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Abstract

Background: Human gut microbiome has an essential role in human health and disease. Although the major
dominant microbiota within individuals have been reported, the change of gut microbiome caused by external
factors, such as antibiotic use and bowel cleansing, remains unclear. We conducted this study to investigate the
change of gut microbiome in overweight male adults after bowel preparation, where none of the participants had
been diagnosed with any systemic diseases.

Methods: A total of 20 overweight, male Taiwanese adults were recruited, and all participants were omnivorous.
The participants provided fecal samples and blood samples at three time points: prior to bowel preparation, 7 days
after colonoscopy, and 28 days after colonoscopy. The microbiota composition in fecal samples was analyzed using
165 ribosome RNA gene amplicon sequencing.

Results: Our results demonstrated that the relative abundance of the most dominant bacteria hardly changed from
prior to bowel preparation to 28 days after colonoscopy. Using the ratio of Prevotella to the sum of Prevotella and
Bacteroides in the fecal samples at baseline, the participants were separated into two groups. The fecal samples of
the Type 1 group was Bacteroides-dominant, and that of the Type 2 group was Prevotella-dominant with a
noticeable presence Bacteroides. Bulleidia appears more in the Type 1 fecal samples, while Akkermensia appears
more in the Type 2 fecal samples. Of each type, the gut microbial diversity differed slightly among the three
collection times. Additionally, the Type 2 fecal microbiota was temporarily susceptible to bowel cleansing. Predictive
functional analysis of microbial community reveals that their activities for the mineral absorption metabolism and
arachidonic acid metabolism differed significantly between the two types. Depending on their fecal type, the
variance of triglycerides and C-reactive protein also differed between the two types of participants.

Conclusions: Depending upon the fecal type, the microbial diversity and the predictive functional modules of
microbial community differed significantly after bowel preparation. In addition, blood biochemical markers
presented somewhat associated with fecal type. Therefore, our results might provide some insights as to how
knowledge of the microbial community could be used to promote health through personalized clinical treatment.
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Background

Commensal human gut microbiota co-evolve with their
host in a symbiotic relationship and influence a large
number of biological functions, in particular helping di-
gestion and developing the immune system. Advances in
both sequencing technologies and bioinformatics tools
have greatly improved our knowledge of the role of gut
microbiome in human health and disease [1-3]. In recent
years, modulation of gut microbiome has been considered
one of the methods of improving health. However, the
change of gut microbiome caused by external factors, such
as antibiotic use and bowel cleansing, remains unclear.
The gut microbial composition is strongly correlated with
environmental factors such as dietary habit and drug
usage [4, 5]. The gut microbiome is also linked to host
weight [6, 7]. In Taiwan, over 49.9% of Taiwanese males
are either overweight or obese, with a body mass index
(BMI) greater than or equal to 25 (kg/m?), as reported by
the Health Promotion Administration of Taiwan in 2016.
Therefore, further understanding of the composition of
gut microbiota and the change of gut microbiome within
overweight individuals is needed in order to modulate gut
microbiome via external strategies such as probiotics or
bowel cleansing.

Due to the high risk of metabolic diseases within people
who are either overweight or obese [8], the gut microbiome
of the obese is of particular interest. In 2005, Ley and her
colleagues reported that obesity was associated with the ra-
tio of the abundance of Bacteroidetes and Firmicutes in
genetically obese mice [9]. Subsequently, a decreased pro-
portion of Bacteroidetes and an increased proportion of Fri-
micutes were observed in obesity [10, 11]. Nevertheless,
another study, using fluorescent in situ hybridization, did
not support this hypothesis [12]. A large population sample
study, called Inter99, revealed that some obese people with
lower bacterial richness gained more weight over time [13];
and also found that the population could be separated into
two groups differing in the number of their gut microbial
genes and the gut bacteria richness. Recently, research in
Japanese and Chinese populations also revealed that gut
microbial composition differed between obese people and
lean people [14—16]. Further, a study using metagenomics
sequencing found that obesity-associated gut microbial spe-
cies is linked to changes in circulating metabolites and that
the abundance of Bacteroides thetaiotaomicron decreased
in obese people [17].

The effects of probiotic-based treatment are different
from person to person [18]. Until now, the most common
probiotics include Bifodobacteria, Lactobacilli, Entero-
cocci, and yeasts; and their effect on human health and
disease have been reported [19, 20]. For example, Lactoba-
cillus rhamnosus CGMC1.3724 formulation may influence
weight loss in obese women [21]; and Lactobacillus gasseri
SBT2005 may regulate abdominal adiposity in Japanese
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populations [22, 23]. In contrast, some Lactobacillus
species including L. acdophilus might lead to weight gain,
not loss [24]. Thus, different species might result in di-
verse effects. Now fecal material transplantation (FMT)
has become another treatment option to modify gut
microbiome. Beneficial effects of FMT are shown in pa-
tients with Clostridium difficile infections (CDI) or inflam-
matory bowel disease (IDB) [25, 26]. In addition, another
study showed that insulin sensitivity increases in obese
participants with metabolic syndrome after the transfer of
intestinal microbiota from lean donors [27]. Additionally,
it is noticeable that bowel preparation may change gut
microbiome [28-30]. Therefore, it is important to under-
stand the influence of external environmental factors on
the variation of gut microbiome.

