
RESEARCH Open Access

A partially function-to-topic model for
protein function prediction
Lin Liu1, Lin Tang2*, Mingjing Tang3 and Wei Zhou4*

From 29th International Conference on Genome Informatics
Yunnan, China. 3-5 December 2018

Abstract

Background: Proteins are a kind of macromolecules and the main component of a cell, and thus it is the most essential
and versatile material of life. The research of protein functions is of great significance in decoding the secret
of life. In recent years, researchers have introduced multi-label supervised topic model such as Labeled Latent
Dirichlet Allocation (Labeled-LDA) into protein function prediction, which can obtain more accurate and explanatory
prediction. However, the topic-label corresponding way of Labeled-LDA is associating each label (GO term)
with a corresponding topic directly, which makes the latent topics to be completely degenerated, and ignores the
differences between labels and latent topics.

Result: To achieve more accurate probabilistic modeling of function label, we propose a Partially Function-to-Topic
Prediction (PFTP) model for introducing the local topics subset corresponding to each function label. Meanwhile, PFTP
not only supports latent topics subset within a given function label but also a background topic corresponding to a
‘fake’ function label, which represents common semantic of protein function. Related definitions and the topic
modeling process of PFTP are described in this paper. In a 5-fold cross validation experiment on yeast and
human datasets, PFTP significantly outperforms five widely adopted methods for protein function prediction.
Meanwhile, the impact of model parameters on prediction performance and the latent topics discovered by
PFTP are also discussed in this paper.

Conclusion: All of the experimental results provide evidence that PFTP is effective and have potential value
for predicting protein function. Based on its ability of discovering more-refined latent sub-structure of function
label, we can anticipate that PFTP is a potential method to reveal a deeper biological explanation for protein
functions.
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Background
Proteins are the main component of a cell, which explain
the basic activity of cellular life. The research of protein
functions is of great significance in elucidating the phe-
nomena of life [1]. Although there have been amount of
protein sequences in biological database in recent years
[2, 3], a small percentage of these proteins have experi-
mental function annotations because of the high cost of

biochemical experiment. In comparison with biochem-
ical experiment, computational methods predict the
functional annotations of proteins by using known infor-
mation, such as sequence, structure, and functional be-
havior, which reduce time and effort, and have become
important long-standing research works in post-genomic
era [4].
The earlier computational approach for predicting

protein function is to utilize the protein sequence or
structure similarity to transfer functional information,
such as BLAST. [5]With the rapid development of com-
putational algorithms, an increasing types of algorithms
have been introduced into the studies of predicting
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protein function. At present, computational methods of
protein function prediction can be classified as two
types: classification-based approaches and graph-based
approaches. In classification-based approaches, proteins
are viewed as instances to be classified, and function an-
notations (such as Gene Ontology (GO) [6] terms) are
regarded as labels. Each protein has a feature space com-
posed by classification feature extracted from amino acid
sequence, textual repositories, and so on. Based on these
annotated proteins and their attribute features, we can
train the classifier on training dataset and then predict
function labels for unannotated proteins. For graph-
based approaches, the network structure information of
proteins is used to compute the distance between pro-
teins, and then the closely related proteins are consid-
ered to have similar functional annotations [7, 8].
In classification-based approaches, since each protein

is annotated with several functions, various multi-label
classifiers can be adopted. Yu et.al [9] proposed a mul-
tiple kernels (ProMK) method to process multiple het-
erogeneous protein data sources for predicting protein
functions; Fodeh et.al [10] used the binary-relevance for
different classifiers to automatically assign molecular
functions to genes; a new ant colony optimization algo-
rithm is proposed in reference [11], which has applied to
protein function dataset; Wang et.al [12] applied a new
multi-label linear discriminant analysis approach to ad-
dress protein function prediction problem; Liu et.al [4]
introduced a multi-label supervised topic model called
Labeled-LDA into protein function prediction, whose
experimental results on yeast and human datasets dem-
onstrated the effectiveness of Labeled-LDA on protein
function prediction. This research is the first effort to
apply a multi-label supervised topic model to protein
function prediction. Besides, Pinoli et.al [13–15] applied
two standard topic models, including latent Dirichlet al-
location (LDA) and probabilistic latent semantic analysis
(PLSA) [16, 17], to predict GO terms of proteins on the
basic of available GO annotations.
In the topic modeling process of reference [4], each

protein is viewed as a mixture of ‘topics’, where each
‘topic’ is also viewed as the mixture of amino acid
blocks. In comparison with discriminative model, such
as support vector machine (SVM), a multi-label super-
vised topic model can transform the word-level statistics
of each document to its label-level distribution, and
model all labels simultaneously rather than treating each
label independently. Specially, topic model can provide
the function label probability distribution over proteins
as an output, and each function label is explained as a
probability distribution over amino acid blocks. None-
theless, in the study of Liu et.al [4], Labeled-LDA associ-
ates each label (GO term) with a corresponding topic
directly, which makes the latent topics to be completely

degenerated, and ignores the differences between labels
and latent topics. Therefore, Labeled-LDA isn’t able to
discover the topic that represents common semantic of
protein functions. For interpretable text mining, Ramage
et.al [18] proposed a partially labeled LDA (PLDA),
which associates each label with a topic subset parti-
tioned from global topics set. PLDA overcame the short-
falls of Labeled-LDA, and improved the precision of text
classification in experimental research.
Inspired by the application of multi-label topic model in

protein function prediction and PLDA model, we intro-
duce a Partially Function-to-Topic Prediction model
(called PFTP). Firstly, we describe the related definitions
by contrasting text data and protein function data. Then
the topic modeling process of PFTP is described in detail,
including the generative process and parameter estimation
of PFTP. In a 5-fold cross validation experiment on pre-
dicting protein function, PFTP significantly outperforms
five algorithms compared. All of the experimental results
provide evidence that PFTP is effective and have potential
value for predicting protein function.

