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Automatic detection of genomic regions
with informative epigenetic patterns
Florencio Pazos* , Adrian Garcia-Moreno and Juan C. Oliveros

Abstract

Background: Epigenetic phenomena are crucial for explaining the phenotypic plasticity seen in the cells of different
tissues, developmental stages and diseases, all holding the same DNA sequence. As technology is allowing to retrieve
epigenetic information in a genome-wide fashion, massive epigenomic datasets are being accumulated in public
repositories. New approaches are required to mine those data to extract useful knowledge. We present here an
automatic approach for detecting genomic regions with epigenetic variation patterns across samples related to a
grouping of these samples, as a way of detecting regions functionally associated to the phenomenon behind the
classification.

Results: We show that the regions automatically detected by the method in the whole human genome associated
to three different classifications of a set of epigenomes (cancer vs. healthy, brain vs. other organs, and fetal vs. adult
tissues) are enriched in genes associated to these processes.

Conclusions: The method is fully automatic and can exhaustively scan the whole human genome at any resolution
using large collections of epigenomes as input, although it also produces good results with small datasets.
Consequently, it will be valuable for obtaining functional information from the incoming epigenomic information as it
continues to accumulate.

Keywords: Epigenomics, Epigenetics, Gene transcription regulation

Background
The expression of the information encoded in the gen-
ome is determined not only by its DNA sequence but by
many other factors that affect the complex process of
gene expression [1]. These factors include reversible
modifications in the DNA and histones that affect gene
expression without altering the nucleotide sequence of
the DNA, for example by changing the folding state or ac-
cessibility of the chromatin. These are called epigenetic
modifications, and “epigenomics” is the high-throughput
characterization of these modifications at a genomic scale
[2, 3]. Epigenetic control of gene expression has been
shown to be crucial in processes such as development and
cell differentiation [4, 5], as well as in diseases [6, 7]. In
the case of diseases, epigenetic mechanisms are gaining
increasing attention since they could explain the influence
of environmental factors in a pathological state [8].

Using assays based on deep sequencing, it is possible
to detect in a genome-wide fashion different epigenetic
modifications (i.e. covalent modifications of DNA and
histones), as well as other proxies of the epigenetic state
of a genome segment (e.g. mRNA expression, nucleo-
some occupancy), for a given sample (Fig. 1). Recently,
different consortia at national and international levels
were assembled with the objective of obtaining this
genome-wide epigenomic information for hundreds of
samples (“epigenomes”), including different organs, de-
velopmental states and cancer lines [3]. Examples of
such initiatives are ENCODE [9], BLUEPRINT [10] and
Roadmap Epigenomics [11]. This massive epigenomic
information is starting to be mined in a similar way as
genomic data. For example, it is being used, alone or in
combination with other evidences, to reconstruct the 3D
structure of the chromatin [12–14], detect functionally
related genes [15], interpreting the results of “genome-
wide association studies” (GWAS) [16] and non-coding
variants in general [17]. This genome-wide epigenetic in-
formation is also being used for epigenomic-GWAS
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(EGWAS) [18], to stablish links between epigenetic vari-
ation in certain loci and diseases. Recently, it was also used
to look for regions whose quantitative epigenetic marks
change between two sets of samples, an strategy imple-
mented, for example, in the ChromSwitch package [19].
From a practical point of view, all those different indi-

cators of epigenetic state for a given genome segment
can be collapsed into a single “epigenetic state” easier to
be interpreted (e.g. “active transcription”, “enhancer”, …)
(Fig. 1). This is done by training machine-learning sys-
tems with segments of known epigenetic state and their
corresponding profiles of epigenetic proxies. Once
trained, these methods are used to infer the state for a
given region based on its raw epigenetic profiles. Exam-
ples of these methodologies are ChromHMM [20] and
Segway [21].
These datasets of chromatin states are conceptually

similar to protein or DNA multiple sequence alignments
(MSAs): the epigenomes would be the homologous pro-
teins and the genome positions the residues (Fig. 1). In-
deed, methodologies originally developed for protein and
DNA alignments are being adapted to these datasets: e.g.