Inspired by the study of Enterotype and Prevotella-ra-
tios [31, 32], and due to ethnic and cultural variance, we
focused on omnivore, overweight, male Taiwanese
adults. The two main aims of this study are addressed by
the following questions: What are the dominant gut
microbiota, and to what extent does microbial diversity
change after bowel preparation? Which predictive func-
tional modules in fecal community differ most from be-
fore bowel preparation to after colonoscopy? Our results
might provide some insights as to how knowledge of the
change in microbial community could be used to pro-
mote health through personalized clinical treatment.

Methods

Experimental design and participant selection

The experimental design is illustrated in Fig. 1. The inclu-
sion criteria of participants were male adults whose age
ranged from 20 to 60 years, with body mass index (BMI)
equal or greater 25 (kg/m?®). The exclusion criteria are
listed in Additional file 1: Table S1. At screening period,
twenty-four overweight male participants were met the
entry criteria. During the inspection of colonoscopy, four
participants identified as colorectal cancer, or polyps were
excluded. Finally, a total of twenty participants completed
post-procedure visits for the following analysis.

Bowel preparation

A low-residue diet that avoids foods containing seeds
and other indigestible substances is recommended for
three days before the colonoscopy. The split-dose of
bowel preparation was administrated by Fleet
Phospho-Soda Oral Saline Laxative (sodium phosphate)
with water (total 3—41). The second dose was adminis-
tered 4 to 5h before the planned start of the colonos-
copy. All of the patients achieved to the level of good
(minimal turbid fluid) or excellent (mucosal detail
clearly visible) by Ottawa Bowel Preparation Scale.
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Fig. 1 Experimental design. SB represents baseline, which means the first sample collection time prior to bowel preparation. D7 and D28
represent 7 days and 28 days after colonoscopy, respectively. Samples identified with colorectal cancer or polyps, upon inspection of the
colonoscopy, were excluded from the analysis

Fecal samples and blood samples
Participants provided fecal samples and blood samples
prior to bowel preparation, 7 days after colonoscopy, and
28 days after colonoscopy. Fecal samples were collected by
participants at home and were put in refrigerator as well
as informed a research nurse to deliver these samples to
the central laboratory at Food Industry Research and De-
velopment Institute. Each fecal sample was collected using
two fecal collection devices: one for 5g and the other for
15 g. The fecal samples were designed to evaluate the gut
microbiota composition as well as fecal calprotectin.
Blood samples were taken after an overnight fast for
the determination of plasma lipid profile, fasting plasma
glucose (FPG) and immune response. Approximately ~
14 mL of blood was collected into three independent
blood drawing tubes: 3mL for complete blood count
(CBC) of safety lab tests, 3 mL for blood biochemistry of
safety lab tests, and 8 mL for inflammatory cytokine ana-
lysis. Serum samples were centrifuged and stored at -
80 °C until analysis. Fasting or 2-h glucose, serum ala-
nine aminotransferase (ALT), aspartate aminotransferase
(AST), triglycerides (TG), total cholesterol (TC),
high-density lipoprotein (HDL) cholesterol, and
low-density lipoprotein (LDL) cholesterol were mea-
sured using an autoanalyser (Beckman Coulter AU5800).
Serum IL-6 and TNF-a were measured using a MILLI-
PLEX MAG Human Adipokine Magnetic Bead Panel
(Millipore) according to the manufacturer’s instructions.

Bacteria DNA extraction

Fecal samples were stored at — 80 °C prior to the DNA
extraction. Total DNA was extracted from fecal material
using a modified protocol of the QiaAmp DNA Mini
Stool Kit (Qiagen, Hilden, Germany). Briefly, each

sample was centrifuged at 13,000 rpm for 2 min, and the
resulting bacterial pellet was resuspended in 180 ul of
enzyme solution (20 mg/ml lysozyme, 20 mM Tris-HCl
[pH 8.0], 2 mM ethylenediaminetetraacetic acid, and 2%
sodium dodecyl sulfate). Lysates were incubated at 37 °C
for 30 min prior to the addition of 20 pul proteinase K
(25 mg/ml) and 200 pl Buffer AL. Each suspension was
subsequently incubated at 56 °C for 30 min, and for a
further 15 min at 95°C. The final DNA was eluted with
30 ul of Buffer AE, and stored at -20°C for further
analysis.

