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Abstract

Background: Genome-wide association studies (GWAS) have been successful in identifying disease-associated
genetic variants. Recently, an increasing number of GWAS summary statistics have been made available to the
research community, providing extensive repositories for studies of human complex diseases. In particular,
cross-trait associations at the genetic level can be beneficial from large-scale GWAS summary statistics by using
genetic variants that are associated with multiple traits. However, direct assessment of cross-trait associations
using susceptibility loci has been challenging due to the complex genetic architectures in most diseases, calling for
advantageous methods that could integrate functional interpretation and imply biological mechanisms.

Results: We developed an analytical framework for systematic integration of cross-trait associations. It incorporates
two different approaches to detect enriched pathways and requires only summary statistics. We demonstrated the
framework using 25 traits belonging to four phenotype groups. Our results revealed an average of 54 significantly
associated pathways (ranged between 18 and 175) per trait. We further proved that pathway-based analysis provided
increased power to estimate cross-trait associations compared to gene-level analysis. Based on Fisher's Exact Test (FET),
we identified a total of 24 (53) pairs of trait-trait association at adjusted prer < 1 X 1073 (prer < 0.01) among the 25 traits.

Pleiotropy abbreviations

Our trait-trait association network revealed not only many relationships among the traits within the same group but
also novel relationships among traits from different groups, which warrants further investigation in future.

Conclusions: Our study revealed that risk variants for 25 different traits aggregated in particular biological pathways
and that these pathways were frequently shared among traits. Our results confirmed known mechanisms and also
suggested several novel insights into the etiology of multi-traits.
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Background

Genetic variants that affect multiple traits are often called
pleiotropy [1]. It has been increasingly recognized that
pleiotropic effects are likely widespread in human com-
plex traits [1, 2]. For example, individuals carrying schizo-
phrenia risk alleles tended to be associated with increased
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risk of Crohn’s Disease and Ulcerative Colitis [3]; men
with cystic fibrosis are often infertile because of con-
genital absence of the vas deferens [4]. The past decade
has witnessed a wave of genome-wide association stud-
ies (GWAS), generating rich resources of genetic vari-
ants in large cohorts with various clinical phenotypes
or traits. GWAS data have been successful in identifying
disease-associated genetic variants, pinpointing biological
mechanisms, explaining heritability [5], and further, they
have greatly promoted the investigation of pleiotropy sys-
tematically. One of the most well-known loci is the Major
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Histocompatibility Complex (MHC) region on chromo-
some 6, which was identified to be associated with many
traits through GWAS [6]. Recently, Pickrell et al. used
large GWAS data to perform a systematic search for gen-
etic variants that influence pairs of 42 traits and to inter-
pret the associations [3]. Mancuso et al. introduced a
method to estimate the local genetic correlation based on
gene expression and utilized it to 30 traits [7]. We recently
applied functional and regulatory approaches to identify
novel regulatory variants in large-scale genome-phenome
(GWAS-PheWAS) studies [8]. Notably, the cross-trait as-
sociation is highly relevant, but not identical, to pleiotropy
because trait association derived from shared genetic vari-
ants does not require the underlying causal mechanism.
Yet pleiotropy occurs when a genetic variant causes
multiple traits. In this study, we utilized GWAS data to
estimate cross-trait association at the pathway level,
aiming to reveal biological and functional insights to-
wards the understanding of pleiotropic effects.

GWAS data provide systematic, unbiased measurement
of genome-wide variants. However, the marginal effect of
each single nucleotide polymorphism (SNP) is often small
to moderate, making it challenge to study cross-trait asso-
ciations at the SNP level. Furthermore, SNP level analyses
are typically less informative for biological interpretation.
For example, >80% of disease-associated variants identi-
fied from GWAS are located in non-coding regions and
for the few variants that are located in coding regions, the
biological mechanisms often remain unclear [9, 10]. There
is thus an urgent need for methods that could fill in the
gap between GWAS discoveries and clinical applications,
i.e, methods of precision medicine [11]. Grouping of mul-
tiple SNPs across genes or well-established pathways can
be beneficial to improve statistical power and gain insight
into a biological system [12—14]. Over the past few years,
numerous pathway enrichment methods have emerged
to greatly boost GWAS data discovery and better un-
derstanding of the molecular basis of phenotypes [15,
16], such as gene set enrichment analysis (GSEA) and
ALIGATOR (Association LIst Go AnnoTatOR) [17].
These algorithms have greatly contributed to investigate
the common associated pathways in different traits and
diseases. For example, the Network and Pathway Analysis
Subgroup of the Psychiatric Genomics Consortium (PGC)
has employed five pathway enrichment methods to study
the common pathways across multiple psychiatric disor-
ders, providing novel insights into the etiology of psy-
chiatric disorders [11]. However, methods to investigate
the combined effect of multiple SNPs, either at the
gene or the pathway levels, are universally subjected to
influential factors such as gene length, pathway size,
SNP density, and linkage disequilibrium (LD) [18, 19].
In addition, such strategies have not been extended to
cross-trait associations systematically.
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In this work, we collected GWAS summary statistics
data for 25 traits and developed an analysis framework
to investigate the cross-trait associations using two com-
plementary pathway-based enrichment analysis methods.
We utilized a comprehensive annotation of pathways
while controlling for pathway redundancy. Our results
reported molecular pathways that were implied by gen-
etic variants underlying multiple traits and provided in-
sights for the understanding of cross-trait association
and future clinical applications.

