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Abstract

Background: Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer
reads than second-generation sequencing technologies such as Illumina. The increased read length enables PacBio
sequencing to close gaps in genome assembly, reveal structural variations, and characterize the intra-species
variations. It also holds the promise to decipher the community structure in complex microbial communities because
long reads help metagenomic assembly. One key step in genome assembly using long reads is to quickly identify
reads forming overlaps. Because PacBio data has higher sequencing error rate and lower coverage than popular short
read sequencing technologies (such as Illumina), efficient detection of true overlaps requires specially designed
algorithms. In particular, there is still a need to improve the sensitivity of detecting small overlaps or overlaps with
high error rates in both reads. Addressing this need will enable better assembly for metagenomic data produced by
third-generation sequencing technologies.

Results: In this work, we designed and implemented an overlap detection program named GroupK, for
third-generation sequencing reads based on grouped k-mer hits. While using k-mer hits for detecting reads’ overlaps
has been adopted by several existing programs, our method uses a group of short k-mer hits satisfying statistically
derived distance constraints to increase the sensitivity of small overlap detection. Grouped k-mer hit was originally
designed for homology search. We are the first to apply group hit for long read overlap detection. The experimental
results of applying our pipeline to both simulated and real third-generation sequencing data showed that GroupK
enables more sensitive overlap detection, especially for datasets of low sequencing coverage.

Conclusions: GroupK is best used for detecting small overlaps for third-generation sequencing data. It provides a
useful supplementary tool to existing ones for more sensitive and accurate overlap detection. The source code is
freely available at https://github.com/Strideradu/GroupK.
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Background
The increased read length enables third-generation
sequencing to close gaps in genome assembly [1, 2],
reveal structural variations [3], and quantify gene isoforms
with higher accuracy [4] in transcriptomic sequencing.
In addition, using long reads holds promise in reveal-
ing the microbial community structure and deciphering
intra-species variation for microbial communities [5, 6].

Genome assembly using third-generation sequencing
data requires dedicated methods and tools. Existing
genome assembly tools mainly utilize two types of graph
models: overlap graph and de Bruijn graph. When the
error rate is low, de Bruijn graph has the theoretical
advantage that the graph size does not increase signif-
icantly with the sequencing coverage, which is usually
high for Illumina datasets. For third-generation sequenc-
ing data, the high error rate and low coverage make
the overlap graph a sensible choice for genome assem-
bly [7]. A key step in constructing the overlap graph is
to identify read pairs that share overlaps, which indi-
cates that these reads are sequenced from the same loci
in the underlying genome. Although there are a number
of sequence alignment programs available for conduct-
ing overlap alignment [8, 9], a majority of them rely
on dynamic programming and are too computationally
expensive for high throughput sequencing data. Due to
high error rates, existing short read overlap detection soft-
ware using BWT (Burrows-Wheeler transform) or hash
table [10, 11] cannot be directly applied to long reads.

Related work
Two strategies are currently being employed to detect
overlaps for error-prone long reads. One strategy tries to
correct sequencing errors in PacBio (Pacific Biosciences)
and ONT (Oxford Nanopore) data before overlap detec-
tion. There exist a number of sequencing error correction
tools [7, 12]. Some of them rely on hybrid sequenc-
ing, which requires preparation of at least two sequenc-
ing libraries and several types of sequencing runs and
thus is not cost-effective for many applications. Others
conduct error correction using long reads only. One
representative method is described in Chin et al.’s hierar-
chical genome-assembly process HGAP [12], whose per-
formance improves with higher read coverage. It is worth
noting that for alignment-based error correction methods
such as the one in HGAP, an important step is to identify
reads that can be aligned quickly. Essentially, techniques
used for overlap detection can be used for alignment
detection as well.

