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Abstract

Background: Transcription factors are essential regulators of gene expression and play critical roles in development,
differentiation, and in many cancers. To carry out their regulatory programs, they must cooperate in networks and
bind simultaneously to sites in promoter or enhancer regions of genes. We hypothesize that the mRNA co-expression
patterns of transcription factors can be used both to learn how they cooperate in networks and to distinguish
between cancer types.

Results: We recently developed a new algorithm, Thresher, that combines principal component analysis, outlier
filtering, and von Mises-Fisher mixture models to cluster genes (in this case, transcription factors) based on expression,
determining the optimal number of clusters in the process. We applied Thresher to the RNA-Seq expression data of
486 transcription factors from more than 10,000 samples of 33 kinds of cancer studied in The Cancer Genome Atlas
(TCGA). We found that 30 clusters of transcription factors from a 29-dimensional principal component space were
able to distinguish between most cancer types, and could separate tumor samples from normal controls. Moreover,
each cluster of transcription factors could be either (i) linked to a tissue-specific expression pattern or (ii) associated
with a fundamental biological process such as cell cycle, angiogenesis, apoptosis, or cytoskeleton. Clusters of the
second type were more likely also to be associated with embryonically lethal mouse phenotypes.

Conclusions: Using our approach, we have shown that the mRNA expression patterns of transcription factors
contain most of the information needed to distinguish different cancer types. The Thresher method is capable of
discovering biologically interpretable clusters of genes. It can potentially be applied to other gene sets, such as
signaling pathways, to decompose them into simpler, yet biologically meaningful, components.
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Background
Transcription factors (TF) are proteins that bind to DNA
and control the rate of transcription for a set of genes; they
are some of the most important regulators of gene expres-
sion [1]. In particular, they play a crucial role in develop-
ment, differentiation, and the maintenance of cell type [2].
Furthermore, about one-third of TFs are tissue-specific
[3], and TFs are over-represented among oncogenes [4].
Because of the vital role of TFs in the regulation of mul-
tiple critical biological processes, we hypothesize that the
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expression patterns of transcription factors contain suffi-
cient information to distinguish between different types of
cancer.
In order for TFs to carry out their regulatory programs,

they must cooperate by forming networks [1]. Gaining
a better understanding of how TFs cooperate to regu-
late gene expression can help us gain deeper insight into
human genetics and disease, especially cancer. In order
to identify cooperating TF networks, some researchers
have clustered TFs according to known function or dis-
ease association [5, 6]. Others have focused on clustering
TF binding sites by looking for common sequence motifs
[7, 8]. Still other studies have applied clustering algo-
rithms to patterns of TF protein expression [9, 10]. These
studies are motivated by the observation that, essentially
by definition, TFs working in concert must bind (to the
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same or to nearby binding sites, possibly exhibiting similar
motifs) at the same time [11]. In other words, cooperat-
ing sets of TFs tend to be expressed together so that TF
coexpression may be an effective proxy for cooperativity
[12, 13]. To understand which TFs cooperate (and thus
distinguish tissue types and cancer types), we propose to
cluster them into biologically meaningful sets based on
their coexpression at the mRNA level.
Clustering “features” (genes, proteins, transcription fac-

tors, etc.) is a core research problem in biomedical infor-
matics [14–16]. The ability to group biological features
into distinct biologically interpretable clusters would solve
many important but challenging research problems, such
as the identification of multi-dimensional biomarkers.
The challenges posed by these research problems result
in part from the nature of omics research, which has dra-
matically increased the feature space in many biomedical
domains [17]. For this reason, grouping and clustering
problems are more prevalent than ever and require more
creative and robust solutions. In addition, as researchers
increasingly look for more complex patterns in omics
data, ensuring the biological interpretability of results is
an increasingly important task [18].
In this article, we apply a novel solution to the

problem of clustering transcription factors; Fig. 1 illus-
trates the worflow. We demonstrate the ability of our
recently described algorithm, Thresher [19], to cluster
transcription factors into biologically interpretable one-
dimensional clusters. Thresher employs concepts from
principal component analysis, outlier filtering, and von
Mises-Fisher mixture models. It is specifically designed
both to determine the optimal number of clusters after
filtering out insignificant “outlier” features and to replace
the purely mathematical principal components with bio-
logically relevant and interpretable clusters. We apply