Results

Analysis workflow

Figure 1 illustrated our analysis framework. We started
with the GWAS summary statistics for 25 traits down-
loaded from nine consortia. We grouped these traits into
four general groups (Table 1): (i) six anthropometric and
social traits: Body Mass Index (BMI), Bone Mineral
Density in Female Neck (FN-BMD), Bone Mineral Dens-
ity in Lumbar Spine (LS-BMD), Educational attainment
(EDU), Height, and Waist—Hip Ratio (WHR); (ii) three
immune-related traits: Crohn’s Disease (CD),, Rheuma-
toid Arthritis (RA), and Ulcerative Colitis (UC); (iii) 10
metabolic traits: Age At Menarche (AAM), Coronary
Artery Disease (CAD), Fasting Glucose (FG), Fasting
Insulin (FI), High-density Lipoproteins (HDL), Low-
density Lipoproteins (LDL), Total Cholesterol (TC),
Triglycerides (TG), Type 1 Diabetes (T1D), and Type 2
Diabetes (T2D); and (iv) six neurological/neuropsychi-
atric phenotypes: Alzheimer’s disease (ALZ), Attention
Deficit-Hyperactivity Disorder (ADHD), Autism Spectrum
Disorder (ASD), Bipolar Disorder (BD), Major Depressive
Disorder (MDD), and schizophrenia (SCZ). We summa-
rized features of these datasets in Table 1, including sam-
ple size, the number of SNPs available with statistical
significance, and the publication year. All data were con-
ducted using samples of European ancestry. The number
of SNPs with summary statistics ranged from ~ 1 million
to ~ 12 million per trait.

Our ultimate goal is to investigate the shared genetic
components of multiple traits at the pathway level. To
this end, we employed two methods to conduct the
pathway-based analysis, PASCAL (PAthway SCoring
ALgorithm) [12] and INRICH (INterval-based enRICH-
ment) [20]. PASCAL evaluates pathways based on the
combined effect of multiple variants and genes, which
may individually represent weak associations with the
investigated trait [12]. Conversely, INRICH considers
genes by using the most significant SNP located within
the gene and detects pathway enrichment based on
genes with strong association [20]. We chose SNPs with
p-value < 0.01 for the following analysis. A comprehen-
sive collection of pathways was included, consisting of
1077 pathways from BioCarta, KEGG, and Reactome
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Fig. 1 Overview of the analysis workflow. Details are provided in the Materials and methods section

databases. To reduce the redundancy among pathways,
we conducted pairwise comparison and chose those
pathways with size within the range of 10-200 genes
and sharing no more than 30% genes with other path-
ways. This step resulted in 355 pathways considered as
nearly non-redundant, including 79 BioCarta, 67 KEGG,
and 209 Reactome pathways. Pathways that were identi-
fied as significantly associated with a trait by both
methods were considered as with robust evidence. We
calculated a combined p-value for each pathway using
Fisher’s combined probability test [21]. With these
combined p-values per pathway per trait, we then ap-
plied Fisher’s Exact Test (FET) to estimate whether any
two traits shared a significant number of pathways that
were significantly associated with each of them. We
used Benjamini and Hochberg’s method [22] to correct
multiple tests.