The second category bypasses the difficulty of error cor-
rection and identifies overlaps using raw reads. Various
approximate similarity search methods have been applied
on PacBio and ONT data [13]. They generally follow seed-
chain-align procedure [14]. Seed-based filtration step

plays an essential role in controlling the trade-off between
sensitivity and computational efficiency. Usually, these
methods use short string matches as the filtration step.
A short string or k-mer match requires exact matches of
k consecutive characters between two sequences. Intu-
itively, overlapping reads tend to share more common
k-mers than non-overlapping reads. Strategies that can
quickly find the number of shared k-mers can thus be
applied. In this section, we summarize the main strate-
gies of several state-of-the-art overlap detection tools. We
highlight the differences between our method and the
existing ones in the following section.

MHAP [15], Minimap [14, 16], and DALIGNER [17] all
use k-mer matches for identifying candidate overlapping
pairs. Due to the high error rate, usually only short k-mers
will be applied in order to achieve high sensitivity. How-
ever, identifying short k-mer matches between all pairs
of reads is computationally expensive. Thus, the leading
tools employed different data structures and algorithms
for estimating k-mer-based similarity. MHAP converts
long reads into sets of k-mers and sketches using min-
Hash. Then the similarity between reads is estimated
using the compact sketches. Minimap also uses a compact
representation of the original reads by keeping minimizers
rather than all possible k-mers of a read. Then collinear
k-mers will be clustered and used for checking possible
overlaps. DALIGNER directly sorts k-mers based on their
positions and then utilizes merge sort to identify the num-
ber of shared k-mers. As the sorting is cache efficient,
DALIGNER is practically very efficient.

BLASR [18] was initially designed for mapping PacBio
reads to a reference genome. It is also widely used as an
overlap detection tool for PacBio data. BLASR uses BWT
and FM index to identify short k-mer matches and then
clusters k-mer matches within a given distance range. The
clustered k-mers are ranked based on a function of the k-
mer frequency. Only highly ranked clusters will be kept
for downstream analysis.

Being different from the above tools, GraphMap [19]
uses spaced seeds that allow matches of non-consecutive
characters. Spaced seeds were initially used in homol-
ogy search for improving the trade-off between sensitiv-
ity and filtration efficiency [20–22]. In particular, spaced
seeds containing the pattern “11*” have high sensitivity
in capturing homologous protein-coding genes because of
the codon structure. However, designing optimal spaced
seeds (i.e., deciding the positions of the wildcard charac-
ters) is NP-hard [23, 24]. GraphMap empirically chooses
two spaced seeds. Ideally, different sets of seeds may be
designed for input data of different error profiles.

Overview of our work
The high error rates and also the different error profiles of
PacBio and ONT data motivate us to use a more flexible
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seeding strategy called group hit criteria [25], which
define a group of possibly overlapping k-mers satisfying
statistically derived distance constrains. For brevity, we
will call the k-mers set satisfying the group hit criteria as a
“group seed”. A group seed was initially proposed and used
for homology search. Given the error profiles, such as
the estimated indels and mismatch probabilities, thresh-
olds for grouping short k-mers can be computed using the
waiting time distribution and the one-dimensional ran-
dom walk [25]. A group seed can effectively handle all
types of errors and is ideal to detect small overlaps. With
group seeds, we can achieve high sensitivity using short

k-mers (e.g., 9-mer) while still maintaining a desirable
specificity.

In this work, we employ group seeds for detecting
overlapping long reads for genome assembly. Our imple-
mentation, named GroupK, provides a complementary
tool to existing methods for detecting small overlaps
or overlaps compounded by high error rates of both
reads. This ability enables our tool a sensible choice for
genome assembly in metagenomic data sequenced by
third-generation sequencing platforms. As these commu-
nity samples usually contain microorganisms with hetero-
geneous coverage, being able to identify small overlaps

Fig. 1 Histograms of irreducible overlap sizes (top) and the ratio of overlap size to the read length (bottom) when comparing adjacent overlapping
reads on simulated PacBio E. coli datasets given different coverages. The bin width for the overlap size is 500. For the 30X dataset, the average read
length is 8366 and the number of reads is 16644. For the 15X dataset, the average read length is 8253 and the number of reads is 8436. For the 8X
dataset, the average read length is 8414 and the number of reads is 4413
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will be very important for reconstructing genomes of rare
species.