Epilogos (https://epilogos.altiusinstitute.org/) for generat-
ing state-logos (equivalent to sequence logos), and
ChromDet [22] for the unsupervised classification of epi-
genomes and the detection of chromatin regions associ-
ated to that classification (CDRs: “chromatin determining
regions”). These are equivalent to the “specificity deter-
mining residues” (SDPs) in protein MSAs: residues differ-
entially conserved in the subfamilies of the MSA and
hence responsible for their functional specificity [23–25].
Nevertheless, such a rich source of information is still

scarcely explored, compared with the thousands of ap-
proaches available for studying, for example, DNA se-
quences (“genomics”). Apart from providing interesting
information on particular genes and cellular processes,
the large scale analysis of these epigenomic datasets
might provide systemic information. Moreover, while all
studies report a large global epigenetic variation contrib-
uting to cell differentiation, locating where the epigen-
etic changes responsible for it exactly occur is still a
challenge.
In this work we propose a methodology for mining the

growing epigenomic data in the search for functional

Fig. 1 Schema of the methodology used for detecting genome segments with an epigenetic pattern resembling a sample classification. For a
given sample, different epigenomic markers are quantified in a genome-wide fashion (a). For a given region of the genome, all these markers are
collapsed into a single epigenetic state (colors) using ChromHMM (b). This is done for hundreds of different samples (c). These samples can be
classified according with different criteria (into three groups in this example: brown, pink and blue). The epigenetic pattern of a given segment of
the genome (e) is compared with an equivalent pattern representing this sample classification (f) using a “mutual information” based approach.
One of the patterns is shuffled thousands of times in order to generate a null distribution of MI scores from where to extract a p-value for
the MI score of the segment of interest (g). The process is repeated for all other windows in the human genome (d). The genome segments
with the highest MI values and significant p-values are taken as those related to the sample classification (h). Lung clipart source: Wikimedia
Commons (http://commons.wikimedia.org/)
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genomic regions. This approach automatically detects
genomic regions whose epigenetic profile across a set of
samples is related to a user-provide classification of
these samples. For the regions detected in this way that
contain coding genes, we show that these are involved in
the biological processes associated to the sample classifi-
cation. We also show that the method is robust to the
lack of input epigenomic information and can work with
a reduced number of epigenomes, although it is fast
enough for handling the expected increasing number of
epigenomes in the future.

Methods
In order to find genomic regions whose inter-sample
epigenomic variation correlates with a given classifica-
tion of these, we used the epigenomic datasets compiled
by the Roamap Epigenomics Consortium [11]. We
downloaded the 127 “consolidated epigenomes”, for
which the chromatin states are given in a 15-state vo-
cabulary, from https://egg2.wustl.edu/roadmap/web_por-
tal/chr_state_learning.html
These 127 epigenomes include different tissues, primary

cells, cancer cell lines, different developmental stages, etc.
For each epigenome, detailed information on different
proxies of the epigenetic state at 1 bp resolution is pro-
vided, such as histone acetylation, DNA methylation,
DNase accessibility or RNA-seq expression (“a” in Fig. 1).
For each 200 bp genomic region, the ChromHMM method
[20] was used to collapse all these experimental epigenetic
proxies into a single “epigenetic state” with 15 possible
values (“b” in Fig. 1). From the URL above, we downloaded
the. BED files with the mnemonics indicating the chroma-
tin states along the 127 epigenomes at that 200 bp reso-
lution (“c” in Fig. 1). The original 15-state vocabulary can
be simplified by grouping states representing similar epi-
genetic behavior. Apart from the original 15 states, for this
work we also tried two reductions (to 5 and 2 states –i.e.
“active” vs. “inactive”-) previously used by [22].
In order to scan the human genome for segments with