Pathway enrichment analysis

To explore the pathways that were respectively identi-
fied as significantly associated with each trait by PAS-
CAL and INRICH, we conducted a multi-dimensional
scaling (MDS) analysis [23]. As shown in Fig. 2, traits
from the same group in general were located closer to
each other than to traits from different groups. For ex-
ample, immune-related traits CD and UC as the most
common forms of inflammatory bowel disease (IBD)
and RA formed a unique cluster that was quite distinct
from other trait groups based on both the PASCAL re-
sults and the INRICH results, as well as the combined
method. The other three groups did not show clear
boundaries in location but a trend of cluster was ob-
served. For example, in the PASCAL results, 7 out of

10 metabolic traits were distinguishable from other
groups, while T2D, FI, and FG were scattered in other
areas. In the combined results, the six anthropometric and
social traits formed a concise cluster that can be visually
identified, although their locations in the MDS plot over-
lapped with the metabolic traits and neurological/neuro-
psychiatric traits. The six neurological/neuropsychiatric
phenotypes were not closely located in all three result sets,
but sub-clusters were observed. For example, SCZ and BD
were relatively closer to each other in all cases, which is
consistent with previous reports that shared genetic liabil-
ities exist between SCZ and BD [24]. ALZ appeared as an
outlier located far away from any other neuropsychiatric
traits. This is expected because, although all six traits are
neurological/neuropsychiatric related, ALZ is the only
neurodegenerative disease that involves the degeneration
of multiple regions in brain. Thus, the pathways involved
in ALZ are likely different from those involved in ADHD,
ASD, BP, MDD, and SCZ.

Although PASCAL and INRICH differ in the selection
of gene signals and the association tests, the results from
the two methods are overall consistent and the main pat-
terns were reproducible. The number of trait-associated
pathways identified by PASCAL and INRICH showed a
spearman correlation of 0.621 (p-value =7 x 10~ %), indi-
cating the robustness of our results. For example, the im-
mune group tended to have more pathways than other
disease groups did and this trend was detected by both
methods.

The most significant pathways associated with traits
To further explore what pathways were associated with
each trait, we identified the most significantly associated
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Table 1 Summary of the 25 traits
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Phenotype Abbreviation  # individuals (cases/controls, if applicable)  # Total SNPs ~ # Sig. SNPs'  Generation year
1 Neurological/Neuropsychiatric phenotypes
Alzheimer's disease ALZ 17,008 / 37,154 7,055,881 108,745 2013
Attention deficit-hyperactivity disorder ~ ADHD 1947 trio / 1947 trio & 840 / 688 1,230,535 13,120 2013
Autism spectrum disorder ASD 4788 / 4788 1,245,864 15,781 2013
Bipolar disorder BD 6990 / 4820 1,233,533 18,723 2013
Major depressive disorder MDD 9227 / 7383 1,232,793 14,864 2013
Schizophrenia SCZ 9379/ 7736 1,237,958 24,361 2013
2 Anthropometric and social traits
Body mass index BMI 322,154 2,554,637 63,111 2015
Bone mineral density (femoral neck) FN-BMD 32,735 10,586,899 117,114 2015
Bone mineral density (lumbar spine) LS-BMD 28,498 10,582,866 120,390 2015
Educational attainment EDU 293,723 8,146,840 311,622 2015
Height HEIGHT 253,288 2,550,858 239,924 2014
Waist-hip ratio WHR 142,762 2,560,788 38,995 2015
3 Immune-related traits
Crohn’s disease (@b 5956 / 14,927 12,276,505 185,729 2015
Rheumatoid arthritis RA 18,136 / 49,724 8,747,962 122,601 2014
Ulcerative colitis uc 6968 / 20,464 12,255,196 181,092 2015
4 Metabolic phenotypes
Age at menarche AAM 182416 2,441,815 44,202 2015
Coronary artery disease CAD 22,233/ 64,762 2,420,360 41,279 2011
Fasting glucose FG 46,186 2,470,476 32,818 2010
Fasting insulin Fl 38,238 2,461,105 30,044 2010
High-density lipoproteins HDL 99,900 2,692,429 39,833 2010
Low-density lipoproteins LDL 95,454 2,692,564 40,261 2010
Total cholesterol TC 100,184 2,692,413 44112 2010
Triglycerides TG 96,598 2,692,560 40,574 2010
Type 1 diabetes D 9934 / 16,956 2,048,237 45,430 2011
Type 2 diabetes 12D 12,171 / 56,862 2,473,440 39,081 2012
'Significant SNPs (p < 0.01)
PASCAL MDS INRICH MDS Combined MDS
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Fig. 2 Multi-dimensional scaling (MDS) plot for all 25 traits using the results of PASCAL, INRICH, and the combined method. The x-axis and y-axis
represent the first and second dimension from MDS results, respectively. The ellipse indicates the confidence limit standard deviations at 0.95
multiplied with the corresponding value found from the chi-squared distribution with 2 degrees of freedom
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pathway in each trait. Figure 3 summarizes the whole
distribution of all pathways by traits. The detailed re-
sults were provided in Additional file 1: Table S1. At
Pecombined < 0.01, we found an average of 54 pathways
per trait (ranged between 18 and 175). Among them,
only HDL and BD had <25 disease-associated path-
ways. LS-BMD, CD and UC each had more than 100
disease-associated pathways. Interestingly, the most sig-
nificant pathways of traits that belong to the same cat-
egory tended to be the same or similar. For example,
in neurological/neuropsychiatric traits, the KEGG
pathway “arrhythmogenic right ventricular cardiomy-
opathy (ARVC)” was the most significantly associated
with ADHD (pcombined =1.52x 10" 5)’ ASD (pcombined =
8.76 x 107 °), and MDD (Pcombined = 4.25 x 10~ °). The
ARVC pathway describes several processes that are re-
lated to heart failure, arrhythmia, and sudden death.
Although the pathway itself did not show a clear rela-
tionship with neurological/neuropsychiatric traits, sev-
eral genes in this pathway are frequently observed to
be associated with neuronal and brain functions, such
as calcium voltage-gated channel subunit genes (CAC-
NAIC, CACNAID), catenin genes (CTNNA1, CTNNA2)
and SLC8A1. The ARVC pathway has also been previously
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observed in SCZ [19] and MDD [25]. Among the immu-
ne-related traits, the KEGG pathway “JAK-STAT signal-
ing pathway” was ranked the most significant in CD
(Peombined = 2.76 x 1077), RA (Peombined = 1.62 x 10™°), and
UC (Peombined = 248 x 10~ ). This pathway has been previ-
ously reported to be involved in the adaptive and mucosal
immunity as well as epithelial repair and regeneration
[26-28] and is biologically relevant with those
immune-related traits. Among the metabolic traits, the
Reactome pathway “HDL mediated lipid transport” was
found as the most significant pathway in HDL (Pcombined
=293 x10"°) and TC (Peombined = 7.72 x 10~ °), while an-
other much related pathway from Reactome, “chylo-
micron mediated lipid transport”, was mostly associated
with TG (Peombined = 1.31 x 1076).