Methods
Related definitions and notations
To better understand related objects of topic model, the
corresponding relationship between protein function
prediction and multi-label classification of text is first
depicted in Fig. 1.
Several topic modeling concepts of protein function

data and text data are displayed in Fig. 1, one on the left
and the other on the right. First of all, the text dataset is
composed of several documents numbered D1 to Dn,
and the protein function dataset is composed of several
protein sequences numbered P1 to Pn. Obviously, words
are the main component of document, such as word
‘table’ and ‘database’. But for protein sequence, we con-
sider a protein sequence to be a text string, which is de-
fined on a fixed 20 amino acids alphabet (G,A,V,L,I,F,P,
Y,S,C,M,N,Q,T,D,E,K,R,H,W). Then amino acid blocks
are the main component of protein sequence, such as
‘MS’ and ‘TS’. Besides, a protein annotated by GO terms
is equivalent to a document labeled by tags, so each GO
term or tag can be viewed as a label, such as ‘GO0003673’
and ‘language’. According to above statements, there are
three types of equivalence relations between protein func-
tion data and text data: protein sequence and document,
amino acid block and word, GO term and document tag.
In general, the GO term (document tag), protein sequence
(document) and amino acid block (word) are observable
data for dataset.
As the input for topic model, the bag of words (BoW)

is constructed by computing the word-document
matrix, where matrix element is obtained by counting
the times of word in each document. As an instance,
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the word ‘table’ appears two times in document D1.
Likewise for protein function data, an amino acid block
- protein sequence matrix is computed for the con-
struction of protein BoW. As an example, the amino
acid block ‘MS’ appears one times in protein P1. Be-
sides, the fixed amino acid blocks set or words set is
also called ‘vocabulary’.
For topic model, a ‘topic’ is viewed as a probability

distribution over a fixed vocabulary. Taking the text
data as an example, the probabilities of word ‘table’
over ‘topic 1’ are 0.05. For the protein data, the prob-
abilities of amino acid block ‘MS’ over ‘topics 1’ are
0.21. Obviously, topics are latent and needed to be
inferred by topic modeling. Finally, in order to estab-
lish the connection between labels and topics, the la-
tent topics discovered by our PFTP are divided into
several non-overlapping subsets, each of which associ-
ates a label. As can be seen in Fig. 1, we split whole

topic set into several groups: ‘label1’ connects with
‘topic1’ to ‘topic3’; ‘lable2’ connects with ‘topic 4’ to
‘topic 5’, and so on. It is worth noting that our PFTP
define a special type of topics as background topics.
The background topics are divided from whole latent
topics set, and don’t associate any observable label,
which express the common sematic of documents.
For instance, the background topic on text dataset
may be some topics with a high probability on several
universal words, such as ‘text’, ‘other’ and so on. To
formalize the above description, the related notations
are given below.
Suppose there are D proteins in the protein set which

compose the protein space D ¼ f1;…;Dg , and the vo-
cabulary of amino acid blocks is in a space of W ¼ f1;
…;Wg, then W is the size of vocabulary. The topic space
including Ktopics is represented by K ¼ f1;…;Kg ,
which is shared by whole protein set. Therefore, K is

Fig. 1 The corresponding relationship between protein function prediction and multi-label supervised topic modeling of text. The protein function
data is shown on the left side, and the text data is shown on the right side
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also called global topic space. The protein function label
space is expressed as L ¼ f1;…; Lg.
In PFTP model, the global topic space K is divided

into L groups without overlap, and each group corre-
sponds to a subspace of topic Kl . Besides, there is a
‘background subspace of topics’ KB.

K ¼ ∪l∈LdKlð Þ∪KB; Kl;KB⊂K;
Kl≠∅ l∈Lð Þ; KB≠∅;
∀Ki;K j⊂K; i; j∈L; i≠ j ⇒
Ki∩K j ¼ ∅; Ki∩KB ¼ ∅

Then, each of labels is assigned a subspace of topic Kl ,
the background topic subspace KB associates a back-
ground label lB.In this case, the label space is expanded
to L + 1 dimensions and expressed as L0 . Similar to topic
modeling of text in Labeled-LDA, each of topics can be
represented as a multinomial distribution of parameter

θk ¼ fθkwgWw¼1 (the equivalent of the topic-word matrix
in Fig. 1) on the vocabulary W, and θk obeys a Dirichlet
prior distribution of hyper parameter λ ¼ fλwgw∈W . But
what is different about our PFTP is that each of labels l
is represented as a multinomial distribution of parameter
πl ¼ fπlkgk∈Kl

(the equivalent of the label-topics prob-
ability in Fig. 1) on its topic subspace, where πlk is the
probabilities of topic k among topic subspace Kl corre-
sponding to label l. Suppose πl obeys a Dirichlet prior
distribution of hyper parameter α.

πl∼Dir αð Þ; α ¼ αkf gk∈K; j α j¼ Klj j ¼ Kl ð1Þ

We utilize a binary vector Λd to map global label space
L0 to Ld :

Ld ¼ lΛdlf gLþ1
l¼1 ¼ LΛd

Λd ¼ Λdlf gl∈L0 ¼ Λd1;Λd2;…;ΛdL; 1f g;
Λdl ¼ 1; l∈Ld

0; l∉Ld

� ð2Þ

Λd, L + 1 = 1 illustrates that latent background label lB
is assigned to each protein d. Then, the probabilities
of Ld ¼ jLdj labels of protein d is represented by a

weight of protein-label ψd ¼ fψdlgl∈Ld
¼ fψdlΛdlgl∈L0 ,

and ψd obeys a Dirichlet prior distribution of hyper par-
ameter βd constrained by β and Λd:

βd ¼ βl
� �

l∈Ld
¼ βlΛdl

� �
l∈L0 ¼ βΛd; β

¼ βl
� �

l∈L0 ð3Þ

In this paper, the shared parameters of whole protein
sets is called global parameter in this paper, and the par-
ameter facing one protein is called local parameter.

The topic modeling process of PFTP
Based on above expression, the process of PFTP topic
modeling is divided into three steps: BoW construc-
tion, the description of model (the generative process
or graphic model) and parameter estimation (model
training and predicting).These steps are depicted in
Fig. 2.
As shown in Fig. 2, PFTP model takes BoW as in-

put. As we construct BoW of protein in exactly the
same way as reference [4], this step will not repeat
in this paper. There are two ways to describe our
topic model, including the generative process and
the graphic model. After identifying the model struc-
ture, the joint distribution of whole model is ob-
tained. Based on this joint distribution, we can learn
and infer unknown parameters of our model, which
are also the output of PFTP. In fact, unknown
parameters represent several matrixes. For instance,

θk ¼ fθkwgWw¼1 represents the topic-word matrix in
Fig. 2, and πl ¼ fπlkgk∈Kl

represents the label-topics
matrix in Fig. 2.
The second and third steps are discussed in next

sections. It is worth noting that the third step includes
two sub-steps for realizing function prediction: model
training and predicting. Both of these two sub-steps
need adopt learning and inference algorithm to esti-
mate parameters of model, and are described with
more detail as follows.