16S rRNA gene amplification

The PCR primers F515 (5'-GTGCCAGCMGCCG
CGGTAA-3") and R806 (5'-GGACTACHVGGGTWTC
TAAT-3") were designed to amplify the V4 region of the
bacterial 16S ribosomal DNA as described previously [33].
PCR amplification was performed in a 50-pl reaction vol-
ume containing 25 pl 2X Taq Master Mix (Thermo Scien-
tific), 0.2 uM of forward and reverse primer, and 20ng
DNA template. The reaction process increased the initial
temperature to 95°C for 5min, followed by 30 cycles of
95°C for 30's, 54 °C for 1 min, and 72 °C for 1 min as well
as a final extension of 72°C for 5min. Next, amplified
products were checked by 2% agarose gel electrophoresis
and ethidium bromide staining. Amplicons were purified
using the AMPure XP beads (Agencourt) and quantified
using the Qubit dsDNA HS Assay Kit (Thermo Fisher
Scientific), all according to the respective manufacturers’
instructions. For V4 library preparation, Illumina adapters
were attached to the amplicons using the Illumina TruSeq
DNA Sample Preparation v2 Kit. Purified libraries were
processed for cluster generation and sequencing using the
MiSeq system.
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Taxonomy assignment for bacterial 16S rRNA sequences
A pipeline combing PANDAseq [34] and QIIME [1] was
used to analyze the raw sequences. The 16S rRNA gene
sequences were collected from the National Center for
Biotechnology Information Sequence Read Archive in
August 2012. Using the default values in QIIME and the
taxonomic threshold of 97% in UCLUST [35],
high-quality reads were binned into operational taxo-
nomical units (OTUs).

Statistical analysis

Taxa of the same type were agglomerated at the phylum,
class, order, family, and genus levels. The Type 1 and Type
2 groups were classified by a Prevotella ratio of the sum of
Bacteroides and Prebotella within the fecal samples at
baseline. The microbial diversity was evaluated from two
aspects: alpha diversity and beta diversity. In this study,
alpha diversity consisted of richness which means the
number of genera, and Shannon diversity index, at the
genus level. The variances of richness and Shannon diver-
sity index between the two type groups were evaluated by
the nonparametric analysis including the Wilcoxon rank
sum test and the Kruskal-wallis test. The strength of cor-
relation was measured using the Spearman’s rank correl-
ation coefficient. Beta diversity was evaluated using
Phylogeny-based UniFrac analysis [36]. The principal co-
ordinate analysis method was used for visualisation based
on data reduction of patterns in an n-dimensional dataset.
Six correlation networks of specific genera were built
based on the Spearman correlation coefficient. Predictive
functional profiling of microbial communities using
PICRUSt (phylogenetic investigation of communities by
reconstruction of unobserved states) was carried out the
10-base logarithm-transformed data for further analysis
[37]. The variances of each predictive functional module
and blood biochemical test were evaluated by nonpara-
metric analysis including the Wilcoxon rank sum test and
the Kruskal-wallis test. The adjust-P values were evaluated
by the Bonferroni correction. R software was used for stat-
istical analysis (The R Project for Statistical Computing,
Vienna, Austria).

Results

Characteristics of the study population

A total of 20 overweight, male Taiwanese adults were re-
cruited. All participants were omnivorous. Their age
ranged from 28 to 53 years, with an average of 40.5 years
(SD=7.03); and their body mass index (BMI) ranged
from 25.7 to 34.2 (kg/m?), with an average BMI of 28.9
(SD=2.6). All participants did not have systemic dis-
eases such as anemia, hypertension, diabetes mellitus,
chronic kidney disease or abnormal liver function. The
clinical data and biochemical data were shown in Table 1.
Participants provided fecal samples and blood samples
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at three time points: prior to bowel prep, 7 days after
colonoscopy, and 28 days after colonoscopy. For con-
venience, the three collection time points were denoted
as SB, D7, and D28, respectively.

Prevotella-ratio separated into two groups

We analyzed the microbiota composition in fecal samples
using 16S rRNA gene amplicon sequencing. The number of
genera detected in the three time collections of fecal samples
was 131. Of these, 16 genera were detected in every fecal
sample collected, regardless of the collection time point
(Fig. 2 and Additional file 2: Table S2). According to the re-
sults of an average relative abundance in all fecal samples,
the most abundant genera were Bacteroides (31.7% of all
assigned reads) and Prevotella (23.8%). The next were Phas-
colarctobacterium (55%), Faecalibacterium (4.9%), and
Megamonas (4.1%). Figure 3 depicts fecal microbiota com-
position at the genus level within individuals. It also reveals
that Bacteroides and Prevotella abundance in the SB fecal
sample is essentially restored 28 days after colonoscopy.

By evaluating the ratio of Prevotella to the sum of Pre-
votella and Bacteroides within individuals, the SB fecal
samples was separated into two groups. One group had
a Prevotella-ratio lower than 0.11, denoted as Type 1;
and the other had a Provetella-ratio higher than 0.45, de-
noted as Type 2 (Table 2). The participants will be sepa-
rated into two groups depending on their SB fecal type.
Based on the two group, the results of the analysis will
be explained from two aspects: first, comparing the dif-
ferences of fecal microbiome between types 1 and 2, at
each of the three collection times; and second, over the
three collection times, comparing the differences of fecal
microbiome of each type separately.