Genes in the most significantly associated pathways

We next examined the individual genes in each of the
most significantly associated pathways. We chose those
genes that had a gene-based p-value as calculated by
PASCAL (denoted by pgene) less than 1 x 10” * For the
most significantly associated pathways in each of the 25
traits, an average of 13 genes had pgene<1x10° 4
ranged between 2 (SCZ and LDL) to 69 (HEIGHT).

~

-log10 p-value
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1 | 1 | |
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Fig. 3 Distribution of pathway-based analysis results in each trait. The x-axis represents the -log; transformed pcompined for pathways. The most
significantly associated pathway with each trait was labeled. The first letter in each pathway name indicates the sources (K for KEGG, R for Reactome,
and B for BioCarta, respectively)
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The ratio of genes with pgene <1 x 10" * in each path-  Seven genes were significant in two traits. Each trait has
way ranged between 3.8% (AAM) and 60% (HDL), one or two private genes that were uniquely associated
with an average 19% (Additional file 2: Table S2). For  with the trait itself but not with other traits. Similarly, we
example, in the KEGG pathway “folate biosysthesis”,  chose the JAK-STAT signaling pathway to examine shared
which was the most significantly associated pathway genes for the three immune-related traits (Fig. 4b). There
with SCZ (ppascar =9.99 x 10™%, prnrich =4.30x 107 were 155 genes in this pathway, in which 55 genes were
2 Pcombined = 4.80 x 107 4, there were only two genes associated with at least one trait at pgene <1 x 10~ * We
that were significantly associated with the trait at the checked the genes that were associated with multiple
gene level: SPR (pgene = 5.02 x 10~ ®) and GGH (Pgene = traits as well as the genes that were uniquely associated
8.06 x 10 °). In contrast, in the Reactome pathway with one single trait. Notably, seven genes from this
“HDL mediated lipid transport”, which was most sig- pathway were found to be associated with all three
nificantly associated with HDL (ppascar =3.39 x 10~ 7, traits: ILI2RB2 (location in the human genome:
PmvricH = 0.52, Peombined = 2.93 x 10” %), nine out of 15 1p31.3), IL2 (4q27), IL21 (4q27), IL23R (1p31.3), IL2RA
genes (60%) in this pathway showed gene-based sig- (10p15.1), LIF (22q12.2), and TYK2 (19p13.2). Among
nificance (Pgene <1 x 10~ . them, IL12RB2 was previously reported to be associated

