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Abstract

Background: The DNase I hypersensitive sites (DHSs) are associated with the cis-regulatory DNA elements. An
efficient method of identifying DHSs can enhance the understanding on the accessibility of chromatin. Despite a
multitude of resources available on line including experimental datasets and computational tools, the complex
language of DHSs remains incompletely understood.

Methods: Here, we address this challenge using an approach based on a state-of-the-art machine learning method.
We present a novel convolutional neural network (CNN) which combined Inception like networks with a gating
mechanism for the response of multiple patterns and longterm association in DNA sequences to predict multi-scale
DHSs in Arabidopsis, rice and Homo sapiens.

Results: Our method obtains 0.961 area under curve (AUC) on Arabidopsis , 0.969 AUC on rice and 0.918 AUC on
Homo sapiens.

Conclusions: Our method provides an efficient and accurate way to identify multi-scale DHSs sequences by deep
learning.
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Background
Thirty years ago, it was confirmed that DNA bound by
proteins was not degenerated by the DNase I [1]. The early
study [2] also showed that there are many highly sensi-
tive nucleotide fragments on the chromosome to DNase I
digestion, and they have a high influence on the transcrip-
tion of the gene. Nucleotide regions that are extremely
sensitive to the DNase I are referred to as DNase I hyper-
sensitive sites (DHSs). Some research attempts that DHSs
can be precisely coupled with the cis-regulatory elements,
including enhancers, promoters, silencers, and locus con-
trol regions [3]. Some other research [4, 5] have that many
DHSs appear around the highly expressed genes, and few
DHSs appear near the low-expressed genes.
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Benefit from the improvement of high-throughput
sequencing technologies, some new techniques have been
applicated to detect DHSs, such as ChIP-seq [6] and
DNase-seq [7]. Scientists have detected the DHSs from
the human genome and stored them in the public dataset
[8]. At the same time, in the field of plant genomes, a
large number of DHSs has been detected in plants and be
established in a website to visualize these data [9]. There
also have a single cell DNase I sequencing (scDNase-
seq) [10] method that can identify genome-wide DHSs
in a single cell type or less than 1000 cell types. These
estimable experimental methods collected many valuable
data. It contributes important suggestions for studying
the activity of the DNase I, the accessibility of chromatin
and gene expression. However, the experimental meth-
ods are not only expensive but also takes a lot of time
and effort to achieve a complete sequencing, which hin-
ders the progress of subsequent experiments. Covering
more and more experimental data, it is still meaningful
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to design a clever, fast and efficient calculation method to
recognize DHSs.

A reasonable dataset of DHSs established and pub-
lished in 2005, which included 280 DHSs and 737 non-
DHSs from erythroid cells [11]. In the next decade, some
researchers applied this data to create many useful algo-
rithms for recognize DHSs based on DNA sequences.
Support vector machine (SVM) was used to extract din-
ucleotide features in the sequence [11]. The iDHS-EL
[12] use three random forests(RF) to extract different
nucleotide sequence features to recognize DHSs. How-
ever, due to the imbalance of positive and negative
samples, conventional algorithms always get a high false
positive rate and not accurate enough for applications.
So both gkm-SVM [13] and BIRD [14] use the human
genome data to calculate the DNase I hypersensity with
regression methods, which have been proved in prac-
tice. However, the process of manual feature extraction
and design is relatively complex, which requires a lot of
patience, and is not conducive to the generalization of the
model. As everyone knows, DHSs are both tissue-specific
and cell-specific. It was reported that 34% of human DHSs
were specifically appear in one cell line, 66% were appear
in both cell lines, and only 0.09% can be detected in all
cell lines, analyzing high throughput sequencing results
of 125 human cell lines [8]. The proportion of DHSs in
human exons is only 1/2 of rice [15]. However, both of
their proportion of DHSs in the intergenic region is coin-
cident [16]. In other words, the activity of DHSs is closely
related to the epigenetic factors. In Arabidopsis thaliana,
once a hypermethylated DNA fragment loses its methy-
lation, the sensitivity of DNase I will be greatly increased
[17]. Histone modifications also affect chromatin sensitiv-
ity of DNase I in varying degrees [18–21]. The previous
calculation methods have obtained less than ideal results,
due to these fundamental reasons, and it could be almost
impossible that the accuracy rate of recognition of DHSs
were further improved with previous algorithms simply
based on DNA sequences in a single cell type.

