this large set of molecular
descriptors through feature construction methods [7].
Recently, an evolutionary approach [8] was proposed for
AMP recognition which combines sequence-base features
such as motif and positional sequence into more com-
plex features leading to promising results. These results
motivate the inclusion of these new features to the exist-
ing set to participate in the feature selection process
afterwards.

In earlier studies, the selection of molecular descrip-
tors has often been made based on chemical intu-
ition or observed properties that give rise to the
antimicrobial activity [3, 9]. In contrast, recent works
employ hand-picked features (molecular descriptors) pro-
cedures or filtering methods that independently eval-
uate the features according to a given criterion to
select the top k of them [8-11]. However, these
approaches present some disadvantages considering that
the biological activity of peptides depends on com-
plex interrelationships of many molecular descriptors.
Therefore, we need a more rigorous feature selec-
tion procedure to improve the performance of AMPs
classification [12].

Feature selection methods can be categorized into three
major classes based on the features’ assessment: filter,
wrapper, and hybrid. First, in the filter methods, the
quality of features is evaluated from the data, ignoring
the effect of the selected features on the classifier algo-
rithm performance [13]. Examples of evaluation functions
used on filter methods are distance, information, and
dependence measure [14]. Second, the wrapper meth-
ods incorporate the classifier’s performance (e.g., error
rate, accuracy) to evaluate the quality of the selected fea-
tures [13]. Finally, hybrid methods combine both, the filter
and wrapper methods [15]. Wrappers usually outperform
filter methods, mainly because the selection of optimal
features is biased towards the effect of these features on
the classifier’s performance. Additionally, wrapper meth-
ods have a high computational cost because they require
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to induce and test a classifier for each evaluated features’
subset. In contrast, since filter methods are indepen-
dent of classification algorithms, they may be computed
efficiently [13]. Furthermore, filter methods can improve
their performances by using evaluation measures for a
specific classification algorithm [13]. For example, the
intra-class distance could be appropriate for the instance-
based learning algorithms, whereas the information gain
for the decision trees classifiers.

An efficient and effective filter approach for the selec-
tion of features, based on their weighting has been
recently proposed [16]. In this approach, the weights are
assigned in such a manner that objects in different classes
tend to be far away from each other, whereas objects
within the same class tend to be close together. Unfortu-
nately, there is a trade-off between these distances and,
that is why the feature weighting challenge is modeled as
a multi-objective optimization problem. In a recent work
[17] we applied this formulation to the antimicrobial pep-
tides classification problem and improved it by taking into
account that molecules with similar structure tend to pos-
sess similar biological activity [18]. The central idea is
that it makes no sense to minimize the distance among
non-AMPs as it should be done [16], since they may have
different biological activities. The proof-of-concept of our
formulation in [17] showed a good performance capa-
bility for the binary classification of AMPs. The present
work builds upon our improved formulation [17] and
extends its results. Besides dealing with a significantly
larger dataset, the statistical significance of the observed
difference is assessed. We now also show the ability of
our proposal to classify a subset of AMPs that explicitly
targeted bacteria.

Problem statement

The general problem to solve is referred to as feature
weighting problem [19], and it is known to be NP-Hard
[20]. For our purposes, we model this problem as a multi-
objective optimization problem (MOP) to find a set of
weight vectors that simultaneously minimize the distance
between AMPs and maximize the distances between
AMPs and non-AMPs. To define the MOP, we follow a
similar approach to the one presented in [16], where the
main differences are as follows: first, the general problem
of weighting feature in [16] simultaneously minimizes the
intra-class distance for all classes. Instead, our approach
[17] minimizes only the intra-class distance of AMPs,
since the non-AMPs set might contain peptides with dif-
ferent biological activities, thus trying to reduce the intra-
class distance for non-AMP would be contradictory with
the similarity property principle [18]. Furthermore, in our
approach, the number of non-zero weights are used as a
tiebreaker criterion for the weight vectors with the same
intra or inter-class distances.
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Notation and definitions
Before presenting the formal definition of the problem,
some notation, and definitions are introduced.

e X is a feature set {X1, ..., X,,}. In this paper, we use,
without distinction, the term molecular descriptor
and feature.

e Y is the set of class labels {C1, ..., C.}, with ¢ the
number of classes. For instance, ) = {C1, Cy}, with
Cy = “AMP” and Cy = “Non-AMP”.

e D is the training dataset composed of n peptides with
a known biological activity {(x1, 1), ..., Xu, ¥n)},
where x; is an m-dimensional vector [x;1, . .. ,xim]T
that captures the physicochemical properties into
real values, each component x;; encodes the value for
the jth molecular descriptor (i.e., feature) of the ith
peptide sequence. y; € ) denotes whether x; has the
antimicrobial activity or not. D can be expressed as a
matrix with n x (m + 1) elements whose rows are
given by xiT and y;.

