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Abstract

regulation.

hESC-derived lineages and 15 human primary tissues.

Background: Epigenome is highly dynamic during the early stages of embryonic development. Epigenetic
modifications provide the necessary regulation for lineage specification and enable the maintenance of cellular
identity. Given the rapid accumulation of genome-wide epigenomic modification maps across cellular differentiation
process, there is an urgent need to characterize epigenetic dynamics and reveal their impacts on differential gene

Methods: We proposed DiffEM, a computational method for differential analysis of epigenetic modifications and
identified highly dynamic modification sites along cellular differentiation process. We applied this approach to
investigating 6 epigenetic marks of 20 kinds of human early developmental stages and tissues, including hESCs, 4

Results: We identified highly dynamic modification sites where different cell types exhibit distinctive modification
patterns, and found that these highly dynamic sites enriched in the genes related to cellular development and
differentiation. Further, to evaluate the effectiveness of our method, we correlated the dynamics scores of epigenetic
modifications with the variance of gene expression, and compared the results of our method with those of the
existing algorithms. The comparison results demonstrate the power of our method in evaluating the epigenetic
dynamics and identifying highly dynamic regions along cell differentiation process.
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Background

Lineage specification and maintenance of cellular iden-
tity are complex biological processes [1]. It is now widely
accepted that cell phenotypes are significantly regulated
by epigenetic states and that chromatin changes during
differentiation contribute to the determination of cell fate
[2]. Recent evidence further shows that coordinated epige-
netic changes influence the maintenance of such cellular
memory [3, 4]. DNA methylation and certain epigenetic
modifications are essential for chromatin structures and
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gene expression in proper execution of developmental
programs [5, 6]. Therefore, a fundamental question in the
field is to exactly answer where and how the epigenetic
changes regulate phenotypic changes.

To fully understand the dynamics and regulatory roles
of epigenetic modifications, advanced sequencing tech-
nologies have generated genome-wide epigenetic maps of
diverse developmental stages, lineages and tissues [7, 8].
In previous studies, researchers have differentiated human
embryonic stem cells (hESCs) into mesendoderm, neu-
ral progenitor cells, trophoblast-like cells, and mesenchymal
stem cells and systematically sequenced the transcriptome
and epigenetic modifications of these lineages [9, 10].
The first three hESC derivatives reflects critical devel-
opmental linages in the embryo [11]. Mesenchymal stem
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cells have the ability of further multi-lineage differentia-
tion to bone, cartilage, adipose, muscle, and connective
tissues [12]. Mouse embryonic stem cells were also dif-
ferentiated into a variety of precursor cell types [13]. The
expanding body of epigenomic data permits researchers
to study the dynamics of epigenetic marks. This is a key
step to reveal regulatory roles of epigenetic modifica-
tions, and to understand how global features of epigenetic
modifications impact cellular phenotypes across different
developmental stages, lineages and tissues.

Most previous works focused on comparing the epige-
netic modification profiles between two biological condi-
tions, and further identifying regions that show differen-
tial patterns, such as ChIPDiff [14], diffReps [15], dPCA
[16], HistoneHMM [17], csaw [18] and HMCan-diff [19].
While some other methods such as dAMCA [20] and Yang’s
method [21], were designed to detect cell-type-specific
differential regions. Moreover, there are also some meth-
ods that were designed for identifying differential methy-
lated region, such as QDMR [22] and MethylAction [23],
whereas QDMR can also be applied to histone modifica-
tion data analysis. Although several algorithms have been
developed to analyze the epigenetic difference between
two different conditions, little work devoting to differen-
tial analysis of epigenetic modifications among multiple
cell types and across different developmental stages.