In order to avoid the limitations of the artificial feature,
we try to use the deep learning algorithm [22] to actu-
alize the classification of DHSs and turn in the direction
of DHSs combined in a large number of cell types. The
deep learning algorithm has unique advantages in feature
extraction, even if it can explore some features that can-
not be visualized by the original data. For example, in the
field of natural language processing (NLP), recurrent neu-
ral network (RNN) [23] can mine contextual information
[24] from a text, understand the emotions it expresses,
and even answer the questions [25]. In the field of image
recognition, convolutional neural network (CNN) [26]
can understand the pixel value from the local to the whole
image and accomplish detection and segmentation [27] of
the target. It is very different from other statistical analysis

methods. In deep learning models, the network structure
is established to complete the understanding of the origi-
nal data layer by layer, and both of feature extraction and
classification in models are completed automatically.

But deep learning also has its weaknesses. Firstly, the
structure of the model is a black box which cannot be
described. Secondly, a large number of labeled data sup-
plies are required during the training process of a super-
vised model. But considering the unique expressiveness of
deep learning algorithms, they are still excellent choices
in all existing calculation methods. In recent years, the
deep methods has granted the computational power to
resolve genomics research questions. Some researchers
[28] have proved the validity of CNN, RNN and their
mixture models in gene sequence classification. DeepBind
[29], DeepSEA [30] and Basset [31] used CNN to predict
protein binding sites, non-coding regions and the func-
tional activity of DNA sequences, respectively. ProLanGO
[32], DeepNano [33] and DanQ [34] used RNN to pre-
dict protein expression, base recognition and non coding
DNA, respectively. Deep GDashboard [28] and BiRen [35]
used the CNN-RNN hybrid framework to predict the
locations and enhancers of transcription factor binding,
respectively. All of these methods have achieved good
results. RNN can recognize different length sequences
according to its loop structure and understand the char-
acteristics of long-term association. However, it can not
carry out parallel computing, which needs a lot of time
for training. CNN can only handle the sequence of fixed
length and broken segments, but it runs fast. Most of
the hybrid architectures only stacks the CNN and the
RNN, without considering combining the advantages of
them. So here we make a new model that combines the
speed advantages of CNN and effectively understands the
long-range association of sequences, to support training
of indefinite long sequence, and we established Arabidop-
sis, rice and Homo sapiens datasets to verify our model.
Finally our model achieved state-of-the-art results on the
datasets of Arabidopsis and rice, also achieved ambitious
results on Homo sapiens.

Methods
Model establishing
Because of the novel gate layer of LeNup [36], it is straight-
forward to learn the association of the long ranges of
nucleotide fragments. We contemplated that all the active
DNA fragments have three-dimensional structures. With
the predominant feature extraction capability of CNN net-
work, the entry gate control can make the organization of
DNA in the three-dimensional structure to a feature. So
LeNup has a good performance in nucleosome position-
ing. We also made experiments shown in Table 1, that the
gate layer structure is still valid in DHSs. It indicates that
the design of DNA recognition by gated layers is effective.
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Table 1 Comparison of DHSs predictions in different species

Species Interval(bp) Sn(%) Sp(%) ACC(%) MCC AUC

Arabidopsis 50 90.64 90.78 90.70 0.813 0.961

100 88.27 92.94 90.46 0.810 0.956

200 86.23 93.54 89.66 0.796 0.953

Rice 50 89.30 94.44 91.87 0.838 0.969

100 89.88 93.68 91.78 0.836 0.962

200 82.73 95.66 89.19 0.790 0.959

Human 50 86.99 85.31 86.15 0.723 0.918

100 82.26 88.73 85.51 0.711 0.911

200 77.31 89.96 83.65 0.678 0.849

So, on the basis of the DHSs classification model, we
fine-tuning the first five convolution layers of LeNup and
then changing the last pooling layer to special pyramid
pooling (SPP) layer. Finally, we uses the LeakyReLU func-
tion to activate the entire network. The most important
of these adjustments is the SPP layer, which enables the
model to support the variable-length nucleotide segments
as input in a reasonable range, while the other adjustments
are designed to prevent the gradient disappearance and
improve the speed of training.