X11 X¥12 ** X1m | Y1
X21 X22 - Xom |)2

= 1)
Xnl Xn2 *°° Xnm |Yn

This data matrix D is also known as a descriptor
matrix [21].

o w=/[wiy,...,w,]T isaweight vector that specifies
the rescaling value of each feature, the corresponding
weight for the ith feature is given by [16]:

i — { [1, A] if the feature X; is selected;
;=

0 if the feature X; is rejected. @

where A is the maximum weight for w; and it takes
any positive real number. As in [16], A = 10 in this
work.

e The weighted distance (also known as weighted
Manhattan distance) between two data points x,, and
X, is defined as:

m
d (W, Xy, xg) = Z Wilxpi — %gil (3)
i=1

where |.| represents the L; norm. Let y = AMP the
class label of interest, then the intra-class distance for
the class of interest is defined as follows:
n—1 n
Diytra (W, D) = Z Z AW, Xp,Xy) (4)
p=1 q=pt1
Ypyg=AMP
Additionally, the inter-class distance is defined as:

n—1 n

Dipter(w, D) = Z Z d(w, Xp, xq) (5)

p=1 q=p+1
Ip#FVq
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A multi-objective approach to the feature weighting problem
Let D be a training dataset with # instances and m can-
didate input features, we assume that for each instance
xiT € D, the value x; is in the interval [1, A], where x;
is the j-th component of the vector xl.T. Then, the multi-

objective feature weighting problem can be stated as:

miniﬁr{nize F(w) = [iw),o(W)] ’

(6)
subjectto w; € {O}JU[L, A] i=1,...,m,
where,
in{1,w}]T 1
fl(W) = Dintra(W, D) + w;
in{1,w}]T 1
So(W) = —Dinter(w, D) + w

here, the term [min{1, w}]” 1 is the number of weights that
are different from zero (i.e.,, w; > Ofori = 1,...,m.). This
term promotes a weight vector with a smaller number of
features than any other weight vector with the same intra-
class or inter-class distances.

Results

To evaluate the effectiveness of our approach, called
Multi-Objective  Approach for Feature Weighting
(MOEA-FW), we conducted experiments on six high-
quality benchmark datasets that have recently been used
for empirical evaluation of state-of-art antimicrobial pre-
diction tools in an unbiased manner [12]. These datasets
were selected because they are composed of manually
curated and experimentally validated AMPs; in these
datasets, the non-AMPs have the same peptide distribu-
tion as that observed in AMPs (see “Methods” section).
This experimental study was divided into four parts.
In the first part, we aimed at selecting the appropriate
molecular descriptors for each dataset through their scal-
ing. Whereas, in the second part, different classification
models are induced by four machine learning algorithms
(MLAs) with the transformed datasets. In the third
part, the best classification models generated were used
to predict the antimicrobial activity for new peptides
sequences, i.e., peptide sequences that have not been
used either for obtaining the weight vectors or for the
cross-validation test to choose the best classifiers. Finally,
we compared our result with those presented in a recent
work [12] that evaluates different AMP predictors.

Performance measure

To compare the best compromise solutions found by
our MOEA-FW algorithm, for each dataset, a perfor-
mance estimation method was employed to evaluate the
efficiency of the model to classify antimicrobial peptides.
The performance estimation method employed 10-fold
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Cross-Validation (10-fold CV) as a re-sampling method
and a diverse set of evaluation metrics. In the 10-fold CV,
the dataset is partitioned into 10 non-empty disjoint sub-
sets (i.e., fold); each subset has roughly equal size. Nine
folds are employed for the machine learning algorithm
to induce a classifier, and the classifier is tested on the
remaining subset, this procedure is repeated ten times.
Additionally, the performance of the classifier was esti-
mated by using the average values from the tests. To test
the classification performance, the following metrics were
used: accuracy, Matthews correlation coefficient, preci-
sion, specificity, sensitivity, balance accuracy, and the area
under a ROC Curve (AUC). We consider the instances of
the class AMP as positive and the instances of the class
non-AMP as negative; then the metrics can be formally
defined as follows:
e Accuracy (Acc) [22]:
oo — TP+ TN -
TP+ TN + FP+ FN
e Matthews correlation coefficient (MCC) [22]:

TP x TN — FN x FP

MCC =
J(TP + EN)(IN + EP)(TP + EP)(IN + EN)
(8)
® Precision (Prec):
TP
Prec = ————— )
TP + FP
® Sensitivity (Sens):
P
Sens = ——— (10)
TP + FN

e Balance Accuracy (Bal Acc) [12]:

1 TP 1 TN
BalAcc= - — )|+ - =——= ) (11)
2 \ TP+ FN 2 \ TN + FP

where TP, TN, FP, and FN are the number of true positive,
true negative, false positive, and false negative, respec-
tively. Given that the considered datasets are imbalanced
classes (i.e., the AMPs and non-AMPs are not repre-
sented equally into the datasets), we used the balance
accuracy and the AUC to obtain a better measure of the
induced-models’ performance.