Fig. 2 The topic modeling process of PFTP. The process of PFTP topic modeling is divided into three steps: BoW construction, the description of
model and parameter estimation
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The process of model training
PFTP takes a training protein set with known func-
tion as an input of training model. The unknown par-
ameter includesπl, θk and ψd. The local hidden
variables include the label number and topic number
of each word sample. The unknown parameter and
local hidden variables can be estimated by inferring
algorithm in model training.

The process of model predicting
For unannotated proteins, based on the estimated pa-
rameters and local hidden variables, unknown local
parameter ψd and hidden variables are updating by
constraining the global parameter πl and θk. Then,
the label probabilities over protein are obtained.

The description of PFTP model
According to the above definitions, the whole word sam-

ple x is composed by protein set, where xd ¼ fxdngNd
n¼1 .

It illustrates that there are Nd word samples in protein
d, xdn represents one word sample. At this point, word
sample xdn not only associates a word number wdn(wdn∈
W), but also is assigned a label number ldn(ldn∈L) and a
topic numberzdnðzdn∈KÞ.
The generative process of word sample can be de-

scribed as follows. The corresponding graphical model is
shown in Fig. 3.

1. For each global label l∈L0 ¼ f1;…; L; Lþ 1g

Sample multinomial parameter vector πl from Kl di-
mensions Dirichlet distribution:

πl ¼ πlkf gk∈K∼Dir αð Þ; α ¼ αkf gk∈K ð4Þ

2. For each global topic k∈K ¼ f1;…;Kg

Sample multinomial parameter vector θk from W di-
mensions Dirichlet distribution:

θk ¼ θkwf gw∈W∼Dir λð Þ; λ ¼ λwf gw∈W ð5Þ

3. For each local protein d∈D ¼ f1;…;Dg
(a) Sample label weight vector of protein d from

Ld dimensions Dirichlet distribution:

ψd ¼ ψdlf gl∈Ld
∼Dir βdð Þ; βd ¼ βl

� �
l∈Ld

¼ βlΛdl
� �

l∈L0 ¼ βΛd ð6Þ
where:

β ¼ βl
� �

l∈L0 ;Λd ¼ Λdlf gl∈L0 ;Λdl

¼ 1; l∈Ld

0; l∉Ld

�
;Λd;Lþ1 ≡ 1 ð7Þ

(b) For each word sample xdn,
i. Sample label number ldn of xdn from Ld

dimensions multinomial distribution of
parameter ψd:

ldn∼ψd or Ld ¼ ldnf gNd
n¼1∼Mul ψd;Ndð Þ ð8Þ

ii. Sample topic number zdn of xdn from K dimensions
multinomial distribution of parameterπldn :

zdn∼πldn or Zd ¼ zdnf gNd
n¼1∼Mul πd ldn ;Ndð Þ ð9Þ

Fig. 3 The graphic model of PTPF. Box indicates repeated contents, and the number in the bottom right corner is the times of repetition
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iii. Sample word number wdn of xdn from W
dimensions multinomial distribution of
parameter θzdn :

wdn∼θzdn or Wd ¼ wdnf gNd
n¼1∼Mul θZd ;Ndzdnð Þ ð10Þ

Parameter estimation
In PFTP model, the unknown parameters to be esti-
mated are the global label multinomial parameters π
¼ fπlgl∈L0 ¼ fπlkgl∈L0;k∈Kl

, the global topic multinomial
parameters θ ¼ fθkgk∈K ¼ fθkwgk∈K;w∈W and the local
document label weight ψd ¼ fψdlgl∈Ld

; the local hidden

variables are document label Ld ¼ fldngNd
n¼1 and topic

Zd ¼ fzdngNd
n¼1 ; the known information are the ob-

served label vector Λd, word samples Wd ¼ fwdngNd
n¼1

and their joint distribution. As shown in Eq. (11):

p π; θ;ψ; L;Z;W jΛ;α; λ;βð Þ
¼ p πjαð Þp θjλð Þ

Y
d∈D

p ψdjΛd;βdð Þ
p Ldjψdð Þp ZdjLd;πð Þp WdjZd; θð Þ

¼
Y
l∈L0

p πljαð Þ
Y
k∈K

p θk jλð Þ
Y
d∈D

p ψdjΛd;βdð Þ
YNd

n¼1

p ldnjψdð Þp zdnjπldnð Þp wdnjθzdnð Þ

ð11Þ

Based on the joint distribution, several parameter esti-
mations can be obtained, including p(π, θ,ψ, L, Z|W,Λ,
α, λ, β), the posterior distribution of unknown model pa-
rameters and hidden variables. In this paper, we use the
Collapsed Gibbs sampling (CGS) to train a PFTP model.
By marginalizing the model parameters (π, θ,ψ) from
the joint distribution (11), the collapsed joint distribu-
tion of (L, Z,W) is obtained. The collapsed inference is
as follows.
In the joint distribution Eq. (11), function label weight

ψd only appears in p(ψd|Λd, βd) and p(Ld|ψd):

p ψd; LdjΛd; βdð Þ ¼ p ψdjΛd;βdð Þp Ldjψdð Þ
¼ Γ

P
l∈L0βlΛdl

� �
Q

l∈L0Γ βlΛdl
� �Y

l∈L0
ψdlΛdlð ÞβlΛdl−1

�
P

l∈L0NdlΛdl
� �

!Q
l∈L0 NdlΛdlð Þ!

Y
l∈L0

ψdlΛdlð ÞNdlΛdl

¼ C1
Γ
P

l∈L0βlΛdl
� �
Q

l∈L0Γ βlΛdl
� �Y

l∈L0
ψdlΛdlð ÞΛdl βlþNdlð Þ−1

ð12Þ

Ndl is the number of samples assigned to observed
label l∈Ld of protein d; C1 is the constant of multinomial
distribution coefficient:

C1 ¼
P

l∈L0NdlΛdl
� �

!Q
l∈L0 NdlΛdlð Þ! ¼

P
l∈L0Ndl

� �
!Q

l∈Ld
Ndl!