Thresher to the set of more than 10,000 RNA-Seq gene
expression profiles of 33 kinds of cancers taken from The
Cancer Genome Atlas (TCGA) [20]. We show that the
expression patterns of 486 transcription factors in this
dataset can be summarized by 29 principal components
that are capable of distinguishing almost all of the can-
cer types assayed by TCGA, including separating cancer
samples from the adjacent normal tissue.We further show
that the 29 mathematical principal components can be
replaced naturally by 30 clusters, which we call “biologi-
cal components.” Each biological component has its own
internal and coherent biological meaning. About 40% of
the biological components appear to be directly related
to a specific tissue type, while the other 60% are related
to fundamental biological processes such as the cell cycle,
angiogenesis, or apoptosis. We believe that Thresher’s
ability to replace principal components with biologically
interpretable components will have broad applicability.

Results
Number of principal components
We performed principal components analysis (PCA) on
the dataset containing expression measurements of 486
transcription factors, as listed in the Transcription Factor
Catalog [21], in 10,446 samples from studies of 33 differ-
ent kinds of cancer in The Cancer Genome Atlas. The
numbers of samples per cancer type are listed in Table 1.
In order to estimate the number of significant compo-
nents, we used the PCDimension R package [22], which
implements automatic rules for the graphical Bayesian
method introduced by Auer and Gervini [23]. The Auer-
Gervini model uses a family of exponentially decaying
prior distributions parametrized by a variable called �

that controls the decay rate; they showed that the max-
imum a posteriori (MAP) estimate of the number of

Fig. 1Workflow diagram showing the main analysis steps and results of the paper (TF = transcription factor; PC = principal component)
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Table 1 Number of samples per cancer type

Cancer code Cancer type N

ACC Adrenocortical carcinoma 79

BLCA Bladder Urothelial Carcinoma 427

BRCA Breast invasive carcinoma 1212

CESC Cervical squamous cell carcinoma
and endocervical adenocarcinoma

309

CHOL Cholangiocarcinoma 45

COAD Colon adenocarcinoma 328

DLBC Diffuse Large B-cell Lymphoma 48

ESCA Esophageal carcinoma 196

GBM Glioblastoma multiforme 171

HNSC Head and Neck squamous cell
carcinoma

566

KICH Kidney Chromophobe 91

KIRC Kidney renal clear cell carcinoma 606

KIRP Kidney renal papillary cell carcinom 323

LAML Acute Myeloid Leukemia 173

LGG Brain Lower Grade Glioma 530

LIHC Liver hepatocellular carcinoma 423

LUAD Lung adenocarcinoma 576

LUSC Lung squamous cell carcinoma 552

MESO Mesothelioma 87

OV Ovarian serous
cystadenocarcinoma

307

PAAD Pancreatic adenocarcinom 183

PCPG Pheochromocytoma and
Paraganglioma

187

PRAD Prostate adenocarcinoma 550

READ Rectum adenocarcinoma 105

SARC Sarcoma 265

SKCM Skin Cutaneous Melanoma 473

STAD Stomach adenocarcinoma 450

TGCT Testicular Germ Cell Tumor 156

THCA Thyroid carcinoma 568

THYM Thymoma 122

UCEC Uterine Corpus Endometrial
Carcinoma

201

UCS Uterine Carcinosarcoma 57

UVM Uveal Melanoma 80

components is a non-increasing step function of �. In
Additional file 1: Figure S1, we have plotted this step
function for the TCGA transcription factor data.
In their paper, Auer and Gervini advise looking at this

plot and selecting the “highest step that is long” to define
the number of components. In our paper , we examined a
variety of rules for automating this selection, including

• “Twice Mean”, in which any step that is longer than
twice the mean step length is viewed as long;

• “CPT”, in which we first sort the steps by the length
in increasing order, and then apply the “At Most One
Change” algorithm implemented by the cpt.mean
function in the changepoint R package to detect
the first change point; and

• “Kmeans3”, in which we apply the K-means
algorithm with K = 3 to cluster the step lengths into
small, medium, and large, where both “medium” and
“large” are viewed as long.