Weighting of molecular descriptors

Figure 1 displays the consolidated non-dominated front
obtained by our approach (MOEA-FW) for each dataset.
The consolidated non-dominated front is generated after
30 independent runs of MOEA-FW. The diamond and
square marker (i.e., .1 = 0.55 and A; = 0.6) represent the
values for the best compromise solutions that encourage
the objective fi (i.e., minimize the distance between pep-
tides with antimicrobial activity). Alternatively, A.; = 0.45
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and A1 = 0.4 represent the values for the best com-
promise solutions that encourage the objective fo (i.e.,
maximize the distance between AMPs and non-AMPs).
Furthermore, A; = 0.5 represents the value for the best
compromise solution where both objectives are equally
important.

The percentage of number of molecular descriptors
reduction shown in Fig. 2 indicates a similar behavior
on the six datasets for each best compromise solution.
In particular, the best compromise solution A; = 0.5
has, on average, a reduction in the number of molecular
descriptors of 52.7%, i.e., on average, the best-weighted
solution has 128 features out of 272. Nevertheless, the
DAMP_BACTERIOCIN dataset shows an increment of
this measure for solution A; = 0.45. These findings
indicate that solutions supporting the objective f] (i.e.,
inter-class distance) have, on average, fewer molecular
descriptors than those that support the objective f, (i.e.,
intra-class distance).

Model selection

Next, for each best compromise solution earlier obtained
(i.e., a weight vector w), the original datasets were trans-
formed (i.e., weighted; see “Methods” section). Then,
for each transformed data, four classification models
were constructed by the following machine learning algo-
rithms: random forest (RF), k-nearest neighbor (KNN),
multi-layer perceptron (MLP), and a linear support vector
machine (SVM-L).

As mentioned earlier, the balance accuracy (BalAcc) was
considered as a measure to determine the best model on
the six datasets weighted by the best compromise solu-
tions. We applied the non-parametric Friedman’s test [23]
and Nemenyi post hoc test [24] to verify whether there are
significant differences among the classifiers’ performance.
The Friedman [23] and Nemenyi tests have been widely
used in the literature for statistical comparison of classi-
fiers on multiple datasets (the interested reader is referred
to [24] for more information about how to perform both
tests).

Our results indicated that the best compromise solu-
tion, with A; = 0.5, allows to induce on average, bet-
ter classification models regardless the machine learning
algorithm, the BalAcc was 87.52% (see Additional file 1).

The statistical analysis of the MLAs’ performance iden-
tified (by the Friedman test) a significant difference in the
BalAcc (sz(B) = 55.2, p-value = 6.224e-12 ) of the four
MLAs on multiple datasets. Our results show that, on
average, SVM-L ranked first (with rank 1.23), KNN sec-
ond (with rank 2.43), RF third (2.63), and MLP fourth (3.7)
(see Additional file 1: Table S1). Furthermore, we found
that SVM-L performed significantly better than MLP
(Nemenyi: z = 7.4, p-value = 8.40e-13), RF (Nemenyi:
z = 4.2, p-value = 0.00016), and KNN (Nemenyi: z = 3.6,
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Fig. 1 The consolidated non-dominated front (CNDF) visualization. The CNDF is generated after 30 runs of the MOEA-FW approach for each dataset.
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p-value = 0.00181). Similarly, KNN performed signifi-
cantly better than MLP (z = 3.8, p-value = 0.00083).
Although the KNN performs a little better than RF, there
was no statistical significant difference (p-value = 0.932)
between them.

In particular, considering only the best compromise
solution with A; = 0.5, the average of BalAcc for SVM-
L was 92.65% and for KNN 90.13% (Summary statistics
on BalAcc(%) for all best compromise solutions can be
found in the Additional file 1). Hence, our findings indi-
cate that for the six datasets, the best compromise solution

with A1 = 0.5 using SVM-L and KNN induced better
classification models.

Table 1 summarizes the result obtained by SVM-L and
KNN with the best compromise solution at A; = 0.5
(detailed results are presented in Additional files 2, 3, 4,
5, 6 and 7). The metric’s values represent the average for
the 10-fold cross-validation. In this table, a Wilcoxon test
is also performed on the observed differences between
KNN and SVM-L for Sens(%), Spec(%), Prec(%), BalAcc,
Acc(%), MCC, and AUC values; if the difference is sta-
tistically significant, at a confidence level of 95%, then an
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Fig. 2 Percentage of number of molecular descriptors reduction for
the best compromise solutions on six datasets

asterisk is added to the winner value (in bold). In most
cases, the classification models generated by the KNN
showed better specificity and precision than the ones gen-
erated by the SVM-L, i.e., models correctly predict 96% of
non-AMPs, and correctly classify 80% of predicted AMPs.
In comparison, the classification model obtained by SVM-
L showed good sensitivity, namely, the model correctly
classifies 88.33% of AMPs.