ð13Þ

Supposeβ̂dl ¼ Λdlðβl þ NdlÞ, ψ̂dl ¼ ψdlΛdl . This param-

eter is eliminated by doing the integral of ψd in Eq. (11),

the marginal distribution of local hidden variable Ld is

shown in below:

p LdjΛd; βð Þ ¼
Z

Ψd

p ψd; LdjΛd; βð Þdψd

¼
Z

Ψd

C1
Γ
P

l∈L0βlΛdl
� �
Q

l∈L0Γ βlΛdl
� �Y

l∈L0
ψdlΛdlð ÞΛdl βlþNdlð Þ−1dψd

¼ C1
Γ
P

l∈L0βlΛdl
� �
Q

l∈L0Γ βlΛdl
� � Γ

P
l∈L0 β̂dl

� �
Q

l∈L0 Γ β̂dl
� �

0
@

1
A

‐1

�
Z

Ψ̂d

Γ
P

l∈L0 β̂dl
� �

Q
l∈L0 Γ β̂dl

� �Y
l∈L0

ψ̂dl
β̂dl−1dψ̂d

∝
Γ
P

l∈L0βlΛdl
� �

Γ
P

l∈L0βlΛdl þ Nd
� �Y

l∈L0

Γ βlΛdl þ NdlΛdl
� �

Γ βlΛdl
� �

ð14Þ

Nd ¼ P
l∈L0NdlΛdl ¼

P
l∈Ld

Ndl is the number of ob-
served samples of protein d. The integral of Eq. (14) sat-
isfies probabilistic completeness:

Z
Ψ̂d

Γ
P

l∈L0 β̂dl
� �

Q
l∈L0 Γ β̂dl

� �Y
l∈L0

ψ̂dl
β̂dl−1dψ̂d

¼
Z

Ψ̂d

p ψ̂djβ̂d
� �

dψ̂d ¼ 1 ð15Þ

Therefore, deducing from Eq. (14), the predictive
probability distribution for the label-assignment ldn = lof
sample xdn is:

p ldn ¼ ljL ndnð Þ
d ;Λd;β

� �
∝

βl þ N ndnð Þ
dl

� �
ΛdlP

l∈L0βlΛdl þ N dnð Þ
d

ð16Þ

N ðndnÞ
dl is the number of samples that were assigned

to label l and word w in addition to the current
sample xdn.
By the same way, in the joint distribution Eq. (11),

global label parameter only appears in p(π| α) and
p(Zd| Ld, π).
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p π;ZjL;αð Þ ¼ p πjαð Þp ZjL;πð Þ
¼ p πjαð Þ

Y
d∈D

p ZdjLd;πð Þ

¼
Y
l∈L0

p πljαð Þ
Y
d∈D

YNd

n¼1
p zdnjldn ¼ l;πlð Þ

¼
Y
l∈L0

Γ
P

k∈Kαk
� �
Q

k∈KΓ αkð Þ
Y
k∈K

πlk
αk−1

P
k∈KNlk

� �
!Q

k∈KNlk !

Y
k∈K

πlk
Nlk

¼
Y
l∈L0

C2
Γ
P

k∈Kαk
� �
Q

k∈KΓ αkð Þ
Y
k∈K

πlk
αkþNlk−1

ð17Þ

Nlk represents the number of samples assigned to topic
k of global label l; C2 is the constant of multinomial dis-
tribution coefficient:

C2 ¼
P

k∈KNlk
� �

!Q
k∈KNlk !

ð18Þ

Suppose α̂k ¼ αk þ Nlk . This parameter is eliminated
by doing the integral of π in Eq. (17), the marginal dis-
tribution of local hidden variable Z is shown in below:

p ZjL;αð Þ ¼
Y
l∈L0

Z
Πl

p πljαð Þ
Y
d∈D

YNd

n¼1
p zdnjldn ¼ l;πlð Þdπl

¼
Y
l∈L0

Z
Πl

C2
Γ
P

k∈Kαk
� �
Q

k∈KΓ αkð Þ
Y
k∈K

πlk
αkþNlk−1dπl

¼
Y
l∈L0

C2
Γ
P

k∈Kαk
� �
Q

k∈KΓ αkð Þ
Γ
P

k∈Kα̂k
� �
Q

k∈KΓ α̂lkð Þ
	 
‐1

�
Z

Πl

Γ
P

k∈Kα̂k
� �
Q

k∈KΓ α̂lkð Þ
Y
k∈K

πlk
α̂lk−1dπl

∝
Y
l∈L0

Γ
P

k∈Kαk
� �

Γ
P

k∈Kαk þ Nl
� �Y

k∈K

Γ αk þ Nlkð Þ
Γ αkð Þ

ð19Þ

Nl ¼
P

k∈KNlk is the number of observed samples
assigned to global l in protein set. The integral of Eq.
(19) satisfies probabilistic completeness:

Z
Πl

Γ
P

k∈Kα̂k
� �
Q

k∈KΓ α̂lkð Þ
Y
k∈K

πlk
α̂lk−1dπl ¼

Z
Πl

p πljα̂lð Þ

¼ 1 ð20Þ

Therefore, deducing from Eq. (19), the predictive
probability distribution for the topic-assignment k of
sample xdn in label l is:

p zdn ¼ kjldn ¼ l; L ndnð Þ;Z ndnð Þ;α
� �

∝
αk þ N ndnð Þ

lkP
k∈Kαk þ N ndnð Þ

l

ð21Þ

N ðndnÞ
lk represents the number of samples that were

assigned to the topic k of global label l in addition to the

current sample xdn, N
ðndnÞ
l ¼ P

k∈KN
ðndnÞ
lk .

The integral of θ is same as LDA in Eq. (11):

p W jZ; λð Þ ¼
Y
k∈K

Z
Θk

p θk jλð Þ
Y
d∈D

YNd

n¼1
p

�
wdnjzdn

¼ k; θkÞdθk∝
Y
k∈K

Z
Θk

Γ
P

w∈W λw
� �
Q

w∈W Γ λwð Þ
Y
w∈W

θλwþNkw−1
kw dθk∝

Y
k∈K

Γ
P

w∈W λw
� �

Γ
P

w∈W λw þ Nk
� �

Y
w∈W

Γ λw þ Nkwð Þ
Γ λwð Þ

ð22Þ

Then the predictive probability distribution over the
word-assignment wof topic k for observed sample xdn is:

p wdn ¼ wjzdn ¼ k;Z ndnð Þ;W ndnð Þ; λ
� �

∝
λw þ N ndnð Þ

kwP
w∈W λw þ N ndnð Þ

k

ð23Þ

N ðndnÞ
kw is the number of samples that were assigned to

the word w of topic k in addition to the current sample

xdn, N
ðndnÞ
k ¼ P

w∈WN ðndnÞ
kw .