One of the advantages of pathway-based analysis is  with an autoimmune disease Systemic Lupus Erythema-
that the combined effect of multiple genes, instead of tosus in Chinese population [29]; IL21 plays key roles
the effects of each individual gene, was examined for in humoral immunity and autoimmune diseases [30];
disease association. We thus asked whether the same IL23R is located in a genomic region that is associated
genes contributed to the disease association at the  with RA [31]; and TYK2 had been considered as a poten-
pathway level. For the neurological/neuropsychiatric tial drug target for certain common autoimmune disor-
traits, we chose the ARVC pathway as an example since  ders [32]. However, these seven genes only accounted for
this pathway was most significantly associated with 3  13% of all (55) associated genes in the “JAK-STAT signal-
out of the 6 traits (the combined p-value: pa;z=4.35x  ing pathway”. Another 14 genes showed gene-based sig-
1072, Papup = 1.52x 107 5 Pasp =8.76 x 107 > pep =  nificance across two intestinal diseases (CD, and UC), but
6.44x107%  pupp=425x10"°% pscz=7.49x10"%). not RA. Nevertheless, there were genes private to each
There were a total of 76 genes in this pathway. As shown of the three traits that were contributive to the path-
in Fig. 4a, a total of 15 genes had gene-based significance ~ way, implying heterogamous genetic risks at the gene
(Pgene <1x10™%) in at least one neuropsychiatric trait. level which converged at the pathway level. By exploring

ASD

A) B)

ADHD

SLC8A1

SCZ' MDD

uc

Fig. 4 Venn diagram to compare genes in the most significantly associated pathway. a Trait-associated genes (pgene < 1 X 1077 from five
neuropsychiatric traits in the ARVC pathway. b Trait-associated genes from three immune-related traits in the JAK-STAT signaling pathway
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the disease-associated pathways in all the 25 traits, we
found that in most cases, the enrichment of pathway
was due to the combined effect of multiple genes, ra-
ther than being driven by single genes.

Cross-trait association at the pathway level

We next explored how multiple traits were related at
the pathway level. We first conducted a preliminary
screen using the full-spectrum of p-values for all path-
ways and the hierarchical clustering analysis. As shown
in Additional file 3: Figure S1, we observed an obvious
trend that biologically relevant traits tended to cluster
together. To accurately estimate the functional overlap-
ping of genetic variants at the pathway level, we next
exploited FET for all possible pairs of traits. Results
from FET were summarized in Additional file 4: Table
S3, including the lists of shared pathways and all statistics.
The magnitude of overlapping pathways varied greatly. At
adjusted pper <1 x 10~ 3 the number of shared significant
pathways (Pcombineda < 0.01) between any pair of traits
ranged between 12 (FG and FI) to 99 (UC and CD). These
shared pathways proved that trait-associated genetic
variants indeed converged on functional pathways that
potentially contributed to the traits. Because these
pathways were nearly non-redundant (i.e., with <30%
overlapping genes per pair), they represent assessment
of independent functional processes.

Using hierarchical clustering, the 25 traits could be
visually distinguishable through forming sub-groups that
were quite consistent with their pre-assigned group la-
bels (Fig. 5). The immune-related traits all clustered with
each other and they are closest to the anthropometric
and social group. The anthropometric and social traits
also formed a sub-group, except BMI that was distantly
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located. The immune group and the neurological/neuro-
psychiatric group were close to each other, which was
expected because many previous works have reported
that immune related processes are widely involved in
several neurological/neuropsychiatric traits such as SCZ
[33] and ALZ [34].