To determine the effect of MOEA-FW on the effi-
ciency of the model to classify AMPs for each dataset,
we compared the performance of two classifiers gen-
erated by the same machine learning algorithm, one
applying the MOEA-FW and the other one, by using all
candidate input features (i.e., baseline). We selected the
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best machine learning algorithm per database, this is
according to the balanced accuracy column in Table 1.
We run the Wilcoxon’s test on the BalAcc resulting from
the 10-fold cross-validation of our proposed method and
the baseline for each dataset (Additional files 2, 3, 4, 5,
6 and 7). The models generated by MOEA-FW shows
a significant improvement over the baseline models on
the BalAcc. For each dataset, the significant difference
in BalAcc between MOEA-FW and baseline were as fol-
lows: DAMPD_AMP (p-value = 0.00976), APD3_AMP
(p-value = 0.00195), DAMPD_ANTIBACTERIAL
(p-value = 0.00195), APD3_ANTIBACTERIAL (p-value
= 0.00976), DAMPD_BACTERIOCIN (p-value = 0.051),
and APD3_ BACTERIOCIN (p-value = 0.08398). Similar
results were observed for the other metrics, they are
summarized in Fig. 3. In this figure, an asterisk indicates
that the observed different is statistically significant.

On the other hand, if we take into consideration
other metrics (i.e,, Sens, Spec, AUC, MCC, Pres,
Acc) to compare both models, the results show that
the models generated by using MOEA-FW achieve
a comparable or superior performance than those
obtained by using all candidate input features. In par-
ticular, for the datasets DAMPD_ AMP, APD3 AMP,
and APD3_ANTIBACTERIAL, the MOEA-FW shows
an improvement over the baseline (see Fig. 3). In
contrast, datasets DAMPD_BACTERIOCIN and
APD3_BACTERIOCIN showed a decrease in the pre-
cision measure with respect to the baseline. This result
suggests that our proposal cannot find a suitable chemical
space for BACTERIOCIN datasets, whereby an efficient

Table 1 10-Fold Cross-Validation performance on six datasets for KNN and SVM-L, A1 = 0.5

Dataset MLA Sens(%) Spec(%) Prec(%) Bal Acc(%) Acc(%) MCC AUC
DAMPD_AMP KNN 7197 97.22* 83.75* 84.60 93.01 0735 0.846
SVM-L 88.07* 92.30 69.56 90.19* 9162 0.734 0.902*
APD3_AMP KNN 80.85 9527* 77.23* 88.06 9285 0.747 0.881
SVM-L 91.65* 92.53 70.75 92.09* 9236 0762 0921*
DAMPD_ANTIBACTERIAL KNN 91.04 96.45 8437 9375 9551 0.849 0937
SVM-L 88.49 96.54 84.18 92.51 95.06 0.832 0.925
APD3_ANTIBACTERIAL KNN 79.32 95.30* 77.18* 87.31 9261 0.738 0.873
SVM-L 91.34* 92.22 7033 91.78* 92.07 0.756 0918*
DAMPD_BACTEROCIN KNN 100 95.53 85.83 97.76 96.36 0.902 0978
SVM-L 100 98.89 96.67 9944 99.09 0977 0994
APD3_BACTEROCIN KNN 83.50 95.04 77.05 89.27 93.12 0.758 0.893
SVM-L 8538 94.83 77.28 90.10 93.12 0.768 0901

Each value is the average performance from 10-fold cross-validation by the classifier built by the machine learning algorithm (second column) on the dataset (first column).
Wilcoxon signed rank test was performed on the measure resulting from the 10-fold cross-validation of KNN and SVM-L. The models with significant improvement at p-value

<0.05 are marked with the symbol *
?Bold font indicates the best value per measure for every dataset
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Fig. 3 Performance comparison between the best model achieved by MOEA-FW and the baseline. Each plot shows the performance measure by
10-fol cross-validation of the best model achieved by MOEA-FW and the baseline (i.e, all candidate input features) for a particular dataset. The
polygon represents a particular performance’s model. When a polygon is covered means that the model is worse in all metrics that the model
represented by the polygon that includes it. Wilcoxon signed rank test was performed on the measure resulting from the 10-fold cross-validation of
best model achieved by MOEA-FW and the baseline. The models with significant improvement at p-value <0.05 are marked with the symbol *

model could be induced to discriminate what a bacteri- Model assessment
ocin is. Conjectures of why this is happening are given in  After selecting the best models obtained with the best
the “Discussion” section. compromise solution given A; = 0.5, and using KNN
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and SVM-L, we measured their prediction capacity over
new peptide sequences, this is, peptide sequences that
have not been used either for obtaining the weight vectors
or for cross-validation tests to choose the best classi-
fiers (see “Methods” section). We observed that all clas-
sifiers induced by SVM-L have an AUC value > 0.83,
this means that the models generated by SVM-L have an
excellent capacity to learn what an antimicrobial peptide
is. Whereas, the model generated by KNN maintain an
excellent specificity (as the results presented in Table 1
indicate).