In the simulation studies [22], we found that the first
two of these methods, in particular, were competitive
with the best existing techniques to estimate the num-
ber of components. When applying these methods to the
transcription factor data, CPT claims that there are four
components; Kmeans3 claims that there are 18, and Twice
Mean claims that there are 29.

Principal components distinguish cancer types
To test visually whether the Twice Mean estimate of 29
significant principal components is reasonable, we pre-
pared pairwise plots of different components. Some of
these plots are shown in Fig. 2; a more extensive set is
contained in Additional file 1: Figures S2–S15. In each
plot, samples are colored by cancer type according to the
color scheme shown in the bottom right panel. In panel
(a) of Fig. 2, we show PCs 1 and 2. The “jade” samples
in the upper right are low-grade gliomas (LGG). In panel
(b), PCs 9 and 10, the two different shades of blue at the
lower right come from samples of uveal or cutaneous skin
melanomas (UVM; SKCM). In panel (c), PCs 13 and 14,
the “pale yellow” samples at the top are pheochromo-
cytoma and paraganglioma (PCPG) cancers. The “pale
green” at the bottom are testicular germ cell tumors
(TGCT). In panel (d), PCs 23 and 24, the “magenta”
samples at the right are bladder cancer (BLCA) and the
“yellowish green” at the bottom are sarcomas (SARC). In
panel (e), PCs 27 and 28, the purple samples at the left are
kidney chromophobe (KICH), one of three types of kid-
ney cancer studied in TCGA, and the “red” samples are
adrenocortical carcinomas (ACC). The “turquoise” sam-
ples at the right are thymomas (THYM). These figures
support the conclusion that the principal components,
at last including components 23–28 as claimed by the
“Twice Mean” algorithm, contain information that helps
distinguish different cancer types.

Information to distinguish most cancer types is present in
29 principal components
Linear projections, such as those implemented in PCA, do
not always give an accurate picture of how well-separated
subgroups really are in high-dimensional spaces. In order
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Fig. 2 Principal component plots based on the expression patterns of 486 transcription factors. (Panel a: Principal components 1 and 2; b:
Components 9 and 10; c: Components 13 and 14; d: Components 23 and 24; e: Components 27 and 28

to obtain more accurate visualizations, we applied the
method of t-distributed stochastic neighbor embedding
(t-SNE) [24, 25]. The results are shown in Fig. 3. In this
figure, primary tumors are plotted with an open circle,
metastases with a hollow triangle, and normal samples
with an asterisk. This plot reveals the following results:

1 In almost every case, samples from one kind of
cancer are well separated from other kinds.

2 However, colon cancer (COAD) and rectal cancer
(READ) are essentially indistinguishable. (See the
bottom of the figure, right of center).

3 Moreover, normal samples of COAD or READ can be
distinguished from tumors, but not from each other.

4 The two types of lung cancer (LUAD and LUSC,
right of center) can mostly be distinguished, although
there are a few samples that unexpectedly overlap the
other group.
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Fig. 3 Plot of the non-linear t-SNE map of samples from 29-dimensional principal component space into two dimensions. Colors are the same as in
the legend shown in Fig. 2. Primary tumors are plotted with an open circle, metastases with a hollow triangle, and normal samples with an asterisk

5 However, all the normal lung samples cluster
together.

6 Even though one type of primary kidney cancer
(KICH, far right) is very unlike the other two types
(KIRC and KIRP, to the upper right), their normal
samples cluster together.

7 There are clearly two very different subtypes of
esophogeal cancer (ESCA). One clusters with the
stomach cancers (STAD; bottom center) while the
other clusters with the head-and-neck cancers
(HNSC; center).

8 Most of the time, we can tell normal samples from
primary tumors. In addition to the lung, kidney, and
colorectal cancers that we have already mentioned,
we can also separate subclusters of normal samples
for thyroid (THCA; upper left), liver (LIHC, top
center), prostate (PRAD, right), and breast (BRCA,
lower right).

9 Breast cancer is also interesting, in that there are
clearly at least two well-separated subtypes of breast
cancer. The smaller set consists of triple negative
breast cancer cases.