The special pyramid pooling layer: The DHSs are
variable-large-length nucleotide segments (from tens bp
to thousands of bp). Deep learning models normally sup-
port a fixed-length input (LeNup network only supports a
147bp length of nucleotide segments). Because, first of all,
the convolution layer is insensitive to the scale of input as
long as the scale does not exceed the computation range.
But the output of convolution layer needs to pass through
the full connection layer, where the connection parame-
ters are fixed. In the field of image recognition, the usual
way to solve this problem of multi-scale input is to nor-
malize the pictures to the combined dimension by scaling
and clipping. However, the nucleotide sequences are dif-
ferent with the images. Because the length of DHSs is
longer than the wide of an image, and the initial informa-
tion will miss if we cut the nucleotide sequence. Therefore,
we added the SPP layer between the convolution layer and
the full connection layer of LeNup in order to allow the
models to operate the DHSs sequence information. This
method (first proposed in 2015 [37]) was used to solve the
problem of multi-size of images in CNN. SPP layer applies
several multi-size pooling layers to replace one pooling
layer between the last convolution layer and the first full
connection layer. Firstly, in this paper, we encoded the
DNA sequences to the one-hot numbers, whose fragment
was converted into a two-dimensional matrix of n × 4.
The DNA sequence is similar to the multi-scale image, but

the DNA encoding only changes one dimension (length),
while the image is changed in two dimensions (wide and
height). Secondly, we used the SPP layer separates the out-
put which from the last convolution layer into 1, 2, and
4 parts, and recorded the average value of every part.
Finally, we stacked all values as the output of the SPP layer.
Through the SPP layer, the dimension of uncertain n × 4
(n > 4, in this article) of output can be modified into 7×4
(1+2+4 = 7), and then the fixed size output can enter the
full connection layer to do classification prediction. The
structure of the SPP layer is shown as illustrated (Fig. 1).

The leaky rectified linear unit [38]: It shows that the
number of convolution layers of CNN model is positively
related to the performance. If the model is deeper, the
problem of gradient disappearance is more serious. Con-
sidering the nucleotides have less information than words
or pixels (only four nucleotides of A, C, G, and T will be
used), the problem of gradient disappearance is particu-
larly visible when the DHSs classification model is trained.
Here we desire that the gradient of the model does not
disappear when the model with five convolution layers is
being trained. So we used the leaky rectified linear unit
(LeakyReLU) [39] to fix this problem. The LeakyReLU
function is mathematically given by:

yi =
{

xi if xi ≥ 0,
xi
ai

if xi < 0. (1)

ai indicates the range correction parameter (this model
takes 100.0). xi indicates the input of LeakyReLU layer,
and yi indicates the output after activation. To a certain
extent the LeakyReLU layer can effectively prevent the
gradient from vanishing. Although the LeakyReLU layer
cannot provid a striking increase in accuracy of predic-
tion, but the problem of gradient vanishing was effectively
prevented during the training process, and the robustness
of the model was increased.

Other layers: In addition to modifying the pooling layer
and the activation function, we also fine-tuning the convo-
lution layers of LeNup. The structural parameters of each
layer are depicted in Figs. 2, 3, 4, we add 1, 3, 5, and
7 filters in the Gate-inception-A. The Gate-inception-
B and the Gate-inception-C module are consistent with
LeNup. Every convolution kernel of the model gets a gated
convolution operation. The model is finally depicted in
Fig. 5.