On the other hand, comparing the results for
DAMP_BACTIBASE set, espacially for bacteriocin, in
Tables 1 and 2, the considerable difference in sensitiv-
ity (Sens(%)) may be because of the small number of
bacteriocins in the test set.

Comparison with existing AMP classifiers

The best model generated by our approach MOEA-FW
was compared with others AMP predictors that used the
same datasets. It is important to note that the number of
instances between our test and the test showed in [12]
are different, because in [12] the evaluation of AMP’s pre-
dictors was performed by using the full examples of the
six datasets, whereas in our method, we used only 20%
of them (i.e., the other 80% of the dataset was used in
the optimization process, see “Methods” section). How-
ever, this comparison is intended to observe the predic-
tive capacity of the classification models generated with
our approach and those presented by the state-of-the-art
methods.
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The classifier performances presented in this work and
those reported by state-of-art methods for the AMP
prediction are summarized in Tables 3 and 4. Our results
reflect that the models produced by our approach have a
better performance than the state-of-the-art methods for
the classification of antimicrobial and antibacterial pep-
tides. It is worth noting that models derived from our
approach to classify antibacterial peptides outperformed
AntiBP [25] and AntiBP2 [26] (see Tables 3 and 4). How-
ever, our method is improved by BAGEL3 [27] for the
BACTERIOCIN datasets.

Discussion

Our approach aims to identify a weight for each molecular
descriptor, in such manner that, peptides with antimicro-
bial activity tend to be close together, whereas peptides
with different biological activities tend to be far away from
each other. Our results indicate that the best compro-
mise solution with A; = 0.5 allows, on average, the best
balance accuracy for all six databases. Furthermore, this
solution allows a reduction of at least 52% in the num-
ber of molecular descriptors. It is important to note that
in our previous work [17], the best solution, for a smaller
database, was found with A; = 0.55, and it reduced the
number of descriptors by 67.90%. The difference may be
a consequence of having unbalanced datasets in this case.
With the best compromise solution (A; = 0.5), we trans-
form (weight the features) the datasets and build models
for the binary classification of AMPs and non-AMPs.
Our results indicate that both KNN and SVM-L allow to
achieve reliable models for classification of antimicrobial

Table 2 Performance comparison of KNN and SVM-L on unseen sequences from the six datasets, A = 0.5

Dataset ML Sens(%) Spec(%) Prec(%) Bal Acc(%) Acc(%) MCC AUC
DAMPD_AMP KNN 72.16 9417 6863 83.17 9087 0.650 0.832
SVM-L 7732° 91.62 61.98 8447 89.47 0.631 0.845
APD3_AMP KNN 70.82 9211 65.10 8147 8845 0.609 0.815
SVM-L 89.24 8287 51.98 86.05 83.97 0.597 0.861
DAMPD_ANTIBACTERIAL KNN 80.0 90.91 60.27 8545 89.30 0.634 0.855
SVML 74.55 93.10 65.08 83.82 9037 0.640 0.838
APD3_ANTIBACTERIAL KNN 65.97 9391 6835 79.94 89.26 0.607 0.799
SVM-L 8194 91.55 65.92 86.75 89.95 0676 0867
DAMPD_BACTEROCIN KNN 80 87.50 50.00 8375 86.49 0.561 0838
SVM-L 60 96.88 75.00 7844 9189 0.626 0.784
APD3_BACTEROCIN KNN 75.86 9423 70.97 85.05 91.35 0.682 0.850
SVM-L 93.10 92.95 7105 93.03 9297 0774 0930

“Each value is the performance on the testing dataset by the classifier built by the machine leamning algorithm (second column) on the dataset after applying the best

compromise solution for A1 = 0.5 (first column)
?Bold font indicates the best value per measure for every dataset
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Table 3 Performance comparison among the AMPs prediction methods reported in [12] with our proposed approach for the DAMPD

dataset

Tool Task Sens(%) Spec(%) Prec(%) Bal Acc(%)
MOEA-FW(SVM-L) Antimicrobial 77.32 91.62 6198 8447
CAMPR3(RF) 92.32° 72.65 40.30 82.49
CAMPR3(SVM) 90.13 72.10 39.25 81.11
ADAM 84.09 68.88 35.09 76.49
MLAMP 63.62 82.27 41.78 72.94
DBAASP 2212 9287 3828 5749
AMPA 48.81 84.79 39.09 66.80
MOEA-FW(KNN) Antibacterial 80.00 9091 60.27 8545
AntiBP 89.78 45.05 24.63 67.41
AntiBP2 86.90 15.97 17.14 51.44
MOEA-FW(KNN) Bacteriocin 80.00 87.50 50.00 83.75
BAGEL3 93.55 100.0 100.0 96.77
BACTIBASE 83.87 100.0 100.0 9193

?Bold font indicates the best value per measure

and antibacterial peptides. These results support the idea
that our MOEA-FW approach allows generating better
models for a specific antimicrobial activity, in this particu-
lar case, antibacterial activity. In this direction, we expect
to use this approach in the future, to classify other specific
antimicrobial activities, such as antiviral, anti-fungal, and
anti-parasitic, accordingly to determine whether this clas-
sification performance is also observed in those particular
antimicrobial activities.