Here, we presented DiffEM, a computational method to
quantify the dynamics of epigenetic marks and identified
highly dynamic modification sites (HDMSs) across differ-
ent human embryonic developmental stages. We applied
this method to a public datasets with 6 intensely stud-
ied epigenetic marks of 20 different developmental stages
and tissues. We identified HDMSs where different cell
types exhibit distinctive epigenetic modification patterns,
and found that these highly dynamic sites are enriched
in genes related to cellular development and differentia-
tion. We further correlated the dynamics scores of these
epigenetic marks with those of gene expression levels.
The results indicate that the changes of gene expres-
sion are closely related to the modification patterns of
H3K4mel and H3K27me3 in promoter regions during cell
differentiation process. We compared DiffEM with the
existing algorithms for identifying HDMSs. The compari-
son results show that DiffEM perform better in evaluating
the epigenetic dynamics and identifying highly dynamic
modification sites. This method is promising for broad
applications in evaluating epigenetic dynamics in other
complex biological processes.

Materials and methods

Datasets

To analyze the dynamic epigenetic changes during cellu-
lar differentiation and lineage specification, we obtained
a large panel of epigenetic maps of human embryonic
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stem cells (hESCs) and the key derivatives, including
trophoblast-like cells (TBL), mesendoderm (ME), neu-
ral progenitor cells (NPCs), and mesenchymal stem cells
(MSCs). The iHMS [24] database has integrated mas-
sive genome-wide epigenetic modification maps and RNA
expression data spanning different developmental stages
and tissues. From iHMS, we downloaded 6 epigenetic
modification maps (H3K4mel, H3K4me3, H3K9me3,
H3K27ac, H3K27me3 and H3K36me3) of 20 differ-
ent human developmental stages and tissues, including
hESCs, the hESC-derived precursor cell types ( TBL, ME,
NPCs and MSCs), and 15 human primary tissues (adipose,
adrenal gland, adult liver, aorta, esophagus, gastric, left
ventricle, lung, ovary, pancreas, psoas muscle, right ven-
tricle, right atrium, sigmoid colon, spleen, thymus, small
intestine, breast, brain and bladder). Meanwhile, the RNA
expression data and reference gene annotations were also
downloaded from iHMS.

Overview of the DiffEM model

To characterize epigenetic dynamics across different
development stages, we developed DiffEM, a new method
to estimate the dynamics of epigenetic modifications
based on hamming distance and identify highly dynamic
modification sites. Unlike the previous work [20], we
aimed to detect highly dynamic regions of epigenetic
modification during cell differentiation process. To eval-
uate the dynamics across different differential stages and
the primary tissues respectively, these 20 cell types were
further categorized into three groups, hESC-derived pre-
cursor cell types, primary tissues and the whole group. We
introduce the following steps to identify HDMSs , which
are also shown in Fig. 1.

Data binarization. The raw ChIP-seq data were pre-
processed in iHMS database [24]. The whole-genome was
first segmented into 200bp bins. For each bin, neighboring
read counts were summarized into an integer, indicating
the extent of epigenetic modification in this region [25].
To reduce the effect of noise, we transformed these inte-
gers into binary values. First, we calculated the binariza-
tion threshold, by dividing the total read counts of all bins
by the number of bins. If the read count of a bin is higher
than the threshold, its binary value is set as 1, otherwise
0, After binarization, we noticed that some bins have no
signals in all cell types, which may consist of sequences
of low mappability. The consecutive regions with length
more than 5 kb were removed from the genome. Finally,
for the 6 investigated epigenetic marks, we obtained 6
binary matrices B of size T (the number of cell types) by
N (the number of 200 bp bins on the whole genome).

Calculation of the dynamics scores for each epigenetic
mark. After data binarization, we calculated the dynamics
scores for each epigenetic mark among multiple cell types.
In particular, we used the hamming distance to measure
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Fig. 1 The flowchart of the DiffEM approach
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the dynamics of each epigenetic modification. Here, we
respectively calculated the dynamics scores of the 6 inves-
tigated epigenetic modifications in three cell type groups.
As described above, given M cell types and N bins, we
denoted by, as the binary profiles of epigenetic modifi-
cation k for cell type t at position #. Then the difference
between cell type ¢ and others are calculated as:

Diﬁ[ktn = ZM

m=1,m#t hﬂmming (bk”’l’ bkmn) (1)

Further, the dynamics score of epigenetic modification
k at position # was summed as:

M
DStn =, Diffien )

Identification of the highly dynamic modification sites.
For each epigenetic mark, we have obtained the dynam-
ics scores along the genome in each cell type group.
The higher the dynamics score is, the greater the differ-
ence across these cell types exhibits. The sites with zero
score were filtered first. Based on the calculated dynam-
ics scores, we selected those bins whose dynamics scores
are significantly higher than the genome background (p
<0.05) and merged the adjacent bins into longer regions.
These regions are referred to as highly dynamic modifica-
tion sites (HDMSs).