Given the above, the collapsed joint distribution of (L,
Z,W) is obtained by doing the integral of (π, θ,ψ) in
Eqs. (14), (19) and (22).

p L;Z;W jΛ;β;α; λð Þ ¼ p LjΛ;βð Þp ZjL;αð Þp W jZ; λð Þ

∝
Y
d∈D

Γ
P

l∈L0 βlΛdl
� �

Γ
P

l∈L0 βlΛdl þ Nd
� �

Y
l∈L0

Γ βlΛdl þ NdlΛdl
� �

Γ βlΛdl
� �

�
Y
l∈L0

Γ
P

k∈Kαk
� �

Γ
P

k∈Kαk þ Nl
� �

Y
k∈K

Γ αk þ Nlkð Þ
Γ αkð Þ

�
Y
k∈K

Γ
P

w∈W λw
� �

Γ
P

w∈W λw þ Nk
� �

Y
w∈W

Γ λw þ Nkwð Þ
Γ λwð Þ

ð24Þ

Liu et al. BMC Genomics 2018, 19(Suppl 10):883 Page 57 of 193



To simplify computation, the Dirichlet prior distribu-
tions are symmetric Dirichlet distributions:

β ¼ βl
� �

l∈L0 ¼ β;…; β L0j j¼Lþ1

� �
α ¼ αkf gk∈K ¼ α;…; α jKj¼K

� �
λ ¼ λwf gw∈W ¼ λ;…; λ jWj¼W

� � ð25Þ

P
l∈L0βlΛdl ¼

P
l∈Ld

βl ¼ βLd ,
P

k∈Kαk ¼ αK andP
w∈W λw ¼ λW can be substituted to Eq. (24):

p L;Z;W jΛ; β;α; λð Þ ¼ p LjΛ;βð Þp ZjL;αð Þp W jZ; λð Þ

∝
Y
d∈D

Γ βLdð Þ
Γ βLd þ Ndð Þ

Y
l∈Ld

Γ βþ Ndlð Þ
Γ βð Þ

�
Y
l∈L0

Γ αKð Þ
Γ αK þ Nlð Þ

Y
k∈K

Γ αþ Nlkð Þ
Γ αð Þ

�
Y
k∈K

Γ λWð Þ
Γ λW þ Nkð Þ

Y
w∈W

Γ λþ Nkwð Þ
Γ λð Þ

ð26Þ

Then, the prediction probability distribution of hid-
den variable zdn and ldncan be computed from that
collapsed joint distribution as a transition probability
of state space in the Markov chain. Through Gibbs
Sampling iteration, Markov chain converges to the
target stationary distribution after the burn-in time.
Finally, collecting sufficient statistic samples from the
converged Markov chain state space and averaging
among the samples, we can get a posteriori estimates
of corresponding parameters.
Deducing from Eqs. (16), (21) and (23), the predictive

probability distribution for the word-assignment wof
topic k in label l for sample xdn is:

p ldn ¼ l; zdn ¼ k; xdn ¼ wjL ndnð Þ;Z ndnð Þ;W ndnð Þ;Λd;β;α; λ
� �

∝p ldn ¼ ljL ndnð Þ
d ;Λd; β

� �
� p zdn ¼ kjldn ¼ l; L ndnð Þ;Z ndnð Þ;α

� �

� p wdn ¼ wjzdn ¼ k;Z ndnð Þ;W ndnð Þ; λ
� �

∝
βl þ N ndnð Þ

dl

� �
ΛdlP

l∈L0βlΛdl þ N dnð Þ
d

� αk þ N ndnð Þ
lkP

k∈Kαk þ N ndnð Þ
l

� λw þ N ndnð Þ
kwP

w∈W λw þ N ndnð Þ
k

ð27Þ

Results
Dataset
To investigate the performance of the proposed
method, we utilize two types of datasets. The first
one is S.cerevisiae dataset (S.C) proposed in [19],
and the second one is human dataset constructed by
ourselves.

In S.C dataset, there are several sub datasets that
constructed from different characteristics of yeast
genome. Meanwhile, each sub dataset use two kinds
of function annotation standard, FunCat and GO. We
mainly use the sub dataset that depends on the amino
acid sequence of protein and GO. What’s more, to
compare the performance of PFTP between difference
label numbers, we construct a dataset named S.C-CC
from S.C, which only includes GO terms belonging to
cellular component. Then, there are two datasets con-
structed from S.C.
The human dataset is constructed from the Uni-

versal Protein Resource (UniProt) databank [2] and
constructed by the similar way of reference [4].
Meanwhile, we construct two Human datasets for
different word length, where the max word length of
Human1 dataset is two alphabet, and which of Hu-
man2 dataset is three alphabet.
Due to the large number of GO terms in protein

function dataset, we adopted a label space dimension
reduction (LSDR) method to overcome the classifica-
tion difficulty of classifiers. Boolean Matrix Decom-
position (BMD) has been studied for LSDR recently,
which can recovery the label space after classification
conveniently. Therefore, a BMD method proposed in
reference [20] has conducted in S.C and Human data-
set. The statistics of above two datasets is displayed
in Table 1. ‘L’ represents the number of GO terms
after BMD; ‘D’ denotes the number of proteins in
each dataset; ‘W’ denotes the size of vocabulary.

Parameter settings
PFTP model involves three parameters: α, λ and K. α
and λ are the parameters of two Dirichlet distribu-
tion, where the larger the value of λ, the more bal-
anced the probabilistic of word in a topic. According
to the experience, we set α = 50/K,λ = 200/W. The set-
tings and impact of K value are explained later.
In the Gibbs sampling process of model training,

we set the number of Markov chain as 1, the max-
imum number of iterations as 2000 times, where the
number of iteration of burn-in time is set to 1000.
We record the state space at intervals of 50 times on
converged Markov chain, and 20 times of record is
conducted. In the process of model predicting, we set
the number of iterations as 1000 times. After 500

Table 1 The statistic of four datasets

Dataset D W L

Human 1 4962 5297 1477

Human 2 400

S.C 1692 400 1538

S.C-CC 319
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times of iterations for burn-in time, we record the
state space at intervals of 50 times.

Evaluation criterias
In all of our experiments, we use three representa-
tive multi-label learning evaluation criteria, including
Hamming loss(HL), Average precision(AP) and One
Error. Besides, we also use three kinds of area under
Precision-Recall curve proposed in reference [19], in-
cluding AUPRC , AUðPRCÞ and AUPRCw. Meanwhile,
the 5-fold cross validation is adopted to assess the
performance of PFTP and contrast methods. The
average results of 5 independent rounds are reported
in following sections.