As mentioned earlier, the models generated by KNN
achieve high specificity and precision, while models
induced by SVM-L produce high sensitivity (see Table 1).

These results suggest that, combining the models gener-
ated by KNN and SVM-L, we could exploit their proper-
ties to generate even more efficient models.

On the other hand, the lowest performance model
generated by MOEA-FW was for the classification of
peptides which source and target are bacteria (i.e.,
bacteriocins). In this case, our approach was not able to
produce a chemical space where both, the peptide activity
and their source could be discriminated. It is impor-
tant to note, that BAGEL3 [27] and BACTIBASE [28]
use properties related to sequence similarity to classify
bacteriocins.

Table 4 Performance comparison among the AMPs prediction methods reported in [12] with our proposed approach for the APD3

dataset

Tool Task Sens(%) Spec(%) Prec(%) Bal Acc(%)
MOEA-FW(SVM-L) Antimicrobial 89.24 82.87 5198 86.05
CAMPR3(RF) 94.80° 7265 40.30 82.49
CAMPR3(SVM) 90.60 72.10 39.25 81.11
ADAM 91.07 68.88 35.09 7649
MLAMP 75.59 82.27 41.78 72.94
DBAASP 62.81 92.87 38.28 5749
AMPA 39.17 8479 39.09 66.80
MOEA-FW(SVM-L) Antibacterial 81.94 9155 65.92 86.75
AntiBP2 66.59 26.00 15.25 46.30
MOEA-FW(SVM-L) Bacteriocin 93.10 9295 71.05 93.03
BAGEL3 86.36 100.0 100.0 93.18
BACTIBASE 3836 1000 100.0 69.48

?Bold font indicates the best value per measure
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Conclusions

This work deals with the problem of molecular descriptors
weighting by modeling it as a multi-objective optimiza-
tion problem, such that peptides with different biological
activities tend to be far away from each other, whereas,
AMPs tend to be close together. To solve this prob-
lem, a variant of a general methodology [16] based on
a multi-objective evolutionary algorithm (MOEA/D-DE)
[29, 30] was employed. Also, we introduce a multi-criteria
decision-making approach to select the weight vectors
with different degrees of satisfaction between the intra-
class and inter-class distances for the target class. Then,
with these weight vectors, we scaled the datasets where
the peptides are represented by molecular descriptors,
and generated different models for the binary classifica-
tion of AMPs. The analysis of experimental results, on six
unbalanced datasets, indicates that the proposed method-
ology is effective on the development of models to predict
antimicrobial peptides. Particularly, in the generation of
models for discrimination against a specific antimicro-
bial activity, such as antibacterial. Given this last result,
future research direction aims at constructing classifiers
that specialize in specific antimicrobial activities such as
antiviral, antifungal, antitumor, among others.

Methods

The scheme of the methodology adopted in this study is
shown in Fig. 4. Each process is described in detail in
this section, including selection and splitting of a dataset,
computing and preprocessing of molecular descriptors,
molecular descriptor weighting, and classification of
antimicrobial peptides.

Data collection

For this study, we used six sets of peptide sequences,
for which AMPs are experimentally validated whereas
non-AMPs were randomly selected from a supersequence
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generated from the concatenation of proteins retrieved
from UniProt. None of the retrieved proteins have been
annotated as antimicrobial, and some of them are intra-
cellular. From the supersequence, six non-AMPs are ran-
domly extracted for each AMP in the dataset [12]. The
datasets were obtained from the publicly available supple-
mentary data of a recent work [12]. Then, we removed
the peptide sequence that contains non-standard residues
(e.g., peptide sequences with undetermined amino acids
such as 'X] 'B, 'J or 'Z’). We named these datasets
according to i) the database from which the AMPs
were recovered and, ii) their annotated activity. Regard-
ing their database, we named the datasets DAMPD and
APD3, because they come from the Dragon Antimicrobial
Peptide Database (DAMPD) [31] and the Antimicrobial
Peptide Database (APD3) [32], respectively. Regarding
their annotated activity, we named the datasets as AMP,
ANTIBACTERIAL and BACTERIOCIN. AMP are pep-
tides that have antimicrobial activity. ANTIBACTERIAL
is a proper subset of AMP since they are antimicro-
bial peptides that explicitly targeted bacteria. Additionally,
BACTERIOCIN is a proper subset of ANTIBACTERIAL,
the source organisms of such peptides are also bacte-
ria (these peptides are referred to as bacteriocins, the
interested reader is referred to [33] for more information
on peptide naming and classification).