a given pattern of epigenetic changes, we use a sliding
window of a given length (200 bp or larger) and move it
at different steps along the whole genome (“d” in Fig. 1).
The epigenetic state for that window in a given epige-
nome is taken as that with the highest frequency among
all 200 bp segments within the window. A minimum fre-
quency of 80% is required. Otherwise, the “undefined”
state is assigned to that window. So, for a given window,
we end up in a vector (epigenetic profile) where each
component represents an epigenome and its value is the
epigenetic state at that particular genomic region (with
15, 5 or 2 possible states, depending on the vocabulary
used, plus “undefined”) (“e” in Fig. 1). An equivalent vec-
tor is constructed representing the classification of the
samples in a given number of groups (“f” in Fig. 1). The

similarity between these two vectors is quantified by
their Mutual Information. The mutual information be-
tween the group classification vector (G) and the epigen-
etic profile of the ith segment (Si) is calculated as:

MI G : Sið Þ ¼
Xn

k¼1

Xm

l¼1

P Gk ; Silð Þ∙ log2
P Gk ; Silð Þ

P Gkð Þ∙P Silð Þ

Where the sums run for all possible groups in the
sample classification (n) and all possible epigenetic states
(m). P(Gk) is the frequency of group k, P(Sil) is the fre-
quency of the epigenetic state l in window i, and P(Gk,
Sil) the frequency of group k matching state l. State “un-
defined” is ignored for this calculation, and the terms of
the sums where either P(Gk) or P(Sil) are 0 are skipped.
Consequently, this parameter has a high value for a win-
dow when its epigenetic profile correlates with the sam-
ple classification. That is, all samples of the same group
tend to present the same epigenetic state, and the other
way around. In that case there is a relationship between
the epigenetic states and the group classification.
To assess the significance of an observed MI value we

shuffle the components of epigenetic profile vector of
the corresponding window a number of times (10,000 in
this work) and calculate the distribution of MI values of
the sample vector against these random vectors. The
composition of the window vector is preserved in this
randomization, and only the positions of the labels are
changed (“g” in Fig. 1). From this background distribu-
tion, a p-value for a given observed MI score is calcu-
lated as the fraction of randomized vectors resulting in
higher or equal MI’s. These p-values are additionally ad-
justed for multiple testing using Benjamini-Hochberg’s
FDR correction. So, at the end, for a given group classifi-
cation, we end up with a list of all genome segments
(windows) and their associated MI score and p-values
(“h” in Fig. 1).
To summarize the epigenetic change pattern of a given

window across a large number of samples classified in
groups, we just take the majority state for each group.
To show the potential of this methodology to locate

genomic regions associated to different phenomena, we
applied it to three different classifications of subsets the
127 epigenomes:

� Brain vs. other tissues. We filtered out samples from
cultured cells, cancer-derived and those annotated
as “other”. Our final list contains 75 epigenomes
from which 10 belong to the “brain” group (including
different brain anatomical parts, male/female, fetal/
adult, etc.)

� Cancer vs. normal.We took the five cancer epigenomes
available and all samples of the corresponding healthy
tissues. So, we do not include a sample of a given
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tissue if there is no cancer version for it. The final list
contains 21 epigenomes (5 cancer).

� Fetal vs. other. We filtered out samples from cultured
cells and cancer-derived. The final list contains 79
epigenomes, 13 of which belong to different fetal
tissues.