Functional analysis of the highly dynamic modification
sites

To investigate the potential functions of these identified
HDMSs, we mapped them to RefSeq genes and some
functional regions. According to their relative positions,
we related the HDMSs to various genes when the cen-
ters of HDMSs are located in gene regions. The number
of genes related to HDMSs was counted. Furthermore, we
mapped the bins with the highest score to genomic fea-
tures like promoter, coding region and exon. If a HDMS is
not related to any gene, it is labeled as an intergenic sites.
For further analysis of the functional relevance of HDMSs,
we performed gene ontology (GO) enrichment analy-
sis and pathway enrichment analysis for genes enriched
with HDMSs via DAVID bioinformatics resources. The
significant enrichment lists are obtained with p<0.05.

Comparisons among different epigenetic modifications

Epigenetic modifications play a critical role in cell differ-
entiation process. Different epigenetic modifications may
collaborate with each other to execute specific functions.
We investigated the relations among different types of epi-
genetic marks. Based on the identified HDMSs of each
epigenetic mark, the common HDMSs between differ-
ent epigenetic modifications were obtained in the whole
genome. Further, we estimated the correlations between
the dynamics scores of these epigenetic modifications.
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Correlation analysis between the dynamics of epigenetic
mark and gene expression

First, we evaluated the dynamic scores of gene expres-
sion along the genome in each cell type group, which
was calculated as the variance divided by the mean of
gene expression. Then, we evaluated the correlation coef-
ficients between the dynamic scores of epigenetic modi-
fications and gene expression levels. For those identified
HDMSs, a higher correlation coefficient indicates that
gene expression is more easily regulated by the specific
epigenetic modification.

Comparison among DiffEM , QDMR and 10D

As there exists no gold standard to benchmark highly
dynamic modification sites, we adopted an indirect val-
idation strategy. As previous studies [26], the validation
was based on the correlations between the dynamics of
epigenetic modifications and gene expression levels. To
evaluate the performance in identifying HDMSs, we com-
pared DiffEM with existing methods, QDMR and IOD.
Unlike the methods restricted to the differential analysis
between two cell types, the above three methods are capa-
ble of analyzing three or more cell types. QDMR was pro-
posed for genome-wide differential analysis of epigenetic
states based on Shannon entropy [22]. IOD was developed
to detect differential regions across multiple cell types
[27]. We first normalized the epigenetic data, and used
QDMR and IOD to detect highly dynamic modification
sites. These methods were compared by the correlations
between the dynamics of epigenetic modifications and
expression levels of the HDMSs.

Results

To investigate the dynamics of epigenetic modifications
during cell differentiation process, we proposed a com-
putational method, DiffEM, to quantify the dynamics
score of various epigenetic marks and identify highly
dynamic modification sites (HDMSs). We focused on
human differentiation-related cell types, consisting of
human embryonic stem cell, 4 hESC-derived precursor
cell types, and 15 primary tissues. In each cell type, we col-
lected 6 genome-wide epigenetic maps and gene expres-
sion datasets. DiffEM was applied to identify HDMSs
along cell differentiation process. To evaluate the per-
formance of our proposed method, in this section we
analyzed the identified HDMSs to discover their poten-
tial biological roles during cell differentiation and devel-
opment. Furthermore, we compared DiffEM with two
previous methods, QDMR and IOD.