To further explore which pathways contributed to the
trait associations, we next examined the 20 most signifi-
cantly associated pathways within each group of traits
(ordered by the average pcombined aCross traits within
group, Additional file 5: Figure S2). In the neurological/
neuropsychiatric trait group, we found several pathways
that were shared by multiple traits and were also previ-
ously implicated. For example, the KEGG “calcium sig-
naling pathway” (parz=5.59 x 10~ %, Papup = 2.96 x 10~
Y pasp=1.88x10"", ppp=8.61x10"", pypp = 6.20 x
107>, pscz=1.62x1072), the KEGG “axon guidance”
pathway (parz =1.07 x 10™%, papup = 8.12x 10™%, pasp =
6.22x10™% ppp =1.13x 10", pypp = 2.62 x 1073, pgcy =
2.05 x 10~ %), the “alanine aspartate and glutamate metab-
olism” (parz=9.60x10"3, papup =822x107% pasp =
1.22x 1072, ppp =531 x 10" >, pypp = 6.93 x 1072, pscy =
1.70 x 10™2), and “the voltage gated potassium channels”
(Parz=2.04x10"3, papup=233x10"% pasp=3.16x
10~ pep = 2.86 x 10”2, pyipp = 469 x 1073, pscz = 5.80 x
10"?) were nominally significantly associated with mul-
tiple traits and were all previously implied in neuropsychi-
atric disorders [19, 35]. In the metabolism group, we
observed pathways related to lipid metabolism and were
shared by all four traits: “chylomicron mediated lipid
transport” (pupr = 3.54 x 10~ Y poL=1.09x1073 prc=
1.09x10°% prg=132x10"°, “HDL mediated lipid
transport” (pypr =2.93 x 10~ Y poL=197x10"3, prc=
7.72x107%, prg =271 x 10~ °), “alpha Q signaling events”
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(Pupr =2.35x 1073, pipL =316 x 1072, prc=3.12x 1073,
prc=175x10"3%), and “ubiquitin mediated proteolysis”
(PrpL = 1.96 x 107 %, prpL=892x 107 % prc=9.90 x 10”4,
prg=275x1073).

To better represent the relationship among the multi-
traits, we built a trait-trait association network based
on the FET result using two thresholds: adjusted pggt <
1x 10”2 (referred as highly significantly connected net-
work) and adjusted pper < 0.01 (referred as moderately
significantly connected network). After applying the ad-
justed prpr <1 x 1073 (Fig. 6a), we observed strong as-
sociations (i.e., edges) among pairs of immune-related
traits and anthropometric and social traits. The immune
related traits in general had more associated pathways in-
dividually and more shared pathways across traits (Fig.
6¢). UC and CD as the two most common form of IBD
shared 99 pathways (adjusted pppr =8.30 x 10~ Y. In
addition, we observed crosstalk between bone mineral
density (LS-BMD and FN-BMD) and immune-related
traits (UC and CD) [36]. FN-BMD shared 25 to 68
pathways with traits from other groups (i.e., UC, CD,
T1D, T2D and MDD). This observation is consistent
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with increased likelihood of osteoporosis among those
with type 1 diabetes from the civilian community in the
United States [37]. We observed 25 shared pathways
between FN-BMD and MDD. This strong sharing, al-
though unexpected, had some support from previous
work that bone mineral density was reduced in patients
with depressive disorders [38]. For other closely related
traits, we found LDL and TC shared 18 pathways (ad-
justed prer =2.29 x 10™ %) and FG and FI shared 12
pathways (adjusted pper = 7.36 x 10”%). Interestingly, at
adjusted prer <1 x 10~ 3 we did not observe any signifi-
cant association among neurological/neuropsychiatric
traits, although association between ALZ, ADHD, and
MDD with traits of other groups were observed (e.g.,
MDD versus FN-BMD, ADHD and FG).

When we used a relaxed threshold (adjusted prgr <
0.01), we observed more associations (Fig. 6b). In addition
to the immune-related group and the social related group,
traits from the metabolic group and traits from the
neurological/neuropsychiatric group were each found
to have strong within-group connections. For example,
SCZ shared 11 pathways with ALZ (adjusted pper=
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3.89 x 10™3) and MDD and ADHD shared 13 pathways
(adjusted ppg =5.61x 10~ 3. Interestingly, SCZ and UC
shared 25 associated pathways (adjusted ppgr =1.52 x
10~3). This observation is consistent with increased
rate of autoimmune diseases in schizophrenia patients
in Denmark [39, 40] and with molecular evidence for a
partial autoimmune etiology for schizophrenia [41]. Fi-
nally, BD and BMI shared 8 common associated path-
ways (adjusted pppr =4.59 x 107 %), where BD patients
were found with higher BMI and increased metabolic
comorbidity in previous studies [42]. ALZ and CAD
had 10 common associated pathways (adjusted ppgr =
5.94 x 10”3), consistent with the previous finding that
many cardiovascular risk factors are shown to increase
the risk of dementia and ALZ [43]. Figure 6c¢ illustrated
the total number of associated pathways for each trait.

