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Abstract

Background: With the increasing number of annotated long noncoding RNAs (lncRNAs) from the genome,
researchers are continually updating their understanding of lncRNAs. Recently, thousands of lncRNAs have been
reported to be associated with ribosomes in mammals. However, their biological functions or mechanisms are still
unclear.

Results: In this study, we tried to investigate the sequence features involved in the ribosomal association of lncRNA.
We have extracted ninety-nine sequence features corresponding to different biological mechanisms (i.e., RNA
splicing, putative ORF, k-mer frequency, RNA modification, RNA secondary structure, and repeat element). An
L1-regularized logistic regression model was applied to screen these features. Finally, we obtained fifteen and nine
important features for the ribosomal association of human and mouse lncRNAs, respectively.

Conclusion: To our knowledge, this is the first study to characterize ribosome-associated lncRNAs and ribosome-free
lncRNAs from the perspective of sequence features. These sequence features that were identified in this study may
shed light on the biological mechanism of the ribosomal association and provide important clues for functional
analysis of lncRNAs.
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Introduction
With the advancement of high-throughput sequencing
technology, the lncRNA population has begun to emerge.
In the past few decades, we have had a new understand-
ing of this type of RNA that their number far exceeds the
protein-coding gene in human and mouse [1]. However,
it is still unclear what function most of the lncRNAs have
[2]. Moreover, it is difficult to predict the lncRNA genes
from other organisms without sequence characteristics of
lncRNAs [1].

Here, we discuss ribosome-associated lncRNAs, which
are interacting with the ribosomes although we did not
have evidence for their protein translation. Such lncRNAs
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are considered to have the function of regulating trans-
lation [3, 4]. The ribosome-associated lncRNAs are also
reported to serve as a source of new peptides [5]. Sev-
eral individual studies have found encoded peptides from
lncRNAs, which have been reviewed in [6]. However, due
to the limited number of ribosome-associated lncRNAs,
it is difficult to understand in depth what are the essential
features (or regulatory elements) included in the lncRNAs
that control their association with the ribosome. Charac-
terization of ribosome-associated lncRNAs play a crucial
role in understanding the involvement of lncRNA in spe-
cific biological functions or which possible regulatory
mechanisms.

Ribosome profiling is a technique that collect and read
RNA fragments, which are protected by the ribosome. It
provides us a way to investigate the genome-wide associ-
ation of lncRNAs with ribosomes. In the previous work
[7], we have analyzed ribosome profiling data and iden-
tified 613 ribosome-associated lncRNAs (ribo-lncRNAs)
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and 746 ribosome-free lncRNAs (noribo-lncRNAs) from
human (367 ribo-lncRNAs and 326 noribo-lncRNAs from
mouse).

In this study, we investigated which sequence features
could distinguish between these two lncRNAs. To our
knowledge, this is a first study of characterizing ribosome-
associated lncRNAs. Such sequence features identified
in this study are possible to be considered as regula-
tory factors that play an essential role in the ribosomal
association.

Methods
Datasets and potential features
Ribo-lncRNAs and noribo-lncRNAs were derived from
our previous study [7]. We used Blast [8] to remove
lncRNAs that share sequences of high similarity. If
the sequence similarity between two lncRNAs exceeded
60% (of the shorter one), then it is considered as high
similarity and hence the shorter one is discarded. All
sequence features considered to affect ribosome associ-
ation were listed in Additional file 1: Table S1. For each
feature column, we imputed missing data by using mean
value.

Primary/first/upstream ORF
We defined three different types of putative open read-
ing frames (ORFs) on a lncRNA (Fig. 1). A primary ORF
(pORF) is the longest ORF starting with ATG. A first
ORF (fORF) starts with ATG and is closest to the 5′ end
of the lncRNA. An upstream ORF (uORF) starts with
a near-cognate initiation site (i.e. CTG, GTG, or TTG

[9]). Here, the uORF is considered only when an existing
pORF located in the lncRNA; the beginning and end of
uORF should be upstream of the pORF. These three types
of ORFs above are all terminated with a TAG, TGA, or
TAA. In addition, the upstream ORF overlapping with the
primary ORF was not analyzed in this study.