A degree of microbial diversity change in fecal
community between the two groups

In this study, the richness of microbial diversity means the
number of genera detected within each individual. In the
SB fecal samples, the interquartile range of richness was
wider in the Type 1 group than in the Type 2 group, but
the difference in richness was not statistically significant
(Additional file 3: Figure S1A). However, in the D28 fecal
samples, the interquartile range of richness was wider in
the Type 2 group than the Type 1 group, and the richness
was significantly different between the two types (P = 0.025,
Additional file 3: Figure S1A). As for the Shannon diversity
index, there was no statistical difference between the two
types at each of the three collection times, but in the SB
fecal samples, the interquartile range of Shannon diversity
index was wider in the Type 1 group than in the Type 2
group (Additional file 3: Figure S1B and Additional file 4:
Table S3). Furthermore, the correlation coefficient between
richness and Shannon diversity index of each type became
closer from SB to D28 (Additional File 3: Figure S1C).



Chen et al. BMC Genomics 2018, 19(Suppl 10):904

Page 183 of 193

Table 1 Characteristics of 20 male samples and biochemical data (Mean values with their standard deviation)

SB D7 D28

Mean SD Mean SD Mean SD
Age (years) 40.50 7.03 40.50 7.03 40.50 7.03
BMI (kg/mz) 2892 263 28.80 265 29.00 265
Hgb (g/dl) 14.83 1.53 14.89 1.60 14.87 1.70
Fasting blood sugar (mg/dl) 98.15 11.86 101.20 12.66 102.15 16.10
SGPT (IU/L) 35.00 17.65 35.50 20.13 36.50 20.25
SGOT (IU/L) 24.20 8.32 24.10 9.26 2565 10.57
Triglyceride (mg/dl) 182.75 92.24 181.65 93.75 185.65 101.70
Total cholesterol (mg/dl) 21260 3595 217.90 3940 217.25 37.29
HDL cholesterol (mg/dl) 4220 8.75 41.50 8.34 41.30 767
LDL cholesterol (mg/dl) 133.20 30.83 13945 3543 13945 38.57
C-reactive protein (mg/L) 034 0.46 023 022 0.24 020
IL-6 (pg/mL) 299 313 383 902 291 407
TNF-alpha (pg/mL) 230 7.85 2.85 6.85 229 7.05

SD standard deviation, BMI body mass index, SB baseline, D7 7 days after colonoscopy, D28 28 days after colonoscopy, Hgb hemoglobin, AST aspartate
aminotransaminase, ALT alanine aminotransaminase, HDL high density lipoprotein, LDL low density lipoprotein, IL-6 Interleukin-6, TNF-alpha, tumor necrosis

factor alpha

Next, in the Type 1 group, both the richness and
Shannon diversity index did not show significant differ-
ences between any of the collection time points, but the
interquartile range of richness decreased over the three
collection times (Fig. 4). Unlike in the Type 1 group, the

SB: 170

16

12

21 /

D7:173 D28: 170

Fig. 2 Venn diagram of the number of genera in the three fecal
sample groups. SB, D7, and D28 mean the three sample collection
time points: prior to bowel preparation; 7 days after colonoscopy;
and 28 days after colonoscopy, respectively. The number of genera

detected in all three fecal groups is 131

richness of the Type 2 group significantly differed between
SB and D28 (P < 0.032, Fig. 4A); and the Shannon diversity
index significantly differed between SB and D7 (P = 0.018),
but not between SB and D28 (Fig. 4B). In addition, the
interquartile range of richness in the Type 2 group in-
creased over the three collection times (Fig. 4B).

According to the results of the weighted UniFrac
distance, the 60 fecal samples were separated into two
clusters. The Type 1 fecal samples formed one cluster in
which the most abundant genus was Bacteroides; and the
other group was formed from the Type 2 fecal samples in
which the most abundant genus was either Prevotella,
Megomonas, or Klebsiella (Fig. 5A and Additional file 5:
Fig. S2). Whereas, regardless of the type, the difference of
microbial diversity within individuals based on the
weighted UniFrac distance did not change remarkably
over the three collection times (Fig. 5B).

Significant differences in microbiota between the two
groups

Among the genera which were detected in at least 50% of
the all fecal samples, no genera differed significantly in the
Type 1 fecal samples from SB, through D7, to D28. Only
four genera: Bacteroides, Prevotella, Oscillospira, Holdema-
nia changed significantly in the Type 2 fecal samples from
SB to D7 (P<0.05). In addition, at any sample collection
time, Bacteroides and Prevotella differed markedly between
the Type 1 and Type 2 groups (P < 0.05). The following
genera also changed significantly between the Type 1 and
Type 2 groups at differing sample collection times: two
genera, Akkermansia and Paraprevotella, at SB; five genera,
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Fig. 3 Microbiota composition of each fecal sample over the three collection times. The fecal microbiota composition profiles at genus level are
revealed by 165 rRNA amplicon sequencing. Each color represents one bacterial genus. The two most abundant genera within most individuals
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Akkermansia, Paraprevotella, Actinomyces, Oscillospira,
and Fusobacterium at D7; and 3 genera Paraprevotella,
Streptococcus, and Enterococcus at D28.