These datasets are available as Additional file 1.
In order to interpret the large number of genome re-

gions detected by this procedure when they contain an-
notated genes, we retrieve these genes with Bedtools
[26]. For that we use the latest annotation available for
the genome assembly our epigenomic data is based on
(GRCh37.p13), downloaded from the NCBI ftp site. Any
gene overlapping, totally or partially, with the genome
segment of interest is retrieved.
To assess whether a collection of genes (coming from

a set of genome segments of interest) is representing a
particular biological process or processes we performed
a “functional enrichment analysis”. This standard ana-
lysis looks for functional keywords/terms overrepre-
sented in the set of genes of interest respect to a
background (the whole human genome in this case). For
this we used the topGO R package [27], fed with the
Gene Ontology (GO) [28] annotations for the human
genes downloaded from the NCBI. We chose the Fisher’s
exact test implemented in this package and subsequently
applied Benjamini-Hochberg FDR correction for mul-
tiple testing for quantifying the overrepresentation of a
given GO term in a set of genes.
We evaluate the effect of the number available epigen-

omes on the quality of the results obtained for the
“brain” dataset. In this dataset it is possible to automat-
ically detect the enriched GO terms unambiguously re-
lated to “brain” (i.e. those containing keywords such as
“brain”, “neuron”, “nerve”, “axon”, … and related), as a
proxy for “positive” terms. For this dataset, we repeated
the procedure described above randomly removing in-
creasing proportions of the initial epigenomes (from 20
to 80%). Every removal was repeated 5 times and the re-
sults averaged. We quantify the performance of the
method in the original dataset as well as in the reduced
sets as the negative logarithm of the enrichment p-value
for those “positive” GO biological processes. While this
is far from being a real quantification of performance
(e.g. many terms without these keywords, such as their
parents, can also be positives) it allows us to compare its
relative change in this down-sampling experiment.

Results
We applied the procedure described in Methods to the
three classification schemas in order to detect the gen-
omic regions associated to the phenomena behind the
classifications. In the three cases, we scanned the whole

human genome with consecutive non-overlapping win-
dows of length 5000 bp, applying the procedure de-
scribed in Methods with a reduced vocabulary of 5
states, and took the segments with MI score of 0.3 or
higher and a FDR-corrected p-value of 1E-4 or lower.

Brain samples
In the case of the brain tissues, it is expected that the
genomic regions detected are in some way related to the
function and development of this organ, since they
present a characteristic epigenetic behavior in this organ
different from that in others. We found 2991 regions in
the genome with MI score 0.3 or higher and a
FDR-corrected p-value of 1E-4 or lower. Chromosome 1
has the highest number of these regions (296). The lists
of regions (sorted by the MI score) for each chromo-
some are available as Additional file 2. The lists include
links to a genome browser to inspect the genomic neigh-
bourhood of each window, as well as their epigenetic
profiles in comparison with the group classification
(brain vs. others).
These regions overlap with 1030 different genes ac-

cording with the annotation procedure followed. Two
hundred forty-six regions (8%) do not overlap with any
gene. The enrichment analysis of Gene Ontology terms
clearly shows that these 1030 genes are enriched in bio-
logical processes related to neuronal development and
functioning, such as “nervous system development”,
“neurogenesis”, “generation of neurons”, “neuron differ-
entiation”, … (Table 1). These genes are also enriched in
Gene Ontology “cellular compartment” annotations
(GO_CC) such as “neuron part”, “synapse”, “neuron pro-
jection”. The whole list of enriched terms is available in
the Additional file 3, and a graphical summary of these,
generated with REVIGO [29], in the Additional file 1:
Figure S3.
The region with the highest MI score is 134,635,001–