Context/trimer/hexamer score
For the three types of ORFs mentioned above, we defined
three scores based on frequency ratio between ribo-
lncRNAs and noribo-lncRNAs. Context sequence score
of ORF start (hereinafter abbreviated as “context score”)
is the sum of frequency ratios of nucleotides at -6 to
+3 positions relative to the ORF start. Trimer score and
hexamer score are summed frequency ratios of trinu-
cleotide or hexanucleotide, respectively, during ORFs.
These three metrics can be calculated using the following
formula (which is also applied to assess coding potential
in CPAT[10]):

Context/Trimer/Hexamer score= 1
n

n∑

i=1
log

(
F (xi)

F ′ (xi)

)
(1)

where, for context score, xi ∈[ A, C, G, T] represents the
nucleotide at the i-th position while i indicates the index
of the relative position above (i = 1 .. 10). F(·) and F ′(·) are
the occurrence frequencies of position-specific nucleotide
in categories of ribo-lncRNA and noribo-lncRNA, respec-
tively. For trimer score and hexamer score, ORF sequence
is converted into a sequence of length n in units of

a

b

Fig. 1 Example of feature extraction. a Representation of primary ORF (pORF, gray), first ORF (fORF, blue), and upstream ORF (uORF, red) in a lncRNA.
Horizontal line indicates a mature lncRNA, boxes represent putative open reading frames (ORFs) defined on this lncRNA. b Relationship (distance)
between m6A/G4 and transcript initiation site (TIS), transcript termination site (TTS), and starts or ends of u/f/pORF were used as features. Direct
distance (bases in log scale) and relative distance (percentage of the length of lncRNA) were considered to express the relationship
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trinucleotide and hexanucleotide, respectively. Thus, xi
represents the unit (trimer or hexamer), F(·) and F ′(·) are
the occurrence frequencies of unit in ribo-lncRNAs and
noribo-lncRNAs, respectively. Both F(·) and F ′(·) need to
be calculated in advance from a control dataset to gener-
ate a lookup table. Hence, we randomly selected 5000 CDS
sequences to calculate F(·) and shuffled those sequences
to generated F ′(·).
Stem probability
A higher stem probability means a stronger RNA sec-
ondary structure in this context. To investigate whether
RNA secondary structure affects the ribosomal associa-
tion, we used ParasoR [11], which is specifically designed
for RNA secondary structure prediction of numerous and
long RNAs, to predict the stem probability of each base
in a lncRNA. We set the parameter −constraint to N − 1,
where N is the length of the lncRNA, in order to consider
all possible base pairs during the lncRNA. Except it was an
extreme long (>9500nt) RNA, we used the default param-
eter (−constraint = 200) to guarantee the prediction
result in a limited time.

N6-Methyladenosine modification, G-quadruplex, and repeat
element
We used SRAMP [12] to predict N6-Methyladenosine
modification (m6A) sites in a lncRNA. G-quadruplex (G4)
segments were predicted by using QGRS [13]. G4 element
with G-score ≥ 30 is considered as a stable G-quadruplex
structure. Transposon elements (TEs) annotations were
obtained from RepeatMasker [14]. We used the repeat
library (build on 20140131) that mapped to human (hg19)
and mouse (mm10), respectively. Repeat elements anno-
tated as simple repeats, low-complexity, or non-coding
RNA were removed.

L1-regularized logistic regression
Logistic regression (LR) model [15] can be used as a binary
classifier which applies a logistic function to turn linear
predictions to [0, 1]. Given a set of labeled training data
X (feature vectors) and their labels y (i.e. 0 and 1 indi-
cates noribo-lncRNA and ribo-lncRNA, respectively), LR
model seeks to minimize the loss (or objective) function:

min
w,c

‖w‖1 + C
n∑

i=1
log

(
exp

(
−yi

(
XT

i w + c
))

+ 1
)

. (2)