We also found that at the phylum level, the percentage
of three phyla, Bacteroidetes, Firmicutes, and Proteobac-
teria, of each type changed slightly over the three collec-
tion times (Fig. 6A). At SB and D7 collection times, the
correlations between Bacteroidetes and Firmicutes were
negative (Spearman p = - 0.53 and - 0.45, respectively; P <
0.05) (Fig. 6B). At D28, the correlation between Bacteroi-
detes and Firmicutes was weakly negative without statis-
tical significance (Spearman p = - 0.25; P=0.27) (Fig. 6B).
Furthermore, in the Type 1 group, the correlations were
0.00, — 0.40, and 0.28 at SB, D7, and D28, respectively; and
in the Type 2 group, the correlations were — 0.35, — 0.58,
and - 0.65 at SB, D7, and D28, respectively (Fig. 6C).

A degree of microbial correlation change after bowel
preparation
The correlation networks for 61 genera, which were
detected in at least 50% of the fecal samples at a particu-
lar collection time, are presented in the supplementary
figures (Additional file 6: Figure S3-S5). The strength of
correlation was evaluated using Spearman’s correlation
coefficient. To further observe the changes of the correl-
ation over the three collection times, the 1830 correl-
ation coefficients were separated into three subintervals
[-1, - 0.5], (- 0.5, 0.5), and [0.5,1]. An obvious phenom-
ena was that there were fewer pairs of microbiota which
remained weakly correlated in the Type 1 group than in
the Type 2 group (Additional file 7: Figure S6).

We also found that the correlation of 25 genera, which
were detected in at least 90% of all 60 fecal samples, had
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Table 2 Prevotella ratios of the sum of Bacteroides and Prevotella

Prevotella/(Bacteroides + Prevotella)

D Type SB D7 D28

S029 Type 1 0.0001 0.0003 0.0001
S031 Type 1 0.0001 0.0000 0.0004
S013 Type 1 0.0004 0.0012 0.0005
S032 Type 1 0.0005 0.0004 0.0009
S019 Type 1 0.0006 0.0011 0.0002
S016 Type 1 0.0006 0.0004 0.0002
S020 Type 1 0.0027 0.0024 0.0002
S007 Type 1 0.0033 0.0009 0.0002
S033 Type 1 0.1066 0.2413 0.2253
Son Type 2 04544 0.5484 0.6942
S005 Type 2 0.6990 04369 0.6040
5023 Type 2 0.7182 0.6685 0.7139
S036 Type 2 0.7343 0.5240 0.7536
S021 Type 2 0.7405 0.7220 0.7460
S010 Type 2 0.7554 0.5266 0.5256
S034 Type 2 0.7752 04563 0.6652
S004 Type 2 0.7872 0.5485 0.7028
5008 Type 2 0.8165 0.7948 0.8897
S006 Type 2 0.8880 06126 0.8794
S014 Type 2 0.9802 0.7611 0.8990

different patterns. From six heat maps of the correlation
networks, it is obvious that the pattern of these microbial
correlations within the Type 2 group was remarkably dif-
ferent at D7 compared with the other two collection
times, whereas these microbial correlations within the
Type 1 group seemed not to change significantly (Fig. 7
and Additional file 8: Table S4-S9). It would appear that
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participants whose fecal type was the Type 2 were tempor-
arily susceptible to bowel preparation.

Variation of predictive functional modules in microbial
community between the two types

Functional potential profiling of microbial communities
was evaluated using PICRUSt (phylogenetic investigation
of communities by reconstruction of unobserved states)
via the KEGG database. At level 3 of the KEGG pathway
database, 220 functional modules presented in the SB,
D7, and D28 samples. In the SB fecal sample, 26 func-
tional modules were significantly different between the
Type 1 group and the Type 2 group (P < 0.05), of which
mineral absorption and arachidonic acid metabolism dif-
fered remarkably (P=1.19x 10> and P=834x10" 7,
respectively). (Additional file 9: Table S10).

In the Type 1 group, of 220 functional modules, only
one module (Bacterial invasion of epithelia cells) changed
significantly from SB to D28 (Additional file 10: Table
S11). Whereas, in the Type 2 group, 174 functional mod-
ules differed significantly between SB and D7 (P < 0.05);
and 187 between SB and D28 (P <0.05), of which lipo-
polysaccharide biosynthesis changed remarkably (P =
0.00018, Additional file 11: Table S12). Figure 8 depicts 12
functional modules which differed significantly between
the Type 1 and Type 2 groups for each of the three collec-
tion times. Using principal component analysis, the 60
fecal samples were mostly separated into two clusters cor-
responding to the type (Fig. 9A). We also found that the
SB and D7 fecal samples were roughly separated into two
parts: the first part consisted of 80% of the SB fecal sam-
ples; the second part consisted of 70% of the D7 fecal sam-
ples. As for the D28 fecal samples, 55% of them were
closer to the predominantly SB part and 45% were in the
predominantly D7 part (Fig. 9B).