Genome-wide characterization of epigenetic modification
dynamics

To better explore the dynamic epigenetic changes across
different cell differentiation stages, these 20 cell types
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were further grouped into three groups, hESCs and hESC-
derived precursor cell types, primary tissues and the
whole group. For each group and each epigenetic modi-
fication mark, we quantified the dynamics score for each
bin based on hamming distance, and then ranked these
bins according to their dynamics scores. We selected those
bins whose dynamics scores were significantly higher than
the genome background (p <0.05).

After merging the neighboring bins, we obtained the
HDMSs for each epigenetic modification in each group.
For different epigenetic marks, we found that there exist
big overlaps between the HDMSs of different epigenetic
modifications. This is consistent with previous finding
that the epigenetic modifications collaborated with each
other to consummate certain regulatory function. As
shown in Fig. 2, we respectively calculated the percentage
of overlapping HDMSs among 6 epigenetic modifications
in these three groups. On the whole, the overlapping sites
make up 20% 60% of total HDMSs in different groups.
In the hESCs and hESC-derived precursor group, the
HDMSs of different epigenetic marks overlap more than
those of the other two groups. For example, the over-
lap rates of H3K4mel with other five epigenetic marks
range from 40% to 50% in hESC-derived group, while
those overlap rates in the other two groups are not greater
than 25% . Specifically, H3K4me3 is highly overlapped
with H3K9me3 and H3K27ac. These observations demon-
strate that epigenetic modifications collaborate closely to
regulate the cell differentiation process [4].

As distinct epigenetic modifications share HDMSs, we
further investigated the correlation between the dynamics
scores of different epigenetic marks. As shown in Fig. 3,
the investigated epigenetic marks demonstrate varied cor-
relation in the three comparison groups. In particular, the
epigenetic marks show higher correlation in the hESCs
and hESC-derived precursor group. This result indicates
that the dynamics of epigenetic modifications are similar
during the cell differentiation process, which is conformed
to the results of previous overlaps analysis.
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Highly dynamic modification sites are related to various
genomic features

Further, we mapped the identified HDMSs to RefSeq
genes and collected the genes enriched with HDMSs for
each epigenetic mark. Here we explored how the dynamic
epigenome participates in early embryonic developmental
stages and focused on the hESCs and hESC-derived pre-
cursor group. To examine the potential functions of those
genes, we performed systematic gene ontology enrich-
ment analysis using DAVID tools (https://david.ncifcrf.
gov/) and summarized the key biological processes and
pathways for each epigenetic mark. Overall, for the afore-
mentioned six epigenetic modification marks, we found
that those HDMSs-enriched genes exhibit enrichment for
cell differentiation and development functions (Table 1) (p
value <0.05). For example, GO terms related to develop-
ment such as 'nervous system development’ are enriched
in HDMSs of H3K4mel, H3K4me3, H3K9me3,H3K27ac,
H3K27me3, GO terms related to differentiation such
as 'neuron differentiation’ and ’'cerebellar granule cell
differentiation’ are enriched in HDMSs of H3K4mel,
H3K9me3, H3K27me3, H3K36me3. This is consistent
with previous finding that regulatory elements essential
for cellular identity are often epigenetically modified in
parental cells [28, 29]. The results highlight the impor-
tance of stage-specific epigenetic modification patterns
of transcription factors for defining the developmental
potentials.

Also, we noticed that the biological processes of dis-
tinct epigenetic marks have overlappings. One possible
interpretation for this observation could be that these
epigenetic marks may have the same changing trend,
collaborating with each other to finish the complex reg-
ulatory functions. Taken together, the above results of
GO annotation demonstrated the power of our method
in identifying the highly dynamic sites of these epigenetic
modifications. And, the results strongly suggest that the
HDMSs mark critical regulatory regions for cell differenti-
ation and development process. Further characterization
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of epigenetic modification patterns and gene expression
within HDMSs may provide important insights into the
regulatory functions of the specific epigenetic patterns.