Finding biological components
In addition to the fact that linear projections in PCA may
not reveal the full extent of the separation of subtypes
in high-dimensional spaces, the components themselves
are difficult to interpret biologically. Whenever we use
genes to cluster samples, the individual PCs are com-
prised of weighted linear combinations of genes. These
combinations are chosen to maximize the percentage of
variance explained and to satisfy themathematically desir-
able property of orthogonality. In situations where many
different biological processes may be at work, however,
each PC often turns out to combine the effects of multiple
processes.
To address this problem, we applied a new method,

Thresher, that we recently developed [19]. The Thresher
algorithm has three steps:

1 Use the PCDimension package [22] to determine
the number D of significant principal components.
Then we can view each gene (or transcription factor)
as a vector of weights in the principal component
space of dimension D.
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2 The magnitude, or length, of these vectors is used to
identify and remove outliers. Our simulations suggest
that vectors of length < 0.3 are safe to remove [19].

3 The remaining genes are then clustered based on the
directions of their weight vectors. Equivalently, this
process converts each gene into a point on a
hypersphere in PC space. To cluster such points, we
model the data using a mixture of von Mises-Fisher
distributions [26, 27]. We assume that the number K
of clusters satisfies D ≤ K ≤ 2D and use the Akaike
Information Criterion (AIC) to select the optimal K.

We want to emphasize two key points about the last
step in this process. First, we are replacing the mathe-
matical principal components, which are chosen to satisfy
orthogonality, with more natural directions defined by the
actual genes. For this reason, we refer to these clustered
direction-vectors as “biological components.” Second, we
allow the number K of biological components to be up
to twice as large as the number D of principal compo-
nents. Themotivation driving this decision is that we want
to separate genes whose expression patterns are nega-
tively correlated. Such genes point in opposite directions
in principal component space, and so they do not increase
the mathematical dimension of the space.
When we applied Thresher to the TCGA transcrip-

tion factor data, no outliers were found, and the mixture
model concluded that there were a total of 30 clusters
of transcription factors. Additional file 2: Table S0 lists
the transcription factors belonging to each cluster. We
then considered the data from each cluster separately.
In each case, we found that the cluster spanned a one-
dimensional principal component space (Additional file 1:
Figures S16–S45). Moreover, the weights of the cluster
members in the first principal component all had the same
sign and were of roughly comparable magnitudes. Thus,
we concluded that we had identified 30 sets (clusters) of
transcription factors that tended to work together across
more than 10,000 samples.

Computation time
Operations were timed on an Intel� i7-3930 CPU at
3.2 GHz running Windows� 7 SP1. Performing PCA
and using PCDimension to compute the number of
components took 15 s. Running t-SNE took 93 s. Run-
ning Thresher took 256 s; however, this measurement
includes automatically running the algorithm twice, once
before and once after removing outliers. Each run also
includes running the PCDimension code.

Characterizing biological components
We hypothesized that each transcription factor cluster
(or biological component) implements a single biolog-
ical process. We used three different bioinformatics

approaches to test this hypothesis and thus to annotate
the biological entity associated with each biological
component.

1 We prepared “bean plots” [28] of the average
expression of each biological component in the
TCGA samples, separated and colored by cancer type
(Figs. 4, 5 and Additional file 1: Figures S46–S75).

2 We identified the UniGene cluster corresponding to
each transcription factor [29, 30]. We found the
tissues listed as “cDNA sources” for the UniGene
cluster, and for each biological component, recorded
the tissues that appeared the maximal number of
times.

3 We computed Pearson correlation coefficients
between each of the 30 biological components and all
20,289 genes measured by RNA sequencing in the
TCGA samples. For each biological component, we
took the list of genes whose absolute correlation was
at least 0.5 and uploaded it to the ToppGene website
in order to perform gene set analyses [31].