A Type 1 | | Type 2 | B Type 1 | | Type 2
Kruskal-Wallis, p = 0.41  Kruskal-Wallis, p = 0.14 Kruskal-Wallis, p = 0.93 Kruskal-Wallis, p = 0.055
120
0.33 ‘ 0.032 ‘ 3 1 0.84
0.22 0.36 2 ' 072 ' 0.088
] —Ee —2 £3 0.088
1001 4 _055 > 0.86 0.018
% g — —e
c [
S 80 - 3
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€ 2 .
©
60 % $ g 5 E E ==
]
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Fig. 4 The change of microbial diversity for each type. (a) Boxplot of richness. In the Type 1 group, the richness does not show significant
differences between any of the collection time points, but the spread of richness decreases over the three collection times. In the Type 2 group,
the richness significantly differed between SB and D28 (P=0.032). (b) Boxplot of Shannon diversity index. In the Type 1 group, the Shannon
diversity index does not show significant differences between any of the collection time points. In the Type 2 group, the Shannon diversity index
significantly differs between SB and D7 (P=0.018)
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Association of each type with inflammation cytokine and

blood tests

In our blood samples, the averages of these inflammation
cytokine, including C-reactive protein (CRP), interleukin 6
(IL-6), and tumor necrosis factor alpha (TNF-alpha), were

within normal range, but the distribution of the test results
differed in the participants of the two types. At all three
time points, the participants in the Type 2 group generally
had higher median for CRP, IL-6, and TNF-alpha than ones
in the Type 1 group (Additional file 12: Figure S7 and
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Additional file 13: Table S13). In addition, the variance of
CRP between the Type 1 and Type 2 groups was statisti-
cally significant at each sample collection time (P < 0.05,
Additional file 13: Table S13). For each type, by comparing
individually CRP, IL-6 and TNF-alpha, there is no statisti-
cally significant over the three collection times.

We also found that the variances of liver functions
(serum glutamic oxaloacetic transaminase, also known
as SGOT; and serum glutamic pyruvic transaminase,
also known as SGPT), and the variance of basophils be-
tween the two types was significantly different at D7 and
at D28 (P<0.05, Additional file 14: Table S14). When
comparing each type individually over the three collec-
tion times, only the variance of albumin differed signifi-
cantly in the Type 2 group. Whereas the variance of the
other blood tests between the two types generally did
not change remarkably (Additional file 14: Table S15).
The descriptive statistics of the blood test results present
in Additional file 15: Table S16.

Figure 10 depicts the correlations between Bacteroides
abundance and each of TG, HDL, and BMI. There were
three noteworthy phenomena. First, at each of the sam-
ple collection time, Bacteroides negatively correlated

with TG in the Type 2 group, whereas Bacteroides posi-
tively correlated with TG in the Type 1 group. Further-
more, at SB, Bacteroides positively correlated with HDL
in the Type 2 group (p=0.66, P<0.1) but very weakly
negatively correlated with HDL in the Type 1 group (p =
- 0.08) without statistical significance. Finally, the correl-
ation between Bacteroides and BMI differed for each
type at SB and D7. It was positive in the Type 2 group at
SB and D7. In contrast, it was negative in the Type 1
group at SB but positive at D7.

Discussion

The purpose of the study was to explore the gut micro-
biome change in overweight male adults. Our results
demonstrated that the most dominant bacteria were
hardly influenced by bowel preparation within individ-
uals. However, microbial correlation networks within
fecal types were somewhat different over the three sam-
ple collection times. In addition, some predictive func-
tional models for microbial community and blood
biochemical results within individuals differed between
fecal types.



Chen et al. BMC Genomics 2018, 19(Suppl 10):904

Page 188 of 193

p
Mineral Arachidonic Carbohydrate LPS
= ' N
40- .y
40- 541
5.2
5.0-
~~ 2 5 L 1 1 1
1",’ D28 D28 D28 SB D7 D28
@©
o Protein Membrane Phenylalanine Cellular
— 75 -
© 50-
S 46- 6.0 4
S i 5.50 48- Type
8 44- 5.8
5.25 -
2 45 56- 46 E Type 1
2 5.4- 5007 44- 3 Type 2
A 52- * 4.75 i 425
1 1 1 1
qa)- D28 D28 D28 SB D7 D28
8’ Citrate Amino Phenylpropanoid Aminobensoate
- 6.0- 54- ® 5.50 - °
: 5.6 ° 59-
58- 54 - ° 5.25- L
56- 52- i'Z' - 5.00 -
54- 50- ) 475~
48- o 46-
52 - I 1 1 1 450 L 1 1 1
D28 D28 SB D7 D28 SB D7 D28
Fig. 8 Boxplots of 12 predictive functional modules. The 12 predictive functional modules differed significantly either between the Type 1 and
Type 2 groups, or over the three collection times (P < 0.05). The full module names are abbreviated as follows (1) Mineral = Mineral absorption; (2)
Arachidonic = Arachidonic acid metabolism; (3) Carbohydrate = Carbohydrate digestion and absorption; (4) LPS = Lipopolysaccharide biosynthesis;
(5) Protein = Protein digestion and absorption; (6) Membrane = Membrane and intracellular structural molecules; (7) Phenylalanine = Phenylalanine
metabolism; (8) Cellular = Cellular antigens; (9) Citrate = Citrate cycle and TCA cycle; (10) Amino = Amino acid metabolism; (11) Phenylpropanoid =
Phenylpropanoid biosynthesis; (12) Aminobensoate = Aminobensoate degradation