Highly dynamic modified sites neighboring genes reveal
diverse transcriptional patterns

To analyze the regulatory roles of these dynamic epige-
netic patterns, we further explored the epigenetic mod-
ification and gene expression patterns within HDMSs.
We computed the correlation coefficients between the
dynamics of epigenetic modifications and gene expres-
sion levels of the HDMSs-enriched genes. We mapped the
HDMSs to Ref-Seq genes and obtained gene expression of
the associated genes. As these 20 cell types were divided
into three groups, the dynamics score of gene expression
was assessed using the same method as epigenetic marks
(see Methods). For those HDMSs located in promoters,
and coding regions, the Pearson correlation coefficients
were respectively computed.

As shown in Fig. 4, we noted that there is highly corre-
lation between the dynamics of gene expression level and
epigenetic modification in promoter regions. Relatively,
the correlation in coding regions is lower. These results
indicate that the variance of epigenetic modification pat-
terns in promoter regions has a higher regulatory role
than that in coding regions. The three different groups
have a similar trend. In detail, the six epigenetic modi-
fication marks exhibit different regulatory effect. For the
hESCs and hESC-derived precursor group, the dynamics
of gene expression levels are highly regulated by the mod-
ification patterns of H3K4mel and H3K27me3 in pro-
moter regions. For the primary tissues, the correlations
are much higher for H3K9me3 and H3k27ac.

Comparison with QDMR and 10D in identifying HDMSs

Considering that our method was developed for the dif-
ferential analysis for multiple cell types, we compared Dif-
fEM with two similar previous methods QDMR and I0D
[22, 27], which were also designed for multiple conditions.

QDMR is based on Shannon entropy [22], and IOD is
defined as the variance divided by the mean value [27].
The performance was measured by the correlation anal-
ysis between the epigenetic modification dynamics and
gene expression difference.

Firstly, we respectively identified the highly dynamic
modification sites using these three methods, and ranked
the HDMSs according to the dynamics score. Simi-
larly, we obtained the ranked highly dynamic expression
sites. Then, we associated these HDMSs with the highly
dynamic expression sites by bitwise matching. To evaluate
the performance of these three methods, we define two
metrics, MatchedNum and AveDS. MatchedNum is com-
puted as the number of highly dynamic expression sites
matching with the top ranked HDMSs, which is similar
to recall. AveDS represents the average dynamics score of
these matched highly dynamic expression sites. Here, for
fair comparison among the three methods, we calculated
the entropy as the average dynamics score as QMDR.