134,640,000 in chromosome 6. The epigenetic profile of
this region shows that it tends to be in “active transcrip-
tion” state in the brain samples while heterochroma-
tized/repressed in the others (Fig. 2). This region
matches part of an intron and the last exon of gene
SGK1, a kinase that plays a role in neuron excitability by
activating a number of ion channels. The next region in
the list (Chr12:49255001–49,260,000) has a similar epi-
genetic profile and overlaps with intronic and exonic
regions of gene RND1, a Rho GTPase involved in axon
extension. The third region with highest score
(Chr16:56310001–56,315,000) has another epigenetic
profile: it is in “enhancer” state in brain tissues while
heterochromatized in others. It matches an intronic re-
gion of gene GNAO1, a G protein repressor, whose de-
fects are a cause of early-onset epileptic encephalopathy.
The fourth hit (Chr3:171820001–171,525,000) has an
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opposite epigenetic profile: inactive/heterochromatin in
most brain tissues, and enhancer/weak transcription in
the rest (Fig. 2). This window corresponds to an intronic
region of gene FNDC3B, a fribonectin type III contain-
ing protein without obvious relationship with the brain.
Nevertheless, the expression of that gene in the brain
(from the GTEx project [30]) is much lower than in any
other tissue (Additional file 1: Figure S1), in agreement
with its epigenetic profile and pointing to a relationship
with this organ.
As shown in Fig. 5, the two most frequent patterns of

epigenetic change between brain samples and those of
other tissues in these 2991 windows is transcription
(brain) / heterochromatin (others), followed by tran-
scription (b) / bivalent chromatin (o). The third pattern
is the opposite (heterochromatin (b) / transcription (o),
and the fourth pattern is enhancer (b) / heterochromatin
(o). We performed the GO enrichment analysis de-
scribed above for the windows within these different sets
independently, to get insight into the molecular pro-
cesses associated to these different epigenetic changes.
In the following, we focus on the GO terms differentially
enriched in these subsets (respect to those enriched in
the whole set commented above). The two first patterns,
which involve specific activation of transcription in brain
samples, are related to neuron development and func-
tion (biological processes) and synapsis and ion channels
(cellular compartments). The opposite pattern (silencing
in brain) is related to “apoptosis”, “cell death” and

similar terms (In GO:CC, the term differentially
enriched for this pattern is “intracellular”). This points
to a scenario where processes related to neuron develop-
ment are “activated” in brain while those related to cell
removal/turnover are “silenced”. For the fourth pattern,
the enriched terms are related to nucleotide metabolic
processes. The detailed results of this subset enrichment
analysis are available as Additional file 4.
The accumulation of these high-MI 5000 bp windows

in certain regions can also point to interesting sites. That
is, even if none of these windows is at the top of the list,
as the four we discussed above, the fact that they con-
centrate in a particular region of the genome could be
informative. Probably that region would show up scan-
ning with a larger window. The gene with the largest
number of high-MI windows is CSMD2. Fifty out of the
2991 windows match this long gene. This gene is in-
volved in the control of complement, and defects on it
have been associated with schizophrenia. The next gene
is CTNND2 (49 windows). This gene encodes an adhe-
sive junction associated protein involved in brain and
eye development, and it resides in a region of chromo-
some 5 deleted in the Cri du Chat syndrome, character-
ized by intellectual disability and microcephaly. The
other genes with high concentration of informative win-
dows are also related to brain in one way or another
(data not shown).
We used this “brain” dataset to evaluate the effect of

the number of available epigenomes on the performance

Fig. 2 Example of two genomic regions with an epigenetic pattern related to brain. The epigenetic state of each 400 bp portion (small boxes) is
indicated with colors (legend at the bottom). The two discussed regions (5000 bp windows) are highlighted, surrounded by their epigenomic
neighborhood. The sample classification is indicated with light blue (brain) and dark blue (others). The brain samples are further highlighted with
a box. The sample names are on the right, colored using the tissue-based color schema of the Roadmap Epigenomics Consortium
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of the method, since the “correctness” of the final set of
GO:BP enriched terms is easier to assess automatically
in this dataset (see Methods). Additional file 1: Figure S2
shows the variation of performance as we remove in-
creasing proportions of the input epigenomes. It can be
seen that the results are quite stable until we remove a
large proportion of the epigenomes (60%), a point where
it drops sharply. When 80% of the epigenomes are re-
moved, we either ended up without any brain sample in
the input set of epigenomes (i.e. no results are gener-
ated) or the results are bad and no brain-related GO:BP
terms showed up as enriched.