A I B : =
0.2- 0.2- !
[ X4 LI ' ] 8o oo © : ) %
e 1
L 01- o ® .:: — ° N 0.1- = “:I. °
° ° ° ®
e " e, e,
T 0.0 i R R e e B B 1 e,- « 00- v °
N ° e o N ° 1 @ °
O ) O % .
o -0.1- s, ° oo, o -01- A ° o'®
o ® ol el o . +
02- o — 02- o o I
° ~ ® o
! ! ' ! ! ' ! | ' '
-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2
PC1:75.5% PC1:75.5%

Type © Type1 © Type2 sample_Date ® SB ¢ D7 e D28

Fig. 9 Principal component analysis of 12 predictive functional modules using PICRUSt in level 3 KEGG database. Each sample is represented by a
colored point. (a) Red means type 1 samples, and blue means type 2 samples. The 60 fecal samples are mainly separated into two clusters. (b)
Three colors denote the three different sample collection times. Gray means prior to bowel preparation, denoted as SB; orange means 7 days
after colonoscopy, denoted as D7; and blue means 28 days after colonoscopy, denoted as D28. The SB and D7 fecal samples are roughly
separated into two parts: the first part consists of 80% of the SB samples; the second part consists of 70% of the D7 samples. As for the D28
samples, 55% of them are closer to the predominantly SB part and 45% are in the predominantly D7 part




Chen et al. BMC Genomics 2018, 19(Suppl 10):904

Page 189 of 193

Triglycerides (mg/dl)
~
Z{
::i":
\
\

HDL (mg/dl)
5 3
"

o |
e | .

> SB

.g [>)

—-— J [ L4

o 325 T—F

& 30.0- I / St .
327.5- o2 —— \C 4
g 250 e 1 [ [ 1 1
@ 0 20 40 60 0 20

Bacteroides (%)

Type === Type1 === Type2

Fig. 10 Scatter plots between Bacteroides abundance and Triglycerides, HDL, and Body Mass Index. HDL means high-density lipoproteins. Each
subject is represented by a colored point. The correlations differed from fecal type at each sample collection time
A\

D7 D28

40 60 O 20 40 60

D7 D28
L) = oy T
] ° <]
° ° ~ °
. T
[ e o
@ 7 L ] [ ) e ¢ % 5
40 60 0 20 40 60

Clearing the bowel with a controlled diet and a laxative
drink before colonoscopy may affect the normal gut
microbiome for a short period of time. A study showed
that the composition of gut microbiota in 10 middle-aged
patients differed significantly after bowel preparation for
at least a month [29]. Another case-control study proved
that bowel preparation affected the diversity of the fecal
and luminal microbiota for weeks [28]. Our results are not
fully consistent with the previous findings. In our study,
the most dominant bacteria abundances did not change
much from prior to bowel preparation to 28 days after col-
onoscopy. The main reason may be that our participants
were all male overweight adults with a healthy colon. In
contrast, the subjects of the previous studies did not limit
gender and colorectal health status.

Unlike the clustering methods of determining three
enterotypes of the human gut microbiome [31, 38], in
our study, we used Prevotella relative abundance divided
by the sum of Prevotella and Bacteroides (P/(P + B)), for
to the following reason. Our participants were over-
weight, and their fecal samples were dominated by either
Bacteroides or Prevotella. According to the results of
two recent studies, Prevotella and Bacteroides could be
biomarkers of diet [39]; and enterotypes could be

inferred simply by a Prevotella-to-Bacteroides ratio in
persons with central obesity [32]. Thus, we modified a
Prevotella-to-Bacteroides (P/B) ratio into P/(P + B) ratio,
giving a range from O to 1, which allows us to directly
compare the dominance of Prevotella or Bacteriodes.

Bacteroides and Prevotella belong to the phylum Bacter-
oidetes, which is the most stable component of gastrointes-
tinal microbiota over time in healthy adults [40, 41].
Although our participants were overweight, they were, in
general, healthy. Our result is consistent with the previous
finding (Fig. 3, Fig. 6A). Another study also showed that the
reduced abundance of the Bacteroidetes was linked with
obesity [9, 10, 42]. In our study, over the three sample col-
lection times, the correlation between Bacteroidetes and
Firmicutes in the Type 1 group changed remarkably while
remaining mostly unchanged in the Type 2 (Fig. 6C).