The impact of topic number on experimental results
K denotes the number of global topics. The analysis
about impact of K on model performance is dis-
cussed in this section. According to the description
of Section 2, as PFTP allocates one or more latent
topics to each GO term, then the value of K should
range from Lto infinity in theory. Specifically, if we
allocate only one topic to each GO term (K = L),
then the model reduces to Labeled-LDA. Obviously,
setting K < Lmakes our PFTP have no ability to dis-
cover the sub-structure of function. In our experi-
ment, each function is assigned exactly the same
number of topics for the simplicity of computation.
For example, we set K = 3L, then each GO term cor-
responds to a topic set with three topics. In view of
above reason, the lower bounded of K value is set to
2L. On the other hand, although theory insists that
the larger K value equals to the more refined
sub-structure of label, incorporating more latent
topics per function will increase the computational
load. In reference [18], the impact of K value on the
effectiveness of PLDA model has been discussed in
several texts collections. Along with the growth of
topic size, the performance of PLDA model ap-
proaches a fixed value which was obtained by a
non-parametric model. In other words, the infinitely
larger size of topics doesn’t equal to an infinitely
greater performance, but an unbearable running
time. Therefore, we set the upper bound of K value
as 5Lbased on our empirical experience and the ac-
ceptable level of time overhead. In sum, the Kvalue
should be set to an integer between 2L and5L. Then,
the performance of PFTP under different Kvalue is
shown in Fig. 4.
As shown in Fig. 4, all of the evaluation criteria

value is relatively stable when Kis set to2L~4L. None-
theless, when Kvalue is greater than 4L, the values of
AP,AUPRC ,AUðPRCÞ and AUPRCw decrease with the

increase of K, the value of Hamming loss and One
Error slowly increase with the increase of K. These
results suggest that the optimum value range of K is
2L to4L. This was due to that the lower K value
makes the fewer topics allocated to each label, and
the higher K value makes the small difference of word
distribution between topics. What’s more, the problem
of huge labels is particularly obvious in protein func-
tion dataset, even if a BMD method has applied to
reduce the label dimension. Therefore, we set K as 3L
in our experiment.

Evaluation against widely adopted method
Firstly, we compare PFTP with Labeled-LDA [4] and
multi-label K-nearest neighbor (MLKNN) [21] on four
datasets. MLKNN is a representative multi-label classi-
fier and can be applied by an open source tool called
Mulan [22]. Figure 5 shows the HL, AP, One Error, AUð
PRCÞ , AUPRC and AUPRCw values of these three
models in SC, SC-CC, Human1 and Human2 dataset,
respectively. For AP, AUðPRCÞ , AUPRC and AUPRCw ,
the larger the value, the better the performance. Con-
versely, for HL and One-Error, the smaller the value, the
better the performance. The red asterisk of Fig. 4 repre-
sents the best result on each dataset.
As shown in Fig. 5, we can observe that PTPF shown

more advantages in contrast to Labeled-LDA and
MLKNN in four datasets. Concrete analysis is as follows:
For Human1 dataset, PFTP obtain a better perform-

ance in all evaluation criteria. On HL, PTPF achieves 9.7
and 2% improvements over Labeled-LDA and MLKNN.
On One-Error, PTPF achieves 80 and 99% improvements
over Labeled-LDA and MLKNN. On AP, AUðPRCÞ ,
AUPRC and AUPRCw , PFTP achieves 2.5, 0.2, 47 and
18% improvements over Labeled-LDA, and achieves 48,
40, 43 and 41% improvements over MLKNN. Obviously,
the improvements on AUPRC and AUPRCw is more sig-
nificant than AUðPRCÞ.
For Human2 dataset, PFTP obtain a better perform-

ance in four evaluation criteria except AUðPRCÞ and
AUPRC . On HL, PTPF achieves 30 and 7.9% im-
provements over Labeled-LDA and MLKNN. On
One-Error, PTPF achieves 66 and 99% improvements
over Labeled-LDA and MLKNN. On AP and
AUPRCw , PFTP achieves 3.3 and 0.2% improvements
over Labeled-LDA, and achieves 40 and 29% improve-
ments over MLKNN. Nevertheless, on AUðPRCÞ and
AUPRC , MLKNN and Labeled-LDA get better results
respectively.
For S.C dataset, PFTP obtain a better performance

in four evaluation criteria except HL and One-Error.
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On AP, AUPRC and AUPRCw , PTPF achieves 2.8%,
22 and 16% improvements over Labeled-LDA, and
achieves 48, 17 and 32% improvements over MLKNN;
on AUðPRCÞ , the results of Labeled-LDA and PFTP
are almost the same. Nevertheless, on HL, MLKNN
gets better results than PFTP; on One-Error, almost
identical results were obtained by these three
methods.
For S.C-CC dataset, PFTP obtain a better performance

on AP, AUPRC and AUPRCw. On AP, PTPF achieves 2.6
and 27% improvements over Labeled-LDA and MLKNN.
On AUPRC , PTPF achieves 14 and 32% improvements
over Labeled-LDA and MLKNN. On AUPRCw , PTPF

achieves 7.8 and 41% improvements over Labeled-LDA
and MLKNN.
Besides, we compare PFTP with three hierarchal

multi-label classification (HMC) algorithm based on
decision tree, namely HMC/SC (single-label classifica-
tion)/HSC (hierarchical single-label classification) [19].
These three algorithms have been studied on protein
function prediction dataset and proved to be a kind
of multi-label classifiers with great performance. Since
the results of CLUS-HMC/SC/HSC in reference [19]
are only on S.C dataset, the comparison results with
our PFTP are also on S.C dataset, and are plotted in
Fig. 6.

Fig. 4 The performance comparison of different K setting. For AP, AUðPRCÞ, AUPRC and AUPRCw, the larger the value, the better the performance;
for HL and One-Error, the smaller the value, the better the performance; The red background represents the best value range
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On AUPRC , our method exhibits dominant advantage
against all of the three comparison methods. The per-
formance improvements are 85, 85 and 84% against
CLUS-SC, CLUS-HSC and CLUS-HMC, respectively.
On AUðPRCÞ , PTPF achieves 65, 51 and 32% improve-
ments over CLUS-SC, CLUS-HSC and CLUS-HMC.
Nonetheless, on AUPRCw , CLUS-HMC gets better re-
sults than PFTP.