Fetal samples
We found 224 regions in the genome associated to this
phenomenon with the procedure described above (Add-
itional file 2), with chromosome 7 containing the largest
number of them (38), followed by chromosome X (22).
These windows overlap with 130 annotated genes. 20%

of them (44 regions) do not overlap with any gene.
These genes are enriched in biological functions related
to organism development and signal transduction, such
as “regulation of signal transduction”, “neurogenesis”,
“ossification” and morphogenesis of different organs
(Table 1). There are no “cellular compartment” (CC)
terms enriched with the cutoffs used. The whole list of
enriched terms is available in the Additional file 3, and a
graphical summary of these, generated with REVIGO
[29], in the Additional file 1: Figure S4.
The region with the highest score is Chr7:23385001–

23,390,000). Its epigenetic profile shows that it is being

transcribed in the fetal samples while heterochromatized
in most of the others (Fig. 3). This region overlaps with
intronic and exonic regions of gene IGF2BP3, an
insulin-like growth factor 2 mRNA binding protein that
repress the translation of that protein during late devel-
opment. The second window with highest score is
Chr2:11530001–11,535,000, which partially overlaps
with the long non-coding RNA LINC00570, of unknown
function. This region has the “enhancer” state in fetal
samples and a mixture of heterochromatin and tran-
scription in the others. The next region in the list, in
chromosome 8, show a similar epigenetic pattern and
there are not annotated genes on it. The fourth high
scoring window is again in chromosome 7 (130655001–
130,660,000) and has an epigenetic behavior opposed to
the first one discussed above: it is heterochromatinized
in the fetal samples while transcribing in most of the
others (Fig. 3). This window overlaps with a long
non-coding RNA induced by p53 (LOC378805). The
whole list of high scoring windows, split by chromo-
somes is available as Additional file 2.
The first and second genes commented above

(IGF2BP3 and LINC00570) also are those with the high-
est concentration of high-scoring windows (11 and 21
respectively), followed by IGF2BP1 (functionally similar
to IGF2BP3) with 7 windows.
Regarding the patterns of epigenetic change between

fetal and adult tissues in these windows, Fig. 5 shows a
plainer distribution than in the other two datasets, indicat-
ing that the preference for certain transitions is not so
clear. Nevertheless, the three most frequent transitions are

Fig. 3 Example of two genomic regions with an epigenetic pattern related to fetal samples. Same representation as in Fig. 2 for fetal samples (dark
blue) vs. others (light blue). By the Roadmap coloring of the samples it is evident that the “fetal” set contains now a variety of (fetal) tissues/organs
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those from transcription, enhancer and bivalent states
in fetal to heterochromatin in adult, followed by two
patterns representing a somehow opposite transition:
transcription in adult vs. heterochromatin/bivalent in
fetal. The GO terms associated to the windows within
these five subsets are related, respectively, to none,
extracellular matrix, neuron biogenesis/cell cycle, nu-
cleotide metabolic processes and ossification/immune
response (Additional file 4).

Cancer samples
In this case we detected 345 regions in the human gen-
ome, with chromosomes 1 and 2 inclosing the largest
number of them (33 each) (Additional file 2).
These regions overlap with 185 annotated genes.

Ninety-six regions (28%) do not overlap with any gene.
This set of genes is enriched in biological processes
clearly related to cancer, such as “cell cycle”, “mitotic cell
cycle”, “regulation of transcription involved in cell fate”
and “microtubule-based movement” (Table 1). The only
enriched GO_CC term is “kinesin complex”. As with the
other datasets, the whole list of enriched terms can be
found in the Additional file 3, and their REVIGO graph-
ical summary in Additional file 1: Figure S5.
There are five regions with the highest score (0.994)