To avoid the over-fitting, in which a complicate (many
parameters and parameters with a large variance) model
can perform perfectly on training dataset but badly on
testing dataset, a regularization term (‖w‖1) was used to
control the complexity (i.e. the number and the values
of parameters) of model. Moreover, L1-based regulariza-
tion drives parameters to zero, which is a natural process
of feature selection. After training the LR model, we get

a small number of features with non-zero coefficients.
Since the feature value has been scaled in the same range,
the absolute value of the coefficient represents how much
the change of this feature has an effect on the prediction
of the model, and can be used to express the importance of
this feature in classification. The choice of using the model
is based on following reasons: First, the model uses a logis-
tic function to transform the prediction results to a range
of 0 to 1, which is suitable for a two-class problem involved
in this study; Second, L1-regularization drives the model
to tend to adopt a sparse feature space during training,
that is, the coefficients of many features will be zero,
resulting in the model naturally selects features for us;
Finally, a linear combination of all features is considered in
the model. Thus, a positive/negative sign of the coefficient
of the feature indicates that a positive/negative correla-
tion with the result of prediction (i.e. ribo-lncRNA), and
an absolute value of the coefficient can be used to describe
the importance of the responding feature.

Feature selection by using the L1-regularized logistic
model becomes a univariate problem of how to select
a hyperparameter C. Here, C represents the inverse of
regularization strength. As C is increased, the number of
features with non-zero coefficients is increased, and the
model becomes more complicated. Thus, the criteria used
in this study is that the most appropriate C should be to
select fewer non-zero feature coefficients while still ensur-
ing that the model has relatively high prediction accuracy.
For this purpose, we divided all data into a training set and
test set in a ratio of 80:20, and the training set was further
applied for 5 fold cross validation. When we determine a
value of C, the model optimizes all the feature coefficients
on the training set. Then the performance of the opti-
mized model was evaluated on the test set using accuracy
metric:

Accuracy = TP + TN
TP + TN + FP + FN

(3)

where, TP is number of true positives, FP is number of
false positives, TN is number of true negatives, and FP is
number of false negatives. We used the Python scikit-learn
library [16] to perform all the machine learning processes
mentioned above.

Results
Defining ninety-nine features from lncRNA sequence
We considered factors that may cause lncRNA to associate
with ribosome in terms of RNA splicing, putative ORF,
k-mer frequency, RNA secondary structure, RNA modifi-
cation, and repeat elements. A full list of extracted features
is included in Additional file 1: Table S1.
RNA splicing
To investigate the relationship between splicing and ribo-
somal association, we mainly examined length and G + C
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content of intron and exon. Because the first exon and
intron was important for alternative splicing [17–19],
their length and G + C content were also included in our
feature set.

Putative ORF and k-mer frequency
We first defined three types of ORFs (primary, first, and
upstream), then extracted sequence features based on
them (see “Methods” section for more details). As shown
in Fig. 1a, pORF is the longest ORF which is considered
most frequently as a possible translated region; fORF is
the ORF closest to the 5′ end of the lncRNA which was
selected because of the first-ATG rule [20]; uORF locates
in the upstream of the primary ORF starting with near-
cognate initiation site (i.e., CTG, GTG, or TTG). Other
ORFs located inside or in the downstream of the pri-
mary ORF were excluded to ensure the simplicity of the
problem.

ORF length is a discriminating feature for coding and
non-coding RNAs[10], hence we questioned whether this
feature can also contribute to the detection of ribosome-
associated lncRNA. As it was reported that 3′ UTR length
may regulate the translation efficiency [21] and 5′ UTR
may contain RNA modification [22] or regulatory motif
(e.g., G-quadruplex [23]), they were also considered in
this investigation. Moreover, we used trimer score and
hexamer score to assess whether the codon usage and
bi-codon frequency were similar to CDS. To calculate
trimer (or hexamer) score, we first randomly selected 5000
CDSs as active ORF reference and randomly shuffled their
sequences as inactive ORF reference (Additional files 1
and 2). Each trimer (or hexamer) has a weight, which
is the ratio of its occurrence frequency in the two ref-
erence groups. For a given putative ORF, we calculated
the weight of all trimers (or hexamers), and then took
the mean to represent its trimer (or hexamer) score (see
“Methods” section). Thus, trimer (or hexamer) score mea-
sures the degree of trimer (or hexamer) usage bias in a
specified putative ORF. A positive score indicates a pos-
sible active ORF, whereas a negative score indicates an
inactive one.