A summary of the results of these analyses is shown
in Table 2. More complete results are contained in
Additional file 3: Tables S1–S30. We found that 12/30
(40%) of the biological components appeared to be asso-
ciated with a specific tissue type. Four examples of the
12 tissue-specific components are shown in Fig. 4. The
remaining 18/30 (60%) of the components were associ-
ated with fundamental biological processes, including cell
cycle, angiogenesis, apoptosis, mitochondria, ribosomes,
and the endoplastic reticulum. Eight of these eighteen bio-
logical components were also associated with “embryoni-
cally lethal” mouse phenotypes; four examples of the eight
“embryonically lethal” biological-process components are
illustrated in Fig. 5.

Discussion
Expression of transcription factors separates cancer types
We began by testing the hypothesis that transcription fac-
tor expression could differentiate cancers in the TCGA
dataset. The results displayed in the nonlinear t-SNE map
(Fig. 3) clearly demonstrate that using 30 biological com-
ponents derived from 486 transcription factors produced
a clear separation between most TCGA cancer types.
This map illustrates the relative separation or biological
distance between cancer types based on transcription fac-
tor expression. This visualization displays a more explicit
separation between cancer types than any of the prin-
cipal component plots alone, thus producing important
biological insights not observable through simpler linear
methods.
Our initial observation is that cancer types that occur

in the same or similar tissues or organ systems may be
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Fig. 4 Bean plots of the expression of several “biological components” associated with tissue type. a Liver. b Brain. cMelanocytes. d Intestine

difficult to distinguish. Both low-grade gliomas (LGG)
and glioblastomas (GBM), for example, occur in the
brain. These two diseases are plotted near each other

in Fig. 3; in fact, they overlap slightly. Moreover, the
transcription factor clustering groups them closer to
each other than to any other cancer. This grouping is
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Fig. 5 Bean plots of the expression of several “biological components” associated with embryonically lethal mouse phenotypes. a Cell cycle. b Cell
cycle. c Cytoskeleton. d Ribosomes and endoplasmic reticulum

understandable given that some of the biological compo-
nents are specific for transcription factors expressed in
the brain. Other examples include rectal adenocarcinoma

entirely overlapping with colon adenocarcinomas, both
uterine cancers clustering together, and some esophageal
cancers overlapping stomach cancers.
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Table 2 Interpretations of biological components