The establishment of data sets: After setting up the
training model, we need the appropriate datasets to test
its performance. Firstly, we downloaded the DHSs data
of aiabidopsis and rice from the website (http://www.
plantdhs.org/Download). The DHSs data of human was
also obtained from ENCODE. The different species have

http://www.plantdhs.org/Download
http://www.plantdhs.org/Download
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Fig. 1 The internal structure of the SPP layer: Number of 384 describes the number of the fifth convolution layer. The fifth layer convolution is the
last layer. The output obtained from the fifth layer convolution layer are pooled through the pooling layer of n/4, n/2, and n/1 dimension
respectively, then the 4, 2, and 1 features are obtained. Finally, the 4 + 2 + 1 = 7 features are gathered into the full connection layer

different length distribution of DNA fragments, and the
expression level of the DHSs in the different cell lines of
one specie is different. So we used the range of DHSs
derived from all the DHSs known in the whole genome of
the species. Secondly, in order to ensure the stability of

the model, we used the length from 200 to 800bp for each
DNA fragments. At the same time, we selected an equal
length DNA fragment for each DHSs in the non-DHSs
region of the same chromosome as a negative sample. The
length distribution of the non-DHSs in the obtained data

Fig. 2 Gated Inception-A block
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Fig. 3 Gated Inception-B block

Fig. 4 Gated Inception-C block
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Fig. 5 The figure shows that the overall construction of the model, which including 5 convolution layers, 4 maximum pooling layers, 1 SPP layer, and
3 fully connected layers. In addition to these visible structures, every layer is activated by LeakyReLU and followed by the dropout layer (the
parameter is 0.3), and each fully connected layer is normalized by the batch normalization (BN, whose parameter is 0.5), which can speed up the
convergence of the network. Dropout layers and BN layers are not depicted in the diagram

is exactly same as that of the DHSs. Finally, we used cd-hit
[40] software to remove the higher identity sequence in
both positive and negative samples. Through these meth-
ods, we setted up three datasets of Arabidopsis, rice and
Homo sapiens respectively (Table 2). All of the data are
only selected from euchromosomes. At the same time, in
order to test the reliability of datasets, we accompanied
these three datasets with benchmark datasets [11]. The
results are shown in Figs. 6 and 7.

Multi-scale training strategy
The distribution of datasets: We used random extrac-
tion and cross validation method to partition training
datasets and testing datasets. 5-fold cross validation was

Table 2 The statistical results of three datasets

Species Positive(P) Negative(N) Avg(bp) Ratio(P:N)

Arabidopsis 26399 23112 403 1.14

Rice 56033 46201 376 1.21

Human 943681 742476 326 1.27

used in both Arabidopsis and rice, and 10-fold in Homo
sapiens. Because the number of Homo sapiens DHSs was
too large, so the ratio of training data and testing data
was bound to 1 : 9. Our original purpose was that the
model can receive multi-scale input during the training
process. Theoretically, the above model can accept input
from arbitrary dimensions. However, the graphic process-
ing unit (GPU) in computers can only receive fixed-length
inputs when parallel computing. Here we hope to give
full play to the advantages of GPU. So during the train-
ing process, we divided the training data into multiple
parts of the training data in accordance the range of their
length (for example, the length of datasets will be divided
into 200bp-400bp, 400bp-600bp, and 600bp-800bp of the
length according to the interval of 200bp). Since each
data was selected from the true existing chromosomes
(whether it is a positive or negative sample), we extended
it into the longest BP from both ends (for example, we
extend all the length of the DHSs in the 200bp-400bp part
to 400bp length). From this way, we got many new DHSs
datasets, but the length of nucleotide sequences in each
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Fig. 6 Analysis of Arabidopsis, rice, and human data shows that the number of DHSs decreases with increasing length. However, in the benchmark
dataset, because of the tiny size, it cannot display the trend. It is embarrassing to enhance the prediction capacity of the model, so it is easy to fall
into overfitting