A consensus sequence, termed Kozak sequence, sur-
rounds the start codon in eukaryotic mRNAs and is
reported to promote the translation initiation [24]. To take
this into account, we developed context score to com-
pare sequence motif surrounding the putative ORF start
with that surrounding the start codons from mRNAs.
The calculation of context score is similar to that of the
trimer/hexamer score above. We calculated the weight
of each base at -6 to +1 positions relative to the start
codon. Indeed, we observed the Kozak sequence motif
in this position-specific weight matrix (Additional file 1:
Figure S1). Hence, the higher the context score, the more
similar to the Kozak sequence.

RNA secondary structure
We considered the RNA stem probability as a metric of
RNA secondary structure, and then defined RNA struc-
ture features with respect to 5′/3′ UTRs and ORF. Both
experimental and computational studies have observed
that ORF sequences were more structured comparing
with other regions in the mRNAs [11, 25], and a change
of RNA secondary structure can be often observed
surrounding the start and the stop codon . Thus, we cal-
culated the RNA stem probability which indicates the
likelihood that each base is included in a RNA stem struc-
ture across the full RNA sequence. Then we could extract
averaged stem probabilities for distinct regions corre-
sponding to pre-defined putative ORFs. Furthermore, we
proposed that a stem probability ratio of 5′ UTR to ORF
is needed to quantify the RNA structure changes between
these two regions. Similarly, we also defined the ratio
between 3′ UTR and ORF.

G4 is a four-stranded helical structure which can form
in RNA and may be involve in translational control.
Although the study of G4 is still in its infancy, it is inferred
from its stable RNA secondary structure that G4 may
block the translational regulation of the relevant site when
it is close to the 5′ cap structure, the start codon, and
the stop codon [26]. Additionally, G4 may also provide
a cap-independent initial entry for translation initiation
factors, thereby facilitating RNA translation [23, 26]. To
explore whether G4 affects the association of lncRNAs
with the ribosome, we first predicted the possible G4
structure in lncRNAs using QGRS [13], and then con-
sidered the relative positions of these G4s relative to
transcription initiation site (TIS), transcription termina-
tion site (TTS), and the start and end of the putative ORF
(Fig. 1b). In addition, for the definition of relative posi-
tion, we used two kinds of measurement methods: direct
distance and relative distance. Direct distance represents
the number of nucleotides on the RNA between the G4
and the target site mentioned above. Relative distance is
a measure of the direct distance normalized to the total
length of the RNA, to prevent possible bias of different
RNA lengths.

RNA modification and repeat element
We utilized SRAMP [12] to predict where an m6A might
occur in a lncRNA, and calculated the direct and relative
distances of the m6A to various locations (i.e. TIS, TTS,
and start/stop codons) as features. This is because pre-
vious studies have found that the m6A is often enriched
in a 5′ UTR or in a 3′ UTR neighboring stop codon
[27, 28]. The m6A that located in the 5′ UTR can pro-
mote cap-independent translation [22], while the m6A
located around the stop codon may promote translation
initiation by a binding protein. Finally, we were inter-
ested in whether the lncRNA contains a particular repeat
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element as a binarized feature. For example, Alu element
is reported to be related to the cellular localization of
lncRNAs [29], and our previous work have shown that
the ribosomal association of lncRNAs,indeed, is posi-
tively correlated with the nuclear localization of lncR-
NAs. SINEB2, which is one of SINE (short interspersed
nuclear element) repeat sequence, is reported to be asso-
ciated with the up-regulated translation [30]. Hence, we
do not rule out that SINE or other repeat elements may
have the potential to regulate the ribosomal association
of lncRNA.