Cl. ToppGene Lethal Top five UniGene tissues

1 Cell cycle; chromosome organization Yes LAML; ESCA; TGCT; LUSC; READ More than four

2 Lipid metabolism; liver; cytochrome p450 No LIHC; CHOL; STAD; COAD; READ Brain; intestine; liver

3 Extracellular matrix; angiogenesis No UCEC; OV; UCS; SARC; PCPG More than four

4 Synaptic signaling; neuron; synapse; No LGG; GBM; PCPG; TGCT; UVM Brain

5 Cell cycle; condensed chromosome Yes UCS; CESC; DLBC; THYM; UCEC More than four

6 Transcription factor activity; mitochondria No UVM; LAML; ESCA; LGG; STAD More than four

7 Cell cycle Yes TGCT; UCS; OV; ESCA; READ More than four

8 Mitochondrial; post-synapse;
guanyl-nucleotide activity; lung; breast;
ovary; testis

No LGG; KIRC; SARC; LAML; GBM Brain; lung; testis

9 Neuropeptide; synaptic signaling; abnormal
pterygopalatine ganglion morphology

No PCPG; PAAD; TGCT; READ; UCS Brain

10 Transcription factor activity; centrosome;
microtubule

No LGG; GBM; UCS; TGCT; THYM Brain; embryonic tissue; testis

11 Apoptosis; gametogenesis No LAML; OV; TGCT; UCS; UCEC Brain; kidney; testis

12 Microtubule; centriole; stem cell No UVM; THYM; UCS; LGG; UCEC Lung; prostate; uterus

13 Cytokine receptor activity; immune
response; lymphadenopathy

No DLBC; STAD; LAML; PAAD; ESCA Intestine; lung; uterus

14 Regionalization; vertebral transformation;
leukemia

No KICH; KIRP; UCS; KIRC; PCPG Kidney; uterus

15 Collagen; thyroid; thyroid hormone synthesis No THCA; LUAD; LUSC; KIRP; OV Brain; lung; prostate; uterus

16 Muscle No UCS; HNSC; TGCT; OV; SARC Muscle

17 Melanin; melanosome No UVM; SKCM; GBM; TGCT; LGG Embryonic tissue

18 Epithelium development; abnormal
digestive system development;
keratinization

No PRAD; BRCA; LUAD; LUSC; BLCA Lung

19 Extracellular matrix; epithelium
development; collagens; keratins

No HNSC; UCS; CESC; ESCA; LUSC Eye; lung; skin; uterus

20 Eye lens; reproduction; gametogenesis;
pluripotent stem cells; TGCT

Yes TGCT; ACC; THYM; OV; LAML Embryonic tissue; testis

21 Cytoskeleton; tubulin binding; cell cycle;
neuron;

Yes LGG; GBM; PRAD; KIRC; KICH Brain; eye; testis

22 Pol II; uveitis; abnormla myeloid cell
morphology; ovary; trachea; lung

No HNSC; ESCA; PAAD; STAD; CESC More than four

23 NADH dehydrogenase activity; oxidative
phosphorylation; respiratory electron
transport;

Yes ACC; THYM; PCPG; UVM; THCA More than four

24 NADH dehydrogenase activity; oxidative
phosphorylation; developing kidney

Yes LAML; ESCA; STAD; BRCA; OV More than four

25 Immune response; leukocyte activation; No DLBC; LAML; STAD; THYM; LUAD Blood; brain; lung; lymph node

26 Fatty acid binding; dogestion; microvillus;
intestinal epithelium

No COAD; READ; STAD; PAAD; ESCA Intestine

27 Structural constituent of ribosome;
endoplasmic reticulum; eukaryotic
translation

Yes DLBC; THYM; UCS; UCEC; TGCT More than four

28 CNS development; growth cone; forebrain; No GBM; LGG; UCS; CESC; HNSC Brain

29 Growth factor binding; angiogenesis; focal
adhesion;

Yes ESCA; HNSC; GBM; LUSC; KIRC Brain; embryonic tissue; lung

30 Cell-cell adhesion; cell-cell junction;
digestive system; claudins

No STAD; READ; COAD; PAAD; BLCA Lung; pancreas
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The examples from the previous paragraph might lead
one to suspect that the separation we are seeing is driven
not by cancer type but by baseline differences in TF
expression in the tissues where the cancers originate.
However, there is evidence from other cancer types that
tissue type alone does not completely explain the results.
For example, TCGA studied three different types of kid-
ney cancer, and there are four associated clusters in the
t-SNE map. Two of these clusters appear next to each
other at the right center of the map; they represent kidney
renal clear cell carcinoma (KIRC) and kidney renal pap-
illary cell carcinoma (KIRP). The other two clusters also
appear next to each other, but in the middle of the bot-
tom portion of the map. One of these contains samples
of normal kidney coming from all three studies. The final
cluster contains all of the kidney chromophobe (KICH)
cases, along with a few KIRC and KIRP cases. The relative
positions of the three types of kidney cancer are consistent
with recent reports that KIRC and KIRP samples are sim-
ilar to proximal tubule segments, whereas KICH samples
are more similar to distal segments [32–34].
Samples derived from lung tissue display a similar

phenomenon. TCGA studied both lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) histo-
logical subtypes. Our results find three clusters of lung-
derived samples that represent (in order, lying on a ray
emanating from the center of the figure) LUSC, LUAD,
and normal lung. In particular, (1) normal samples clus-
ter together, (2) normal samples are separate from either
cancer group, and (3) the squamous cell and adenocarci-
nomas are clearly distinct. It also suggests that transcrip-
tion factor expression in normal lung tissue may be more
similar to lung adenocarcinoma than to lung squamous
cell carcinoma. These findings are consistent with the fact
that the two histologies of lung cancer arise from differ-
ent cell types. LUSC arises from the squamous epithelium
that lines the airways and alveoli, while LUAD arises from
the more numerous glandular or alveolar type 2 cells
[35–37].
The distinction between squamous cell carcinomas and