Fig. 7 It is obvious from the graph that the difference of nucleotide ratios between DHSs and non-DHSs will decreases with reducing of the
complexity of species. Benchmark dataset quiet has a weak coverage of sample space, because of the small amount of data. At the same time, a
larger number of non-DHSs (benchmark dataset has 280 DHSs and 737 non-DHSs) were more likely to lead to overfitting of the model on the
non-DHSs. It can also be seen that there is little distinction the proportion of MNC and DNC in arabidopsis’s DHSs and non-DHSs, which indicates
that it is challenging to use the feature of nucleotide site training model on the benchmark dataset
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dataset was same, and the ratio of positive and negative
samples was approximately 1 : 1. It was also possible
to ensure that there was a complete DHS in every posi-
tive sample after extension. The advantage of this method
is that the length of the sequence extended to two ends
can be controlled by ourself. And the training datasets
will be amplified if we change the length of the left or
right extensed fragments. (It depending on the number
of samples, the number of Arabidopsis training data was
amplified by 3 times, and the number of rice and the
number of Homo sapiens are sufficient, so they didn’t be
expanded). Training with the amplified data can increase
the accuracy on the testing data (give an average increase
of about 1%). But it also introduced some noise in the pos-
itive sample. Therefore, in order to get faster convergence
speed, it is unavoidable to sacrifice the accuracy of some
models. However, it should be noted that the fragment
length of the testing data was still arbitrary, and the qual-
ity of the model was only determined by the performance
on the testing. The training datasets selection method and
the generated noise are shown in Fig. 8 (we only select the
human DHSs at intervals of 100bp as example).

After filtering, We got several datasets of various scales.
In training phase, these training sets share the same
parameters of one model. Because of the presence of
SPP layer, the dimensions of parameters in the model
will not change. Here referring to the multi-scale train-
ing method [37]. For example we took the interval as

Fig. 8 The figure above shows the ratio of the training data to the
non-extended data. Firstly, the DHSs is sorted according to the length
of the fragments. The vertical axis indicates the length of each
fragment. The horizontal axis indicates the number of the fragment in
the entire dataset. The blue line indicates the non-extended data, and
the area underneath it indicates the number of bases in the whole
non-extended data. The red dotted line indicates the training data,
whose bottom area indicates the base number of the whole training
data. The gray area indicates the extra fragments, which is also used
to speed up training and extended by us

200bp to split the training datasets. So we obtained three
training datasets which had the lenght of 400bp, 600bp
and 800bp respectively. Firstly, we initialized the network
parameters, and the 400bp’s set was used to train a com-
plete epoch. Secondly, we retained the parameters of the
model, and trained a complete epoch with 600bp’s set. and
then 800bp’s. When all data was trained once, it would
be recorded as a complete iteration. This training method
allows the model to learn input information from differ-
ent dimensions, and retain the advantages of GPU. During
the training process, we found the convergence rate of
the segmented training loss was similar from the single
length training, and only cost a slight time in the process
of converting input length.

Training parameters
We have trained our models running on a single NVidia
Quadro P6000 with stochastic gradient descent with
momentum in pytorch. PyTorch is a handy deep learn-
ing library that extends Python. The training step used
momentum with a decay of 0.98, a learning rate of 0.002,
and decayed every epoch using an exponential rate of 0.97.
We also used a mini-batch size of 128 samples and trained
the model for 100 iterations. Each iteration taked about
one minute. The well trained model size was about 12.5
megabyte, and the number of parameters was 3,077,382.

Results
We selected the sensitivity (Sn), the specificity (Sp), the
accuracy (ACC) and the Matthew’s correlation coefficient
(MCC) to evaluate the analogous method. These were
generally used in identifying the consequences of models.
They are defined as follows:

Sn = Tp
Tp + Fn

Sp = Tn
Tn + Fp

ACC = Tp + Tn
Tp + Fn + Tn + Fp

MCC = Tp × Tn − Fp × Fn√
(Tn+Fn) ×(Tn + Fp) ×(Tp + Fn) ×(Tp + Fp)

(2)

Multi-scale training in different species
In order to verify the best segmental training effect, we
tested the interval of 50bp, 100bp, and 200bp to divide
the training data, and evaluated the accuracy on the test-
ing data of Arabidopsis, rice and human respectively. The
ROC curves are shown in Fig. 9. After testing, it is easy
to find that reducing the interval in three species sets can
improve the accuracy of the model. With the increase of
intervals, the proportion of noise also increase, which lead
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Fig. 9 Two ROC curves obtained from 5-fold cross-validation tests
using the genome dataset of Arabidopsis, Rice; One ROC curve
obtained from 10-fold cross-validation tests using the genome
dataset of Human