Figure 2 shows the distribution of some features in ribo-
lncRNA and noribo-lncRNA in human (see Additional
file 1: Figures S2–S3 for the distribution of all features;
the meaning of the features are described in Table 1).
According to the KS importance (described below) of each
feature, we ranked all the features from high to low in
the figure. Interestingly, if only one feature was chosen to
distinguish the two types of lncRNAs, the GC content of
the first exon (fEgc) was the most discriminating feature.
We observed that ribo-lncRNAs tend to have a higher GC
content in their first exons both in human and mouse.
Here, all feature values were transformed in a range of 0
to 1. Then, we used two-sample Kolmogorov—Smirnov
(KS) statistic [31] to examine the ability of each feature
to separate the two types of lncRNAs (KS importance).
The two-sample KS statistic is a non-parametric test to
compare two groups of samples. When a feature has a sig-
nificant difference between the two groups of lncRNAs,
a smaller P value will be obtained in the two-sample KS
statistic. If we only consider the effect of an individual
feature, we can rank the features according to the statisti-
cal significance level (-log P value) from high to low. This
method can be used for feature selection. Since it only
independently assesses the importance of a single feature,
it is also referred to as a filter method. This method is fast
and straightforward and works well in many scenarios,
but it cannot consider the combination of various features
in the classification. For this purpose, we will carry out
a more systematic screening of these extracted features
as below.

Removing high redundant features
One feature is considered to be redundant in the presence
of another related feature with which is strongly correlated
and can be removed without incurring much loss of infor-
mation. To eliminate redundant features, we investigated
the correlation coefficient between all features (Fig. 3a).
The results show that the high redundant (|r| > 0.8) fea-
tures are mainly clustered on exon/intron, G4, and m6A
in the form of length or distance. For example, in human,
there is a high correlation between the lengths of a tran-
script and the longest exon in the transcript; the lengths
of a pORF and the downstream 5′ UTR, and the length
of a 3′ UTR of fORF and that of an uORF (r > 0.8,
Additional file 2). The distance of m6A relative to the tran-
script 5′ end was highly correlated with its distance to the
start of uORF (r = 0.949). Similarly, there is a high cor-
relation between the distance of G4 relative to the start of
fORF and its distance to the start of uORF (r = 0.928). We
also observed similar results in mouse (Additional file 1:
Figure S4a and Additional file 3).

After removing redundant features, we prepared low
redundant features which were ready for a further fea-
ture selection. We removed one feature from each
pair of redundant features to obtain the low redun-
dant features (Additional files 1 and 2). Then, 59 and
55 sequence features were remained in the human and
mouse, respectively. A list of low redundant features is
given in Additional file 1: Table S2. Figure 3b shows the
correlation coefficient matrix between human low redun-
dant features (see Additional file 1: Figure S4b for mouse).
Although there are still some weak correlations between
some features (e.g., the direct distance and the relative
distance between m6A and TIS), filtering of highly corre-
lated features allows us to consider the importance of each
feature more distinctly.

Feature selection by L1-regularized logistic regression
Feature selection by using the L1-regularized logistic
model becomes a problem of how to select a hyperparam-
eter C (see “Methods” section). As shown in Fig. 4, in a
range of [ 0.01, 1], we increased the value of C in steps of

Fig. 2 Distribution of top 10 feature scores in human. Each feature was ranked by -log(KS p-value), in which KS represents two samples
Kolmogorov-Smirnov test between ribo-lncRNAs (red) and noribo-lncRNAs (blue)
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Table 1 Statistics of dataset used in this study

Human Mouse

Original Reduced Original Reduced

ribo-lncRNA 613 487 367 279

noribo-lncRNA 746 681 326 300

Total 1359 1168 693 579

The “reduced” column shows the number of lncRNAs after removing sequences of
high similarity

0.001 and finally obtained the function between the C and
the feature coefficients (colored solid lines), and the accu-
racy of prediction (blue dashed line). When the value of
C is very small, the regularization strength is enormous
and all of the feature coefficients are zeros, which means
that no feature will be used as a predictor. At this time, the
prediction accuracy implies that we predict all the results
as positives (i.e., ribo-lncRNAs), which exactly reflects the
proportion of positives in the test dataset. In human, for
instance, the accuracy at this time is about 55%, which
means that the number of positives and negatives in our
test dataset is well-balanced. As the value of C increases,
the more coefficients of the features turn to be non-zero,
the prediction accuracy from the beginning of the rapid
growth, to later stability or even a decrease. According to
the criteria mentioned above, we choose C = 0.257 at the
black vertical line in Fig. 4, and the prediction accuracy
at this time is 0.828. The features with non-zero coeffi-
cients corresponding to this are the critical features that
we finally screen out. We can see that even if we continue

to increase the value of C (to apply more features), this
prediction accuracy has not improved considerably.