adenocarcinomas is present throughout Fig. 3. Adeno-
carcinomas (including prostate (PRAD), colon (COAD),
lung (LUAD), pancreas (PAAD), ovarian (OV), stomach
(STAD), and some esophagus (ESCA) tumors) appear to
be scattered around the periphery of the map. By contrast,
squamous cell carcinomas (including lung (LUSC), cervix
(CESC), head and neck (HNSC), and esophagus (ESCA))
cluster near each other, regardless of the organ system,
in the center of the map. This observation suggests an
underlying similarity in the transcription factor expres-
sion profiles of the squamous cell cancers regardless of the
tissue type of squamous cell cancer.
Breast cancer (BRCA) illustrates a different phe-

nomenon. Most samples are in one large cluster, with

normal samples in a distinct small separate cluster nearby.
However, the triple negative cases form a completely
independent cluster separate from either the normal sam-
ples or the main cluster of breast cancer samples. This
indicates that triple negative breast cancer, in terms of
transcription factor expression, represents a distinct and
completely separate form of breast cancer. Using the tran-
scription factor components that separate these triple
negative cases may prove useful in treating triple negative
breast cancer patients through a better understanding of
the underlying molecular biology.
In every cancer study where TCGA has included normal

controls, the t-SNE map shows that the normal samples
differ from the tumors. In most cases, they form a com-
pletely separate cluster. In others, like prostate (PRAD),
thyroid (THCA), or bladder (BLCA), they can be found
on the periphery of the tumor cluster. This differentiation
shows that transcription factor expression alone is able to
differentiate cancer from the adjacent normal tissue. This
is of particular importance due to its potential applica-
tions in translational medicine and potential use in cancer
screenings.
Other research groups have already applied t-SNE and

related methodologies to TCGA data in order to sepa-
rate different types of cancer [38–41]. Those studies used
the entire transcriptome of 20,000 genes, unlike our study
that restricts itself to only 486 transcription factors. In
every case, our findings using only TFs are similar to
the results from these previous studies. Significantly, the
inability to (fully) separate certain pairs of cancers, such
as COAD/READ and UCS/UCEC, was seen previously
by researchers using the whole transcriptome [39]. This
finding shows that our inability to separate those can-
cers does not occur because we only used TFs. Overall,
the consistency between our results and previous whole
transcriptome pan-cancer studies strengthens the under-
lying hypothesis that transcription factors may be the
primary driver for the differentiation between different
cancer types in various tissue types.

Biological components
We used Thresher to cluster transcription factors
according to a transformation of their expression into
30 one-dimensional biological components. We then
hypothesized that each biological component was associ-
ated with a particular biological process. Examining the
biology underlying each of the 30 components revealed
two general categories of transcription factor clusters:
12 were tissue specific and 18 were biological func-
tion specific. Among the 18 function-associated clus-
ters, 8 were also associated with embryonically lethal
mouse phenotypes. The tissue specific components con-
sist of transcription factors produced only within the
cancers arising from that tissue type. In embryonic lethal
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components, the transcription factors were part of univer-
sally expressed pathways such as the cell cycle. Examples
of tissue specific pathways are shown in Fig. 4. It is clear
that certain cancers have a significantly higher expres-
sion of a particular cluster of transcription factors relative
to other cancers. This makes biological sense, as biolog-
ical processes peculiar to a given tissue type would be
expected to be specifically altered in cancer specific to that
tissue.
Figure 5 further validates this pattern in the context

of constitutive or embryonic lethal components. In these
cases there is little, or no difference of expression between
cancer types since the transcription factors that make
up these components are comparably expressed across
all tissue types, a requirement for self-viability. Thus it
is the tissue specific components, and especially those
that differentiate between normal and cancerous sam-
ples within a specific cancer and those that differen-
tiate between two cancers in the same organ system,
that are of particular clinical utility and interest as
biomarkers.
Overall, these patterns demonstrate Thresher’s effec-

tiveness at clustering genes by expression. The fact that
transcription factor clusters associated with biological
processes necessary for viability show similar expression
levels across cancers is an important validation. Addition-
ally, our finding that differentiation between transcription
factor clusters tends to correspond to differentiation of
cases (whether they are cancer or normal samples), or by
the type or tissue of origin, as well as by biological process,
indicates that our method yields clustering patterns that
correspond to real underlying biological differences.