and a p-value of 0.0, two of them in chromosome 7, and
the others in chromosomes 6 and 4. All overlap with
genes known or potentially involved in cancer: JAZF1
(transcriptional repressor for which chromosomal aber-
rations involving it are associated with stromal tumors),
PLXN4A (involved in cytoskeleton remodeling), SCML4
(involved in a complex required to maintain the tran-
scriptionally repressive state of homeotic genes through-
out development) and RBPJ (a transcriptional regulator
important in the Notch signaling pathway), respectively.
Figure 4 shows the epigenetic profiles for two of these

regions: those in chromosomes 7 and 6. In both cases
the epigenetic patterns would be in agreement with the
roles of the genes coded there. For example, the region

in chromosome 7 (gene JAZF1) is active in healthy tis-
sues, hence producing the transcriptional repressor,
while in cancer tissues it is heterochromatized and, con-
sequently, the repressor is not being transcribed.
In spite of these particular examples, in the cancer-

related genomic segments, globally the most frequent
patterns of epigenetic change between cancer and
healthy tissues are transcription (cancer) / heterochro-
matin (healthy) and bivalent (c) / heterochromatin (h)
(Fig. 5). The first pattern is differentially enriched in
terms related to neuron action potential, while there
are no differentially enriched terms for the second
(Additional file 4).
As with the other examples, the concentration of

5000 bp windows in a given gene is also informative.
The gene with the highest accumulation of windows is
LYST (14 windows), a lysosomal trafficking regulator
whose relationship with cancer is not evident. The next
one (10 windows) is KIF4A, a kinesin involved in main-
taining chromosome integrity during mitosis and organ-
izing the mitotic spindle prior to cytokinesis.

Discussion
While the DNA sequence of the human genome is virtu-
ally the same across all developmental stages, cell types
and tissues, its epigenetic state varies, largely contribut-
ing to this cellular phenotypic diversity. Consequently,
the massive epigenomic data that are being generated
are expected to enclose a lot of new information on
chromatin dynamics during development, cell differenti-
ation and disease. Resembling what happened with gen-
omic data, many computational approaches are being
developed to extract that information from the massive
epigenomic datasets.
The approach we present here allows to automatically

detect functional regions in the genome, as those with
patterns of inter-sample epigenetic variations correlated
with an external classification of these samples in an ar-
bitrary number of groups. Not only the regions are

Fig. 4 Example of two genomic regions with an epigenetic pattern related to cancer. Same representation as in Figs. 2 and 3 for cancer samples
(dark blue) vs. healthy tissues (light blue)
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detected but it is also possible to get insight into their
role by looking into more detail on their particular vari-
ation of epigenetic patterns (e.g. active in a group of
samples while inactive in others, enhancer, etc.).
Even if it is not an exhaustive test, the results of the

“downsampling” experiment with the brain dataset
seems to indicate that the method is quite robust to
missing data (i.e. lack of epigenomes). The results with
the cancer dataset, consisting only in 21 epigenomes,
points into the same direction. In any case, we expect
the epigenomic data to increase substantially in the
future.
The same set of samples can be used to extract differ-

ent types of functional regions as long as they can be
classified in different ways, as we showed here with three
orthogonal classifications of the same Roadmap Consor-
tium epigenomes. In this sense the method can be
regarded as “supervised”, as the sample classification is
provided by the user. This is a fundamental difference
with another approach for detecting genome regions
with a particular epigenetic pattern, ChromDet [22].
ChromDet is “unsupervised”, in the sense that it detects
the regions better reflecting the main tendencies in the
set of epigenomes given as input. Another difference is
that, due to its computational cost, the method pre-
sented here can be applied to large sets of epigenomes
and to exhaustively scan the whole genome in detail (i.e.
with small windows). In spite of being suitable for scan-
ning whole genomes, epigenetic information for the
whole human genome is not strictly required for this ap-
proach, and it could work with epigenetic data for a