Early research reported that Bacteroides was more com-
mon in Western populations [43] and that Prevotella was
more common in non-Western populations such as Papua
New Guineans [44, 45]. Some researchers further pointed
out the potential of reshape the metabolism of Bacteroiedes
[46]. In our study, the Type 1 fecal samples were dominated
by Bacteroides; and the Type 2 fecal samples were dominated
by Prevotella with a noticeable presence of Bacteroides.
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Furthermore, the proportions of Bacteroides-dominant fecal
samples and Prevotella-dominant fecal samples were similar.
Additionally, the two predictive functional modules, “carbo-
hydrate digestion and absorption” and “mineral absorption”,
in the Type 2 group had higher levels than in the Type 1
group (Fig. 8). Because our participants were omnivorous
and we lacked their diet records, it was a challenge to figure
out what causes this phenomenon. However, in Taiwan, the
staple diet is white rice [47]. It is rich in carbohydrate and
contains minerals such as magnesium, phosphorus, manga-
nese, selenium, iron, folic acid, and thiamine. Further com-
paring their occupations, we found that the participants in
the Type 1 group were all sedentary workers, including pro-
grammers, researchers, and project managers. Whereas in
the Type 2 group, almost half of the participants were
non-office workers, including drivers, manual laborers, and
salesmen (Additional file 16: Table S17). Thus, the partici-
pants in the Type 2 group might need to ingest more
carbohydrate-associated food such as white rice than the par-
ticipants in the Type 1 group due to the need for more calo-
ries for labor.

People who are either overweight or obese are at high risk
of metabolic diseases [8]. Akkermansia, Bulleidia, and
SMBS3 are reported to be associated with obesity. The only
current known species within genus Akkermansia is Akker-
mansia muciniphila, which is a mucin-degrading bacterium
[48]. Recent studies indicated that it is associated with body
fat mass and glucose intolerance in mice, and that higher A.
muciniphila seems to be a healthier metabolic status in over-
weight/obese humans [49]. As for the Bulleidia, it is more
abundant in samples with type 2 diabetes (T2DM) and in
the early stages of Prediabetes compared to Non-Diabetic
samples [50]. In addition, resistant starch or extruded grain
result in the enrichment of the relative abundance of Bullei-
dia [51-53]. The genus SMB53 belongs to the family Clostri-
diaceae; and a mice model suggests it may be an important
factor for the abnormal metabolism of T2DM [54].

In our study, both Akkermansia and Bulleidia differed
significantly between the Type 1 and Type 2 fecal samples
at SB (P <0.05) but SMB53 did not (Additional file 17:
Table S18). Furthermore, the proportions of these genera
in each type fecal group were different. At SB fecal sam-
ples, Akkermansia appeared in 22% of the Type 1 and 73%
of the Type 2; Bulleidia appeared in 89% of the Type 1 and
55% of the Type 2; and SMB53 appeared in almost all fecal
samples. Additionally, the proportions of Akkermansia and
SMBS53 in each type were similar over the three sample
collection times, but that of Bulleidia in the Type 2 group
declined remarkably at D7. It seemed that Akkermansia is
more likely to appear in the Type 2 fecal samples; and that
Bulleidia is more likely to appear in the Type 1 fecal sam-
ples. Therefore, it is noted that Akkermansia, Bulleidia,
and SMB53 play a role in overweight people who are dom-
inated either by Bacteroides or Prevotella. However, the
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influence and interaction between these three genera is
unclear and requires further investigation.

Recent research showed that some gut bacteria caused
substantial variations in triglycerides (TG), high-density li-
poproteins (HDL), and BMI [55]. Consistent with this, we
also found that Bacteroides, in our study, negatively corre-
lated with TG; positively correlated with HDL; and very
weakly correlated with BMI. However, when we separated
the participants into two groups based on the Prevotella-ra-
tio, Bacteroides correlated more strongly with each of TG,
HDL, and BMI in the Type 2 group than in the Type 1
group at SB and D7(Fig. 10).

Although we focus here on the changes and variations of
fecal microbiome in overweight male adults, these findings
do not determine the contributions of each genus to the nu-
trition and health of the host. This study has some limita-
tions. First, due to the number of samples, the findings of
this study are restricted to the comparison of two groups
corresponding to Prevotella-ratios within individuals. It could
be coincident that the range of Prevotella-ratios was either
lower than 0.1 or greater than 0.4. A larger sample size may
yield Prevotella-ratios between these two values, or confirm
the existence of this split. Second, details of dietary habits
and lifestyles were not explored. Our participants were only
asked if they were vegetarian or omnivore, and their re-
sponse was recorded by medical doctors each time partici-
pants came back to the hospital during the study period.
Further study should include a detailed dietary questionnaire.
Then, at least, we could figure out the major differences in
meal content between the Type 1 and Type 2 participants.
Third, all of our participants were defined as overweight
whose BMI were greater than or equal to 25 kg/m? How-
ever, obese individuals, whose BMI are greater than or equal
to 30 kg/m?, have an excess accumulation of fat, while over-
weight individuals may or may not. Thus, it might be better
to study overweight and obese samples separately. Finally,
16S rRNA gene amplicon sequencing generates the relative
abundance of taxa or genes within microbial community. It
does not provide absolute abundance information. In
addition, biases will occur from the sample processing pipe-
line [56]. For further study, we should assess the effects of
biases for our particular choices of protocols.

Conclusions

Depending upon the fecal type, the microbial diversity
and the predictive functional modules of microbial com-
munity differed significantly after bowel preparation. In
addition, blood biochemical markers presented somewhat
associated with fecal type. Although it is still unclear
whether the microbiota composition of feces can accur-
ately reflect the real state of the microbiota composition
in the intestine, the gut microbiota by fecal samples might
provide clues for health status and might provide to pro-
mote health through personalized clinical treatment.
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