Conclusion
Transcription factors play a vital role in regulating gene
expression. By applying the Thresher method, we were
able to summarize the activity of 486 transcription factors
using only 30 distinct biological components. Analyzing
these components helps us better understand how tran-
scription factors interact with each other in regulatory
networks. Moreover, the expression data summarized by
this small set of biological components was sufficient to
distinguish most of the different cancer types and to sep-
arate tumors from normal controls within cancer types.
This suggests that patterns in these biological components
may be useful in understanding the underlying biology of
cancers. Additionally, since transcription factors are com-
mon targets for treatment, these patterns may also be
useful for identifying viable genes to target in new treat-
ments or in developing treatment regimens for various
subtypes of cancer.
The methodology that combines Thresher with

t-SNE maps should be broadly applicable. It can, in
principle, be used to understand the regulatory control

that microRNAs and methylation have on gene and pro-
tein expression. It can also be applied to other biologically
meaningful subsets of genes than transcription factors;
obvious candidates for future study include sets of genes
that are known to interact in signaling pathways or in the
regulation of mechanisms like apoptosis.

Methods
Data sources
The data used in our experiments comes from The Can-
cer Genome Atlas (TCGA). The TCGA RNASeq data was
selected because it (1) is publicly available, (2) contains a
large number of samples, and (3) contains many different
cancers and thus tissue types. Data were downloaded from
the FireBrowse portal [42], one cancer type at a time, on
2016-09-21. The number of samples per cancer type are
listed in Table 1.
The list of human transcription factors was downloaded

from the Transcription Factor Catalog [21] on 2017-10-18
after conducting a search for “TF Gene”. We only retained
486 genes that were annotated in the database to have
“strong” evidence of transcription factor activity. Since
TCGA contained all 486 transcription factors, the final
data set contained 486 rows (transcription factors) and
10,446 coiumns (patient samples).

Statistical methods
All analyses were performed in version 3.4.3 of the R
Statistical Programming Environment [43]. Computations
and timings were performed on a computer with an Intel�
Core™ i7-3930K CPU at 3.20 Ghz and 32 GB of RAM,
running Microsoft� Windows� 7 Professional SP1.
The t-distributed stochastic neighbor embedding

(t-SNE) algorithm uses a non-linear dimension reduction
method that enables visualization on a two-dimensional
scatter plot [24, 44]. We used the implementation in
version 0.13 of the Rtsne package [25].
The number of significant principal components

present in the TCGA transcription factor data set was
computed using version 1.1.8 of the PCDimension R
package [22]. In order to cluster the set of transcription
factors, we used version 0.12.0 of the Thresher R pack-
age [19]. The Thresher algorithm combines concepts
from principal components analysis, outlier filtering, and
von Mises-Fisher mixture models.
We previously conducted extensive simulations to

compare our automated extensions to the Bayesian
graphical approach of Auer-Gervini, as implemented in
the PCDimension package, to other algorithms [22].
We looked at the broken-stick model [45], variants
of Bartlett’s test [46], randomization-based procedures
introduced by ter Braak [47], and alternative Bayesian
approaches [48]. We found that the Auer-Gervini meth-
ods were competitive with the most accurate methods
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overall, and they were two orders of magnitude faster than
the ter Braak randomization procedures.
We conducted additional simulations to compare the

Thresher algorithm to other clustering algorithms [19].
Specifically, we compared Thresher to all 30 methods
implemented in the NbClust R package [49], and to the
Simultaneous Clustering and Outlier Detection (SCOD)
algorithm [50]. First, we showed that Thresher is con-
sistently more accurate than SCOD at detecting outliers.
Second, we found that Thresher clearly had the best per-
formance when there were more variables (or measure-
ments) than there were objects to cluster. (Its performance
when there were more objects than variables was good,
but not exceptional). The situation with more variables
than objects occurs in the most common applications
of clustering to omics-scale data, where the number of
genes is typically large compared to the number of sam-
ples being clustered. In our application of Thresher in this
manuscript, we are interested in clustering relatively few
objects (486 transcription factors) using a large number of
measurements (10,446 patient samples).
Gene enrichment analyses were performed by upload-

ing lists of genes that were highly correlated (|ρ| > 0.5) to
the mean expression vector of each transcription factor to
the ToppGene web site [31].
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