Each dataset was split into two random parts, training
and test sets. The training set contains 80% of randomly
selected sequences from the original dataset, while the test
set contains the remaining sequences (see Table 5). The
training set is used in the next steps of this section, while
the test set is only used to test the effectiveness of the
models generated by our approach.

Computation of molecular descriptors
Molecular descriptors are derived from a logical and
mathematical procedure which transform physical and

AMPs

v

Split . Compute

Dataset —> dataset — Training molecular

N 80/20 set descriptors
Non- Test set

AMPs

Model
evaluation

Classification
algorithm

Classification
model

represent the inputs and outputs of processes

Multi-objective
— evolutionary aproach
for feature weighting

Data

__, Descriptor matrix
preprocessing D

Aproximate Pareto-
optimal set
w = {wt, .., wh}

The best
compromise solution +——
W'

Multi-criteria decision
making

Fig. 4 The overall scheme of the feature weighting framework. The rectangles with bold texts represents processes, and the rounded rectangles




Beltran et al. BMC Genomics 2018, 19(Suppl 7):672

Table 5 Summary of peptide datasets

Dataset No. of AMP No. of Non-AMP Total
sequences sequences
DAMPD_AMP 438 2174 2612
DAMPD_ANTIBACTERIAL 255 1242 1497
DAMP_BACTEROCIN 24 123 147
APD3_AMP 1360 6860 8220
ADP3_ANTIBACTERIAL 1158 5777 6935
ADP3_BACTEROCIN 125 612 737

"The datasets were extracted from [12] and we removed the sequences with
non-standard residues

chemical information encoded in a molecule representa-
tion into useful numbers [34]. Nowadays, there are many
proposed descriptors, that can be grouped according to
their dimensionality from 0D to 3D. The 0D descrip-
tors are very simple molecular properties (e.g., molec-
ular mass and atom count), that depend only on the
molecular composition of the peptide. The 1D descriptors
encode information about molecular structural fragments
(e.g., distance between two cysteine residues, hydrophobic
moment). The 2D descriptors are also known as topologi-
cal descriptors, and they give us information contained in
a molecular graph (e.g., Weiner index). Furthermore, 3D
descriptors capture the molecular geometry, stereochem-
ical, and surface properties [6].

Two free software packages were used to extract molec-
ular descriptors: Tango [35-37] and the in-house Java
Peptide Descriptor from Sequences (JPEDES) tool [17].
The first one was used to compute the following physico-
chemical properties: a-helix propensity, 8-sheet propen-
sity, turn structure propensity, and in vitro aggregation.
Whereas, JPEDES [17] was used to codify OD and 1D
descriptors. Unfortunately, the 3D descriptors were not
computed due to unavailability 3D-structures for most
known AMDPs. Altogether four molecular descriptors
were computed using Tango [35-37] and other 268 with
JPEDES tool [17]. Those descriptors were extracted for
each peptide sequence in the training and test datasets.

Preprocessing

We conducted a two-level preprocessing for the descrip-
tor matrix previously generated. First, we applied a pre-
processing at the instance level that consisted of removing
outliers; these are vectors labeled with the same class that
are very different from the rest, and that might affect
the performance of chemical space characterization. Sec-
ond, we applied a preprocessing at the descriptor level
that renders all molecular descriptor values to the same
range. This is because the employed molecular descrip-
tors have different range values, e.g., the isoelectric point
takes values in the order of 10° to 10! pH units, whereas
the molecular weight in the order of 10> to 10? Daltons.
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To remove isolated vectors concerning their neigh-
borhood, the Local Outlier Factor (LOF) [38] method
was used. It should be noted that the LOF was applied
to each class (e.g, AMP and non-AMP) from each
dataset. Regarding preprocessing at the descriptor level,
we applied the Min-Max scaling method, which maps the
measures for each descriptor into a range of 1 to 10 [17].
As aresult, we obtained a normalized descriptor matrix D.

Multi-objective evolutionary approach for feature
weighting (MOEA-FW)

The multi-objective evolutionary algorithm based on
decomposition (MOEA/DDE) [29, 30] was employed to
solve the multi-objective feature weighting problem ear-
lier formulated (see Problem statement). The work in [30]
shows that MOEA/D-DE performs better than the well
known NSGAII [39] for continuous optimization prob-
lems, like the one described in this study (see Eq. 6).

In short, MOEA/D-DE decomposes the multi-objective
optimization problem into N single-objective optimiza-
tion problems by adopting the Tchebycheff approach.
Then, these N problems are solved simultaneously (for
a detailed description of this method we refer to the
interested reader to [29, 30]).