The topics discovered by PFTP
The greatest strength of our protein function topic
modeling is that, it can not only provide the function
label probability distribution over proteins as an out-
put, but also each function label can be explained as
a probability distribution over topic subset, where

each topic is represented as the probability distribu-
tion over amino acid blocks. To better understand
this topic modeling process, we take GO term
‘GO0016020’ as an example, whose corresponding
topics are shown in Table 2.
As shown in Table 2, the 2-mers BoW is used in

this example. For Labeled-LDA, the one-to-one cor-
respondence between label and word is the key design
consideration. Therefore, ‘GO0016020’ only corre-
sponds with a topic numbered 288, and also corre-
sponds with a probability distribution over word. The
top 20 words are listed from large to small order.
For PFTP model, each GO term is a partition of

global topics set. Such as for S.C-CC dataset, the
number of function label is 319, while the number of
global topics is three times that of the labels, that’s a

Fig. 5 The comparison results with PTFP and Labeled-LDA. For AP, AUPRC, AUðPRCÞ and AUPRCw, the larger the value, the better the performance; for
HL and One-Error, the smaller the value, the better the performance; the red asterisk on bar represents the best result on each dataset
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total of 958(including a background topic). Therefore,
each GO term corresponds with four topics (includ-
ing three local topics and one background topic). The
topic number 863,864,865 and 1 are the four topics
corresponded by ‘GO0016020’, where the number 1 is
a background topic. Likewise, the top 20 words of
these four topics are listed from large to small order.

Discussions
The results in Figs. 5 and 6 indicate that PFTP has the
significant advantage against several widely adopted
multi-label classifiers.
Compared with traditional multi-label classifiers(non--

topic model), our method can further improve the ac-
curacy of protein function prediction by introducing
topics subset into supervised topic model, which can
discover the topic that represents common semantic of
documents and reflect the differences between labels
and latent topics. Especially for CLUS-HMC/SC/HSC,
our method exhibit the dominant advantage on AUPRC .
We attribute this success of our method to its utilization

of BMD method on dataset. As the computation of
AUPRC doesn’t bias toward the accuracy of function
label annotating more proteins, and focus on the average
of whole accuracy. The GO term annotating fewer pro-
teins will be deleted after BMD processing, and recov-
ered after predicting, but the prediction accuracy don’t
reduce. In other words, the combination of PFTP and
BMD can improve the average accuracy of protein func-
tion prediction.
Compared with Labeled-LDA, PFTP is able to discovery

more-refined latent sub-structure of function label than
Labeled-LDA. By introducing topic subset for each label
in PTPF, the relationship between functions and variety
words, labels and topics were disclosed. Therefore, we can
anticipate that PFTP is a potential method to reveal a dee-
per biological explanation for protein functions.
Meanwhile, the performance comparison of different

dataset is also shown in Fig. 4. For S.C-CC dataset, six
evaluation criteria values vary relatively smoothly. It may
be due to the fewer labels of S.C-CC dataset, then chan-
ging the K value doesn’t lead to great impact on predic-
tion effect. In the comparison of S.C and S.C-CC

Fig. 6 The comparison results with PTFP and HMC/SC/HSC. For three evaluation criteria, the larger the value, the better the performance, and the
red asterisk on bar represents the best result on each dataset

Table 2 The topics discovered by two models

Method Topic number words

Labeled-LDA 288 GM IH LH VH LK IG GC IC AK VM FG AM LW IK VG VW FC IG FH GK

PFTP 863 LM SM FG FC VG SG FT VM IT IM AK LG LW LK SC FK ST AG VK GM

864 GK IC VH GV SM TH IH VM AW GM AV GE VK AG IK LV GC GL TK LK

865 LT GC AH IK IH LH SK SW LC YM VH TG IG LG AX FW FK SF YX AM

1 LC AC AM VW VC GM AH AV AW VH GW AK AT GC TC GH LH LW EC TH
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dataset, we find that the value of AP, AUðPRCÞ, AUPRC
and AUPRCw on S.C is lower than S.C-CC, and the
value of One-Error and HL is almost equal between S.C
and S.C-CC. This is due to the same word space and dif-
ferent label number between these two dataset. The
fewer labels of S.C-CC can make a higher classifying
performance. In the comparison of Human1 and Hu-
man2 dataset, we find that the value of AUPRC and
AUPRCw on Human1 is higher than Human2; the value
of AP on Human1 is lower than Human2; the value of

One-Error, HL and AUðPRCÞ is almost equal on Hu-
man1 and Human2. These results show that, the classifi-
cation performance of PFTP on Human1 and Human2
is almost the same, which reveal that the larger word
space might not obtain a better classifying performance.

Conclusions
In this paper, we introduced an improved multi-label su-
pervised topic model for predicting protein function. In
our previous study, a multi-label supervised topic model
Labeled-LDA has been applied to protein function pre-
diction, which associates each label (GO term) with a
corresponding topic directly. This way makes the latent
topics to be completely degenerated, and ignores the dif-
ferences between labels and latent topics. To address the
faultiness, we proposed a Partially Function-to-Topic
Prediction model for introducing the local topic subset
corresponding to each function label. PFTP not only
supports latent topics subsets within given function la-
bels but also a background topic corresponding to a
‘fake’ function label. In a 5-fold cross validation experi-
ment on predicting protein function, PFTP significantly
outperforms compared methods. Due to the more-re-
fined way of function label modeling, PFTP shows the
effectiveness and potential value in predicting protein
function through experimental studies. Meanwhile, there
are several problems in topic modeling of protein func-
tion prediction to be improved, such as the introduction
of protein extra features and hierarchical function label
structure. However, multi-label topic model is a poten-
tial method in many applications of bioinformatics.

Abbreviations
BMD: Boolean Matrix Decomposition; BoW: Bag of Words; CGS: Collapsed
Gibbs sampling; GO: Gene Ontology; HL: Hamming loss, AP: Average
precision; HMC: Hierarchal Multi-label Classification; HSC: Hierarchical Single-
label Classification; LDA: Latent Dirichlet Allocation; LSDR: Label Space
Dimension Reduction; MLKNN: Multi-label K-nearest neighbor; PFTP: Partially
Function-to-Topic Prediction; PLDA: Partially Labeled LDA; PLSA: Probabilistic
Latent Semantic Analysis; S.C: S.cerevisiae; SC: Single-label Classification;
SVM: Support Vector Machine; UniProt: Universal Protein Resource

Acknowledgements
We would like to thank the researchers in State Key Laboratory of Conservation
and Utilization of Bio-resources, Yunnan University, Kunming, China. Their very
helpful comments and suggestions have led to an improved version of paper.