Taken together, we identified fifteen crucial sequence
features of ribosomal association for human lncRNAs
(nine for mouse lncRNAs). A list sorted by the importance
of the crucial features is shown in the upper left corner of
Fig. 4 (see Additional file 1: Figure S5 for mouse).

Discussions
By comparing the sequence features of the ribosomal
association that we have identified in human and mouse
lncRNAs, it is observed that seven features are conserved
between the two species. It means that these common
features may involve in the biological mechanisms of ribo-
somal association. Meanwhile, eight (human) and two
(mouse) species-specific features are observed, which may
involve species-specific regulatory mechanisms of the
ribosomal association. In the following subsections, we
discuss these features from the aspects of conserved and
species-specific.

Conserved features
Conserved features include the fEgc, fELen, fILen, fOrfSe-
qHexamer, fOrf3utrCov, uOrfSeqHexamer, and LTR. Out
of them, fEgc, fILen and LTR were positively correlated
with the ribosomal association, while others vice versa.
We observed that the G + C content and the length of
the first exon had a high positive and negative correlation
with the ribosomal association of lncRNA respectively.
This finding matches with the results a study regarding

a b
Fig. 3 Correlations (r) of features indicate redundant features in human. a Correlations of all extracted features show that features of several
sub-regions are highly correlated (redundant). b After removing high redundant ( |r| > 0.8 ) features, we obtained a low redundant feature set for
further analysis in this study
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Fig. 4 Feature selection by using L1-logistic regression in human. Total data was randomly separated into 80% for training the model and 20% for
the calculation of accuracy (blue dashed line, left y-axis). On the x-axis, C indicates the inverse of regularization strength. As C is increased, the
number of features with non-zero coefficients (right y-axis) is increased and the model becomes more complicated. The black dashed line shows
the final model chosen in this study, and outputs 15 features with non-zero coefficients. These features were ranked by the absolute value of
coefficient, which represents the importance for prediction, and shown in the upper left

the correlation between ribosome-associated mRNA and
CDS [32]. High G + C content may indicate the occur-
rence of unexpected selection on ribosome-associated
lncRNAs [33].

We could also observe that the longer the first intron,
the more favorable lncRNAs are associated with the ribo-
some. The selection forces of intron-dependent nonsense-
mediated RNA decay (NMD) on the first intron may
be a reason for this situation [34]. This phenomenon
is common among protein-coding genes, and a simple
hypothesis is that longer introns are more likely to contain
certain motifs [18], and these motifs may have essential
factors that promote ribosomal association.

Surprisingly, the hexamer frequencies, which were used
to assess the coding potential, of the first ORF and
the first non-ATG ORF were inversely related to the
ribosomal association. The reasons for this can be con-
sidered from two aspects: First, even if the ribosome has
translation event on these two ORFs, the probability of
detection of this event is low due to the length of the
two ORFs is relatively shorter than that of the primary
ORF. Moreover, the stronger the translation activity on
these two ORFs will directly affect the ribosomal initi-
ation of downstream pORFs, resulting in the failure of
ribosome association on pORF to be detected. Second,
we argue that the ribosomal association mentioned here
not be the same as the ribosomal translation. The ribo-
some may use regulatory mechanisms other than the
properties of the CDS sequence, to associate with partic-
ular RNAs (e.g., internal ribosomal entry site). Note that
we did remove lncRNAs with translation potential when
collecting ribosome-associated lncRNAs.

The results of human and mouse consistently demon-
strated that lncRNAs containing a long terminal repeat
(LTR), are more likely to associate with the ribosome. LTR
is often used as a tool when viruses insert genetic mate-
rial into a host genome. A well-known example of LTR is
the human immunodeficiency virus (HIV), in which the
LTR contains promoter, enhancer and other functional
sequence elements [35]. Furthermore, our results indicate
that LTR may be a functional element that promotes the
ribosomal association or even translation.