In general, this algorithm receives as input the descrip-
tor matrix D and gives as output a set of approximated N
optimal solutions to (6), this is called approximate Pareto
set: P* = {wl, e ,wN}. It should be noted that each solu-

w’f, . ..,w],‘n]T, where the
i-th component is the scale factor for the i-th molecular
descriptor. For each solution w¥ in P*, an objective vector
F (wk) = D’l (wk) Jo (wk)]T is assigned. Then the set of
all these objective vectors is called the approximate Pareto
front [40]: PF = {F (wl) e ,F(WN)}.

It is important to note that, solutions in P* cannot be
considered better among themselves in both objectives
since they are in a trade-off relation. This means that,
some solutions in P* are better in objective f; than in
f> and vice-versa (see Fig. 5). To draw a few solutions
from P*, taking into account different satisfiability levels
of the objectives, we employed a well-established process
in multi-criteria decision making [40].

tion is a weight vector wk = [

Multi-criteria decision making approach to select weight
vectors

For the problem of choosing a few weight vectors from
the approximate Pareto set P*, we followed a process that
receive as input P*. The main steps can be described as
follows:

Step 1: for each solution, w € P*, scale the values for
objective functions fj (w) and fo(w) to a range
between 0 and 1, where 1 means full satisfaction for a
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Fig. 5 The weighted sum approach. lllustration of the weighted sum
approach. (a) f1 is less important than £,. (b) f; is equally important as
f,.(c) f, is less important than f;

particular objective, and 0 indicates dissatisfaction.
Perform the scaling of a solution w for the objective
f; as follows [16]:

1 if f; (wk) = fmin,
max __ £ [k
/'LZF = -ﬂfmaxff(:;n) iffimin <f;'k <fimax’ (12)
0 iffi (wk) =fimax,
where,
min __ . <
s = min i (W) 13
max __ .
s = ma {1 () )

K kK7
Here u = [“1’ /,L2:| is the objective vector

constrained to the [0,1] range for the solution wK in

the approximate Pareto set P*.

Step 2: perform a weighted sum approach given a
weight vector A = [Aq, A2]T. Here A1 and Ay are used
to set the preference over objectives fi and f5,
respectively. For instance, if we want a solution that
satisfies fi more than f,, then a greater value should
be assigned to A1 than to Ay (see Fig. 5). Given A, the
weighted sum for each objective vector u* is
calculated as follows:

2P (ulrg) = Apr + (1= Ao (15)
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Step 3: Find the best compromise solution given 2,
namely, the weight vector w** with the maximum
value of g (formally described in Eq. 1).

k* = argmax gb* </Lklkl> (16)

ke[1,N]
In this work, for each dataset, we selected five of the best

compromise solutions by using A; equals to 0.4, 0.45, 0.5,
0.55, and 0.60.

Classification algorithms

This section describes an assessment method to vali-
date the performance of the MOEA-FW method. In this
method, we evaluated the classification task before (i.e.,
baseline), and after applying our MOEA-FW algorithm.
For each classification task, we built four models: random
forest (RF), k-nearest neighbor (KNN), a linear support
vector machine (SVM-L), and a multi-layer perceptron
(MLP). A training dataset without weight factors was
used before applying our MOEA-FW algorithm, and the
weighted molecular descriptors are used after that. Later,
we compared the classification performance between the
models and measured indirectly the quality of our pro-
posal. To accomplish this, each best compromise solution
(i.e., the weight vector w*) was applied to dataset D

A

resulting in a new dataset Dyy, where:

WiX11 WaX12 -+ Wm¥X1im | Y1

N Wi1X21 WaX22 ** WmXom |2

Dw = (17)
WiXnl W2Xn2 - WmXnm |Yn

In this way, after applying our proposal, the rejected
molecular descriptors correspond to columns whose val-
ues are zero and those columns were deleted.

Implementation details

All experiments were performed under the following con-
dition; OS: ubuntu 16.04 LTS; CPU: Intel i7 at 2.40GHz;
and RAM memory: 12 GB.

The MOEA/D-DE algorithm was implemented in Java
using the framework of Metaheuristics for solving multi-
objective optimization problems MOEA Framework 2.1
(available from http://www.moeaframework.org). The
main parameters for MOEA/D-DE were set according to
the values recommended in [30] for 2-objective problems,
the specific parameter settings are summarized in [17].

The classification algorithms were implemented in
Python 3.6 using the Scikit-learn [41]. Scikit-learn is
an efficient set of tools for the implementation of
machine learning algorithms for data mining tasks. The
machine learning algorithms’ hyperparameters are sum-
marized as a following: KNN (p = 1,weight =
distance) and k = 19,22,3 for the antimicrobial,
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antibacterial, and bacteriocin datasets, respectively; SVM-
L (class_weight= balanced) and the penalty parameter
C = 0.001, 0.1, and 0.001 for the antimicrobial,
antibacterial, and bacteriocin datasets, respectively; RF
(criterion=gini, max_features=sqrt); finally for MLP we
used the default hyperparameters.
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