We compared the performance on the aforemetioned 6
epigenetic modifications, the results are shown in Fig. 5
and Additional file 1. Figure 5 shows the comparison
results for the hESCs and hESC-derived precursor group.
Figure S1, Figure S2 (see Additional file 1) showed the
results of the other two groups. We first compared the
matched numbers of all differential gene expression sites
output by these methods. Our method could get a higher
MatchedNum of highly dynamic expression sites than
those of QDMR and IOD (Fig. 5a). However, this raises
the question that to what extent these matched sites are
dynamically expressed. As we noted that changes in epi-
genetic modifications could cause differential expression
of related genes, we further compared the average dynam-
ics of gene expression of these matched sites. Lower
ave indicate better performance. As the results showed
(Fig. 5b), our method has good performance in AveDS.
These observations demonstrate that our method always
achieves a balance between matched MatchedNum and
AveDS, which means our approach could be applied to
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Table 1 Functional enrichment of genes on the whole genome of six histone modifications
Term type Term name P-value Term type Term name P-value
H3K4mel
BP Cell adhesion 1.42E-06 CcC Cytoskeleton 2.90E-03
BP Axon guidance 2.86E-05 CcC Growth cone 2.15E-02
BP Nervous system development 1.91E-04 KEGG Arrhythmogenic right ventricular 5.82E-03
BP Signal transduction 1.92E-04 Cardiomyopathy (ARVC)
BP Neuron development 2.68E-02 KEGG Axon guidance 2.79E-02
BP Cerebellar granule cell differentiation 4.35E-02 KEGG Hippo signaling pathway 4.32E-02
H3K4me3
BP Intracellular signal transduction 7.16E-04 BP Adult behavior 6.93E-03
BP Signal transduction 1.22E-03 MF Extracellular-glutamate-gated ion channel 2.77E-03
BP Nervous system development 2.63E-03 Activity
BP Chemical synaptic transmission 2.88E-02 KEGG Neuroactive ligand-receptor interaction 6.24E-03
H3K9me3
BP Heterophilic cell-cell adhesion 1.87E-07 BP Regulation of RNA splicing 941E-03
BP Cell adhesion 1.06E-04 BP Regulation of alternative mRNA splicing 1.58E-02
BP Nervous system development 6.27E-04 BP Chemical synaptic transmission 3.35E-02
BP Regulation of neuron projection 4.09E-03 BP Cerebellar granule cell differentiation 3.98E-02
Development MF Calcium ion binding 1.25E-05
BP Signal transduction 5.41E-03 KEGG Cell adhesion molecules (CAMs) 2.10E-02
H3K27ac
BP Signal transduction 7.03E-05 BP Regulation of RNA splicing 2.08E-02
BP Nervous system development 747E-05 BP Cytoskeleton organization 3.57E-02
BP Neuron cell-cell adhesion 2.31E-04 MF Actin binding 1.20E-04
BP Neuron development 5.28E-03 cC Growth cone 1.83E-04
BP Glutamate receptor signaling pathway 5.76E-03 MF Protein kinase activity 1.15E-02
BP Brain development 1.57E-02 KEGG Neuroactive ligand-receptor interaction 1.06E-02
H3K27me3
BP Social behavior 9.15E-05 BP Cerebellar granule cell differentiation 3.89E-02
BP Signal transduction 5.10E-04 MF Calcium ion binding 7.03E-05
BP Nervous system development 297E-03 MF Cell adhesion molecule binding 1.65E-04
BP Regulation of RNA splicing 8.99E-03 CcC Growth cone 1.55E-02
H3K36me3
BP Heterophilic cell-cell adhesion 4.04E-07 cC Neuron projection 432E-03
BP Signal transduction 2.27E-03 MF Actin binding 7.37E-03
BP Cell adhesion 1.25E-02 KEGG Neuroactive ligand-receptor interaction 4.97E-02
BP Neuron differentiation 3.37E-02
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find meaningful HDMSs as many as possible. In addi-
tion, the overall analysis for MatchedNum and AveDS
shows that IOD may be applicable to detecting the highest
HDMSs, because of the commonly small Num but better
AveDS of related differential gene expression sites. In sum-
mary, our method outperforms the two existing methods
in identifying the HDMSs across different developmental
stages and tissues in the whole genome.

Discussion

In this paper, we proposed a new computational method,
DiffEM, based on hamming distance to identify the
highly dynamic modification sites that undergo chro-
matin changes during human cell differentiation process.
Different from previous methods that mostly focused
on differential analysis between two cell types, our
method is designed for differential analysis of genome-
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wide epigenetic modification across multiple cell types.
DiffEM can be broadly applied in a range of studies involv-
ing various epigenetic marks in different conditions. We
applied this approach to investigating 6 epigenetic marks
of 20 human cell types, including hESCs, 4 hESC-derived
Lineages and 15 human primary tissues. We identified
highly dynamic modification sites where different cell
types exhibit distinctive epigenetic modification patterns,
and found that these highly dynamic modification sites
are enriched in the genes are related to cellular develop-
ment and differentiation. The results also demonstrate the
strong association among the dynamics of different epige-
netic marks, consistent with previous finding that differ-
ent epigenetic modifications collaborate with each other
to consummate complex regulatory functions. Further, we
evaluated the effectiveness of our method, by correlating
the dynamics scores of epigenetic modification with the
variance of gene expression. We compared DiffEM with
two existing methods, QDMR and IOD. The comparison
results indicate the power of our method in quantifying
the epigenetic dynamics and identifying highly dynamic
regions.
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Additional file 1: Figure S1. Performance comparisons for primary
tissues among our method DiffEM, IOD and QDMR for each epigenetic
mark. (A) The MatchedNum, (B) The AveDS. Figure S2. Performance
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QDMR for each epigenetic mark. (A) The MatchedNum, (B) The AveDS.
(PDF 405 kb)
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