Species-specific features
In human, the lncRNA length and the length of the
non-ATG ORF are positively correlated with the riboso-
mal association. The remaining six features — the length
and the hexamer frequency of the pORF, the trimer fre-
quency of the fORF, the distance between G4 and TIS,
and whether it contains LINE or SINE — have a nega-
tive correlation with the ribosomal association. In mouse,
there are only two species-specific features — the RNA
secondary structure of 3′ UTR of pORF and the distance
between m6A and transcript 3′ end — have a negative
correlation with the ribosomal association.

Transcript length is one among the important features
while distinguishing between protein-coding RNA and
noncoding RNA [10]. As expected, this feature can also
be used to distinguish ribo-lncRNA and noribo-lncRNA
to some extent. The longer the transcript, the higher the
probability that it may be associated with the ribosome
(according to statistical point of view). Besides, the longer
the sequence, the more likely it is to include functional
motifs that promote ribosomal association. On the ORF,
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the features of the trimer/hexamer frequency and the
length may be similar to those discussed above.

In contrast to LTR, SINE and LINE (long interspersed
nuclear element) are more likely to appear in a ribosome-
free lncRNA. This result is consistent with a report that
Alu (a type of SINE) can drive the lncRNA in the nucleus
[29]. We argue whether there is a set of complementary
mechanisms controlling lncRNAs in the cytoplasm and
nucleus by applying LTR and SINE/LINE. A systematic
analysis of how these repeat elements affect the localiza-
tion of lncRNAs can help us to understand the role of
repeat elements in the evolution of genome, and the bio-
logical functions and mechanisms that lncRNAs may have
involved.

G4 affects the ribosomal association when approach-
ing transcript 5′ end. This result is also discussed in
many studies [23, 26]. Meanwhile, it further exhibits that
the biological regulation of RNA in the secondary struc-
ture level. We observed that m6A modification appears
around transcript 3′ end affecting the ribosomal associ-
ation. Wang and colleagues mentioned that m6A might
form an RNA loop near the stop codon that brings the
distance between the start and the stop codons closer
to promote the translation efficiency [36]. However, the
m6A near TTS may hinder the formation of this mech-
anism. Finally, we compared mRNA with ribo-lncRNA
and noribo-lncRNA (Additional file 1: Figures S6–S7).
It can be observed that in human, the length of the
transcript can indeed be used to distinguish between
lncRNA and mRNA. Additionally, we noticed that 5′/3′
UTR of ribo-lncRNA seems to have a stronger RNA sec-
ondary structure compared with that of mRNA. In mouse,
noribo-lncRNA has less number of exons compared with
mRNA, which means the corresponding gene model is
more straightforward.

Conclusion
This study analyzed the features of the ribosome-
associated lncRNA at the level of sequence. Using
the ribo-lncRNAs (ribosome-associated lncRNAs) and
noribo-lncRNAs (ribosome-free lncRNAs) collected from
human and mouse in our previous study [7], we ana-
lyzed which features are most important for distinguish-
ing between the ribo-lncRNAs and the noribo-lncRNAs.
Considering the reasons that a lncRNA may be involved in
the ribosomal association, we mainly define sequence fea-
tures based on distinct dimensions from several aspects
such as RNA splicing, putative ORF, k-mer frequency,
RNA secondary structure, RNA modification, and repeat
element. Highly redundant features are removed by ana-
lyzing the correlation coefficient of each pair of features.
Then, based on the L1-regularized logistic regression
model, we performed a feature selection while training
feature parameters. Finally, we obtained fifteen and nine

essential features for distinguishing between ribo-lncRNA
and noribo-lncRNA from human and mouse, respectively,
and discussed possible relationships between these fea-
tures and the ribosomal association. To the best of our
knowledge, this should be the first study of how to fur-
ther divide ribo-lncRNA and noribo-lncRNA from the
perspective of sequence features. This research describes
how to extract sequence features to study lncRNAs and
other biological phenotypes (e.g., subcellular localization),
which provide research ideas for similar work. Moreover,
the analysis of these sequence features has a critical ref-
erence value for us to understand further the ribosomal
association, which is still an unknown mechanism, for
lncRNA.
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