Discussion

During the past decade, large-scale GWAS data for com-
plex diseases and traits have been growing at an unpre-
cedented rate [44]. While conventional GWAS analyses
apply genome-wide significance thresholds (e.g., 5 x 10~
8) to select genetic variants for further investigation [45],
pathway-based analysis presents a complementary way
to explore GWAS data by examining groups of func-
tional related genes for their combined effects, and thus,
it has the improved power and interpretability [14, 18,
19, 25, 35, 46]. In this study, we take the advantage of
pathway-based analysis to study cross-trait associations.
We developed a pipeline to integrate pathway enrich-
ment results from two independent methods using
large-scale GWAS summary statistics for 25 traits. The
two methods differ in their assumptions and individual
strengths and thus, provided complementary assessment
of trait-associated pathways. Further boosted by the
Fisher’s combined probability test and trait-trait associ-
ation network, we examined shared pathways, contribut-
ing genes, and cross-trait associations. Our results
provided insights into the functional association based
on genetic variants and can be extended when more
GWAS summary data are made available in future.

Our primary goal was to use individual variants found
to be associated with multiple traits to identify shared bio-
logical pathways between traits, as we hypothesized that
similar or related pathways are likely underlie the patho-
genicity of related traits. In our results, we found the
immune-related traits shared many trait-associated path-
ways. This finding was consistent with previous studies
that immune-related traits tended to have many genetic
markers with common function in immunity and inflam-
mation [3]. In addition, we observed a number of highly
relevant relationships between multiple complex traits by
associated pathway enrichment results, while most genes
in the pathway did not show significant overlap. For
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example, the anthropometric trait, FN-BMD, was found to
share pathways with traits from other groups such as T1D
[47], T2D [48], MDD [38] and UC [36]. Although such
associations have been reported before, the underlying
mechanisms remain unknown. Through our analyses, we
not only presented further evidence at the pathway level
to these associations, but also revealed biological pathways
in which the genetic variants converged. For example,
EN-BMD shared 27 pathways with T1D and 27 pathways
with T2D respectively; among them, 9 pathways were
shared among all three traits. Overall, we demonstrated
that biologically relevant traits had stronger sharing at the
pathway level than at the gene level and our pathway re-
sults would provide further interpretation of genetic vari-
ants that drive the cross-trait associations.

Our work has several limitations. First, the current
pathway resources that are publically available and
widely used in the field such as KEGG unavoidably have
limitations such as low resolution in defining biological
pathways, relatively few genes compared to genome-
wide datasets, overrepresentation of well-known path-
ways versus underrepresentation of pathways attracting
less common interests, and lack of tissue and cell speci-
ficity, among others. All our analyses were confined
with these limitations. Second, we used 3 pathway data-
bases to increase the use of annotated pathways. How-
ever, many pathways may be redundant when more
pathways are included. We evaluated and removed
those highly redundant pathways (30% gene). This may
exclude lots informative pathways in our analyses.
However, Fisher’s Exact Test used in this study still
with limitation as all associated pathway are not com-
pletely independent. Therefore, it is still a difficult task
to balance the pathway independence and information.
Third, pathway-based analysis can only evaluate genetic
variants located in gene regions but ignore the majority
of variants located in the non-coding regions. As a re-
sult, there is information lost for variants located at
non-coding regions or genes without any pathway in-
formation. Fourth, our work focused on common vari-
ants based on genotyping arrays and imputation, with
MAF > 0.05. Inferences from rare variants may also
provide insights into cross-trait association but were
not investigated in our work (e.g., for traits under
strong negative selection [5, 49]). Despite these chal-
lenges, our work provides a complementary way to
utilize GWAS data to study cross-trait associations at
the pathway level, which is a promising strategy to dis-
cover novel biological insights underlying complex traits.

Conclusions

We presented an integrative framework to systematically
investigate cross-trait associations using GWAS summary
statistics for 25 traits using pathway-based analysis. Our
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results revealed trait-associated pathways individually and
in common, highlighting associations both within and
across trait groups. We observed a significant proportion of
pathways shared by the immune-related traits and an-
thropometric and social traits, and a number of moderately
significant correlations within neurological/neuropsychi-
atric disorder and metabolic phenotypes. Interestingly,
more than half of the associations were cross trait groups.
We also constructed a novel trait-trait association network
to better examine the genetic association at the pathway
level. These results collectively shed lights on the molecu-
lar pathways underlying complex traits, both related or
unrelated traits. The results warrant further investigation
of function of critical nodes (genes) or validated when
more data become available.