limited region (across a set of samples), while ChromDet
requires whole (or very large) epigenomes for extracting
their main tendencies. The recently developed ChromS-
witch method [19] is also intended to locate regions
where certain epigenetic marks change drastically be-
tween two sets of samples and, as in our case, it can also
work with epigenomic information for a limited region.
Apart from using a totally different methodology, the
two main differences with the approach described here
are its limitation to two groups of samples and the fact
that it uses the raw quantitative epigenetic marks as in-
put, instead of a vocabulary of states. Consequently, all
these approaches complement each other in the search
for chromosomal regions with informative epigenetic
profiles.
Although we focused our large scale (enrichment-

based) evaluation on regions containing genes, the
method is intended to scan the whole genome and de-
tect functional non-coding regions such as enhancers,
regulatory regions, etc. Indeed, many of the regions we
detected do not overlap with genes. A more detailed in-
spection of them will be required to assess whether they
could be functionally or not (e.g. presence of binding
sites for transcription factors, functional RNAs, etc.)
The sliding-window approach allows scanning the gen-

ome with different window sizes and moving them at
different steps so that, for example, once a large segment
of interest is found, smaller windows could be used to
scan it in more detail.
As with many genomic studies, this approach still has

the problem of distinguishing correlation from causation

Fig. 5 Distribution of patterns of epigenetic change in the genomic segments detected for the three datasets. In the X axis, the patterns of epigenetic
change are represented. The top box shows the majority epigenetic state for the segment in the samples of a given class (brain, fetal or cancer), and
the box below that of the complementary set. The Y axis represents the proportion of detected genomic segments showing that particular pattern of
change for the three datasets. For example, 20% of the detected segments in the “fetal” dataset (gold) are in “enhancer” state (yellow) in the fetal
samples while “heterochromatized”(purple) in the adult samples
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[31]. It is difficult to assess whether the epigenetic be-
havior of the genomic regions we are detecting related
to a given phenomenon is a cause of that phenomenon
or just a consequence/marker of it. Further inspection of
the actual epigenetic patterns could shed light into this.
In the three datasets we found examples of windows
with both between-classes transitions: transcription >
heterochromatin and the other way around (heterochro-
matin > transcription), and in some cases these transi-
tions make sense in the light of the molecular processes
associated to the genes of the corresponding windows.
In case we can detect regions whose epigenetic variation
is causative for the studied phenomenon/disease, these
results would be useful for a field that is receiving in-
creasing attention, “epigenome editing” [31, 32]: i.e.
modify epigenetics by changing the DNA motifs respon-
sible for it (e.g. with CRISPR/Cas9) or by manipulating
the editing enzymes. In the second case, when the
detected epigenetic pattern is not causative of the
phenomenon but just a reflection of it, it could be used
as a marker to detect/monitor it.

Conclusions
The simple and scalable methodology presented here is
able to detect functional genomic regions related to a
given phenomenon using epigenomic information.
Paralleling what happened in genomics, we foresee a

large accumulation of epigenomes in the future, even at
the single-cell level [33]. So, methods such as that pre-
sented here, for mining that massive information and
translating it into knowledge, would be valuable.

Additional files

Additional file 1: Additional figures and data. Figures S1, S2, S3, S4 and
S5. Epigenome classifications for the three experiments. Detailed
description of all epigenomes used. (DOCX 425 kb)

Additional file 2: Full list of windows in all chromosomes for the three
experiments (in plain text and html format). The lists include the detailed
epigenetic profiles for the windows as well as links to inspect these in a
genome browser. (ZIP 973 kb)

Additional file 3: Full lists of GO enriched terms (BP: biological processes,
and CC: cellular compartment) for the three experiments, including the
genes overlapping with the detected windows within each GO term.
(ZIP 33 kb)

Additional file 4: Full lists of GO enriched terms (BP: biological processes,
and CC: cellular compartment) for the subsets of windows showing
particular patterns of epigenetic change (Fig. 5). (ZIP 72 kb)
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