to the bias of the model lean to negative samples. It is
shown in the Arabidopsis dataset that Sn decreases and Sp
increases with increase of interval. This indicates that the
noise can lead to over fitting of models on negative sam-
ples. But the lower interval can not get better results on
all evaluation indicators. There is not a large difference
between the 50bp interval and the 100bp interval train-
ing method on rice. For Homo sapiens, the 50bp interval
brought a very low AUC. This indicates that the model
may incline to positive samples. Therefore, the synthesis
of the three datasets proves that there is a reasonable and
no lose of model capability to divide datasets with 100bp
interval. At the same time, in the process of cross valida-
tion, we got a very stable rate of accuracy on each testing
data. Arabidopsis got 90±2%, rice got 91±2%, and Homo
sapiens got 86 ± 2%. The compared results are shown in
Table 1.

Performance comparison with single-scale training
In order to compare with other methods, we referred to
other methods [41]. The author had done a lot of work on
the choice of non-DHSs, and they also had established a
DHSs classification model based on their database called
pDHS-ELM. We used their datasets which can be down-
loaded from the website (https://github.com/wesd778/
dhsNet/tree/master/raw) to train our model. However, it
is important to note that the author chooses the non-DHS
locus randomly in 100bp-600bp, which makes the length
distribution of negative samples inconsistent with posi-
tive samples. If we use the multi-scale training method,
the proportion of negative samples will be very high
(For example, in 500bp-600bp, the number of non-DHSs

will ten times with DHSs). Therefore, in order to com-
pared the reasonable experimental results, we gave up the
multi-scale inputs and extended all the DNA sequences
to 600bp. The training method also uses 5-fold cross val-
idation, and without completely changing the structure
and training parameters of the model. The final results
are listed in Table 3. We also downloaded the single-scale
(600pb) human dataset in the published research using
Basset [31]. Basset had three convolution layers and two
fully connected layers, which was powerful in DHSs iden-
tification. We got the mean-auc value of 0.890 (0.780 for
gkm-svm, 0.895 for basset) without completely changing
the structure and training parameters of the model, which
was slightly worse than that of multi-scale training (0.918,
Table 1). It also proves that the method of multi-scale
training of DHSs is effective.

Discussion
After comparison, we found that the new network struc-
ture shows a surprising result on a single-scale dataset.
It also proved that given too much emphasis on the pro-
portion of single nucleotides or polynucleotides in DNA
fragments would make a large limitation on the results of
model. By combining the gate layers and the inception lay-
ers in deep learning model, the features of the DHSs could
be more accurately captured. In a sense, it was very sim-
ilar to sentiment analysis in natural language processing
(NLP).

Conclusions
The experimental conclusions illustrate that CNN net-
work can effectively extract features from nucleotide
sequences and be used for genome-wide DHSs classifi-
cation. We can not prove that the DHSs are completely
related with DNA sequence, because they have specific
expression in different cell lines. However, as a result, the
new model can be used as a tool for detecting DHSs, only
to give the sequencing data of the corresponding cell lines
and the DHSs from it for training. After the model con-
verges, the nucleotide fragments in the same cell line can
be assessed in a very powerful accuracy rate. Moreover,

Table 3 Our mothod performance measured by 5-fold cross
validation

Methods Sn(%) Sp(%) ACC(%) MCC

SVM-Revchmer [42] 82.54 79.78 81.66 0.634

PseDNC-SVM [43] 81.30 78.91 80.11 0.602

iDHS-EL [44] 81.24 76.11 78.61 0.572

Unb-PseTNC [45] 86.48 83.74 85.11 0.702

pDHS-ELM [41] 89.17 87.78 88.48 0.717

ours 88.25 96.49 92.88 0.856

Note: The datasets were downloaded from [41]

https://github.com/wesd778/dhsNet/tree/master/raw
https://github.com/wesd778/dhsNet/tree/master/raw
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based on this model, it produces a good solution for the
problem of DNA segment classification with uncertain
length. If there are provide adequate datasets, such as reg-
ulatory units, cancer genes, and so on, we believed that the
sequence-based flexible classification model will be more
widely used.
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