Methods

Data collection

GWAS summary statistics were downloaded for 25
different traits from International Genomics of Alz-
heimer’s Project (IGAP, http://web.pasteur-lille.fr/en/
recherche/u744/igap/igap_download.php), Genetic Factors
of Osteoporosis (GEFOS, http://www.gefos.org) consor-
tium, The Genetic Investigation of ANthropometric Traits
(GIANT, https://portals.broadinstitute.org/collaboration/
giant/index.php/Main_Page), International Inflammatory
Bowel Disease Genetics Consortium (IIBDGC, https://
www.ibdgenetics.org/downloads.html), Meta-Analyses of
Glucose and Insulin-related traits Consortium (MAGIC,
https://www.magicinvestigators.org), Psychiatric Genom-
ics Consortium (PGC, http://www.med.unc.edu/pgc),
Reproductive Genetics Consortium (ReproGen, [50])
and Social Science Genetic Association Consortium
(SSGAC, https://www.thessgac.org). These traits span a
wide range of phenotype measurements categorized into
four groups. We used the samples of European ancestry.
For genotyped SNPs, we removed those with minor allele
frequency (MAF) < 0.05. Wherever applicable, we mapped
GWAS summary data to the hgl9 human assembly using
liftOver software [51].

Pathway enrichment analysis

In our analysis using PASCAL, we chose SNPs with
nominal significance of association (GWAS p-value <
0.01). This is a commonly used strategy to find SNPs
with weak or moderate association signals before they
can be integrated for further analysis at the pathway
level [19]. SNPs were mapped to genes if they were lo-
cated within a range of 50 kb upstream or downstream
of genes’ transcription start sites. PASCAL employs a
chi-squared method that takes into account of LD, gene
length, and SNP density [12]. INRICH [20] considers
SNPs that are associated with a trait at p-value <1 x 10™*
(in our case, we used p-value <1x 10" %) and generates
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independent genomic intervals for the enrichment test.
The Plink clumping function was employed, taking the
1000 Genomes Project European panel as the reference
and the following parameters: r* = 0.2, maximum distance
between a pair of SNPs is 1 Mb. The aim to generate
LD-independent intervals was to ensure that SNPs located
adjacent in the human genome are analyzed as one inde-
pendent unit as they might tag the same causal variants.
INRICH overlaps the independent intervals with the
pre-defined pathways and calculate an enrichment statistic
E for each pathway, where E is the number of intervals
that overlap at least one target gene in the pathway. To es-
timate the significance of E, a permutation test is con-
ducted to generate a null set of intervals which match the
interval size, overlapping gene, and SNP density to the ori-
ginal input intervals [52]. We chose to generate 1000 rep-
licates to calculate the empirical p-value for each pathway.

With the successful accomplishment of both PASCAL
and INRICH, we had two p-values for each pathway in
each trait, testing the same hypothesis that whether an in-
vestigated pathway is associated with the trait of interest.
Thus, we introduced the Fisher’s combined probability test
to calculate a combined p-value for each pathway in each

treat as follows: y3, = —222(:1 In(p,), where x* follows a
chi-squared distribution with 2 k degrees. In our case k = 2.

Reduce redundancy among pathway annotations

From an initial compiled set of 1077 pathways across
three gene set databases (KEGG, BioCarta, Reactome),
we restricted downstream analyses to 1032 pathways of
size 10-200 genes. We further removed pathways that
showed substantial redundancy, i.e., any two pathways
sharing more than 30% genes (# shared genes /max{#
genes in pathway A, # genes in pathway B}) were identi-
fied and the larger pathway would be retained. Finally, a
total of 355 pathways assumed as non-redundant were
obtained and used for follow up analysis, including 67
KEGG, 79 BioCarta and 209 Reactome pathways.

Cross-trait association based on trait-associated pathways
To assess whether a pair of traits share pathways higher
than chance expectation, we first determined the path-
ways that were significantly associated with each trait
(Peombined < 0.01), followed by Fisher’s Exact Test. Specif-
ically, for two traits a and b, we build a dichotomous
2 x 2 contingency table as follows:

Trait b
Trait a |[AnB| | AnB |
| AnB | | AnB |

Here, A denotes the set of pathways significantly
associated with trait 2 and B denotes the set of pathways
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significantly associated with trait b. The format |e|
indicates the number of records referred by «. |[AnB|
denotes the number of pathways significantly associated
with both traits @ and b, | AnB |and | AnB | denote the
number of pathways showing association only in trait b or
a, respectively, and | AnB | represents the number of
pathways that are not associated with either trait. We
used Fisher’s Exact Test to estimate whether two traits
shared overrepresented pathways.

Hierarchical clustering was then conducted based on
the FET results. We used Spearman distance and ward
linkage aggregation. Heatmaps were created using the
ComplexHeatmap package in R. In our analysis, we
consider a level of significance with adjusted p <0.01
using the Benjamini and Hochberg’s method [22] to
correct multiple tests.
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