Funding
This research was supported by the National Natural Science Foundation of
China (no. 61862067, no. 61363021), and the Doctor Science Foundation
of Yunnan normal university (no. 01000205020503090, no. 2016zb009).
Publication costs are funded by the Doctor Science Foundation of Yunnan
normal university (no. 2016zb009).

Availability of data and materials
The data and source code is available upon request.

About this supplement
This article has been published as part of BMC Genomics Volume 19 Supplement
10, 2018: Proceedings of the 29th International Conference on Genome Informatics
(GIW 2018): genomics. The full contents of the supplement are available online
at https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-
supplement-10.

Authors’ contributions
LT and WZ conceived the study, and revised the manuscript. LL analyzed
materials and literatures, and drafted the manuscript. LT and MT participated in
the literatures analyses. All authors have read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1School of Information, Yunnan Normal University, Kunming 650500, Yunnan,
China. 2Key Laboratory of Educational Informatization for Nationalities
Ministry of Education, Yunnan Normal University, Kunming 650500, Yunnan,
China. 3President’s Office, Yunnan Normal University, Kunming 650500,
Yunnan, China. 4School of Software, Yunnan University, Kunming 650091,
Yunnan, China.

Published: 31 December 2018

References
1. Weaver RF. Molecular biology (WCB Cell & Molecular Biology). 5th ed. New

York: cGraw-hill Education; 2011.
2. Consortium UP. UniProt: the universal protein knowledgebase. Nucleic Acids

Res. 2016;45(D1):D158–69.
3. Berman HM, Battistuz T, Bhat TN. The protein data Bank. Berlin: Atomic

evidence: Springer International Publishing; 2016. p. 218–22.
4. Liu L, Tang L, He L, Wei Z, Shaowen Y. Pedicting protein function via multi-

label supervised topic model on gene ontology. Biotechnol. Biotechnol.
Equip. 2017;31(1):1–9.

5. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.
Gapped BLAST and PSIBLAST: a new generation of protein database search
programs. Nucleic Acids. 1997;25:3389–402.

6. Gene Ontology Consortium. The gene ontology (GO) database and
informatics resource. Nucleic Acids Res. 2004;32(Suppl 1):D258–61.

7. Cao R, Cheng J. Integrated protein function prediction by mining function
associations, sequences, and protein–protein and gene–gene interaction
networks. Methods. 2016;93:84–91.

8. Erdin S, Venner E, Lisewski AM, Lichtarge O. Function prediction from
networks of local evolutionary similarity in protein structure. BMC
bioinformatics. 2013;14(3):S6.

9. Yu G, Rangwala H, Domeniconi C, Zhang G, Zhang Z. Predicting protein
function using multiple kernels. IEEE/ACM Trans Comput Biol Bioinf. 2015;
12(1):219–33.

10. Fodeh S, Tiwari A, Yu H. Exploiting PubMed for protein molecular function
prediction via NMF based multi-label classification. In: Proceeding of

Liu et al. BMC Genomics 2018, 19(Suppl 10):883 Page 63 of 193

https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-supplement-10
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-supplement-10


international conference on data mining workshops. 2017 IEEE conference
on; 2017. p. 446–51.

11. However. Orderly roulette selection based ant Colony algorithm for
hierarchical multilabel protein function prediction. Math Probl Eng. 2017;
2017(2):1–15.

12. Wang H, Yan L, Huang H, Ding C. From protein sequence to protein function
via multi-label linear discriminant analysis. IEEE/ACM Trans Comput Biol
Bioinform. 2017;14(3):503–13.

13. Pinoli P, Chicco D, Masseroli M. Enhanced probabilistic latent semantic
analysis with weighting schemes to predict genomic annotations. In:
Proceeding of the 13th international conference on bioinformatics and
bioengineering (BIBE). 2013 IEEE conference on; 2013. p. 1–4.

14. Masseroli M, Chicco D, Pinoli P. Probabilistic latent semantic analysis for
prediction of gene ontology annotations. In: Proceeding of international
joint conference on neural networks (IJCNN). 2012 IEEE conference on;
2012. p. 1–8.

15. Pinoli P, Chicco D, Masseroli M. Latent Dirichlet allocation based on Gibbs
sampling for gene function prediction. In: Proceeding of international
conference on computational intelligence in bioinformatics and
computational biology. 2014 IEEE conference on; 2014. p. 1–8.

16. Dumais ST. Latent semantic analysis. Ann Rev Inf Sci Technol. 2004;
38(1):188–230.

17. Blei DM, Ng AY, Jordan MI. Latent Dirichlet allocation. J Mach Learn Res.
2003;3:993–1022.

18. Ramage D, Manning CD, Dumais S. Partially labeled topic models for
interpretable text mining. In: International conference on knowledge
discovery and data mining, 2011 ACM conference on; 2011. p. 457–65.

19. Vens C, Struyf J, Schietgat L, Džeroski S, Blockeel H. Decision trees for
hierarchical multi-label classification. Mach Learn. 2008;73(2):185–214.

20. Sun Y, Ye S, Sun Y, Kameda T. Improved algorithms for exact and approximate
Boolean matrix decomposition. In: International conference on data science
and advanced analytics, 2015 IEEE conference on; 2015. p. 1–10.

21. Zhang M, Zhou Z. ML-KNN : a lazy learning approach to multi-label
learning. Pattern Recogn. 2007;40(7):2038–48.

22. Tsoumakas G, Katakis I, Vlahavas I. Mining multi-label data. In: Maimonn O,
Rokach L, editors. Data mining and knowledge discovery handbook. New
York: Springer US; 2009. p. 667–85.

Liu et al. BMC Genomics 2018, 19(Suppl 10):883 Page 64 of 193


	Abstract
	Background
	Result
	Conclusion

	Background
	Methods
	Related definitions and notations
	The topic modeling process of PFTP
	The process of model training
	The process of model predicting

	The description of PFTP model
	Parameter estimation

	Results
	Dataset
	Parameter settings
	Evaluation criterias
	The impact of topic number on experimental results
	Evaluation against widely adopted method
	The topics discovered by PFTP

	Discussions
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