Methods
GroupK is designed for improving the sensitivity of
detecting small overlaps or overlaps with low identity.
Currently, third-generation sequencing data still has high
error rates. The overlapping regions formed by two error-
prone long reads can have lower sequence identity than
mapping a long read against a reference genome. Figure 1
presents the histogram of the overlap size and the corre-
sponding ratio of overlap size to the read length between
two adjacent reads. The reads are simulated using PBSIM
[26] from E. coli with three different coverages. As we
know the position of each simulated read in the genome,
the overlap size can be easily decided. Note that a read
can form overlaps with multiple reads sequenced from
the same region. However, the two figures are generated
using overlaps between two adjacent reads, which define
an “irreducible” edge [27] in an overlap graph. Thus, these
overlaps can decide the continuity of the final genome
assembly. The figures show that there are still substan-
tial regions with small overlaps. For example, there are
45.46%, 34.76%, and 31.19% of the overlaps shorter than
the 50% of the read length for data with coverage of 8X,
15X, and 30X, respectively. It will be ideal to detect rel-
atively small overlaps to fully take advantage of the long
reads for generating more complete assemblies.

Pipeline
Identifying small overlaps is computationally difficult.
Thus, we use a carefully designed hierarchical filtra-
tion strategy to distinguish true overlapping reads from
non-overlapping ones. The pipeline of GroupK consists
of three key steps: filtration, group seed matching, and
chaining (Fig. 2). Filtration is used to reduce the search

Fig. 2 The pipeline of GroupK

space by quickly identifying read pairs sharing a min-
imum number of k-mers. High insertion/deletion error
rates tend to produce short k-mer matches on different
diagonals. Thus, we adopt group seed matching to iden-
tify a group of short k-mer matches in close proximity.
There are two types of distance constraints. 1) The dis-
tance (number of nucleotides) between the k-mers on
x-axis and y-axis must be smaller than a given thresh-
old; 2) the diagonal distance, which is the difference of
the diagonals of two k-mer matches, must be within a
given range. Chaining is used to estimate the final over-
lap region. Figure 3 shows that applying group seed can
remove a large number of random k-mer hits while keep-
ing the k-mer matches within the overlapping region.
When k = 15, there are only two hits, and it is difficult to
determine whether there is an overlap. When k = 9, there
is clearly a chain formed by hits in the overlapping region.
However, there are also a large number of random hits.
With group seed matching criteria, most of the random
9-mer hits are filtered out. So the downstream analysis
becomes more straightforward.

Estimate the expected number of k-mers for the filtration
stage
In this section, we analyze the expected number of ran-
dom k-mer hits between two reads and also k-mer hits in
overlaps. The analysis will be used for determining the k-
mer size and also other parameters for the filtration stage.
Given two reads (S1 and S2) with length L and error rate ε,
we want to determine how many k-mer hits we expect to
find between S1 and S2.

We first consider the case that S1 and S2 are not related
(no overlap). By assuming that the bases in S1 and S2 are
randomly distributed, the expected number of random k-
mer matches E[ Xr] is roughly:

E [Xr] =
(

1
|�|

)k
· L2 (1)

Note that this equation is different from the expected
number of shared k-mers in MHAP [15] because we dis-
tinguish k-mer hits based on their locations rather than
the k-mers themselves. Also, we assume that overlapping
k-mers are independent.

In the second case of S1 and S2 forming an overlap, we
estimate the expected number of k-mer matches in the
overlap by first computing Po, which is the probability of
observing a k-mer match within the overlap. In the case of
no sequencing error (i.e. ε = 0), the probability of observ-
ing a k-mer match at an aligned position in an overlap is
simply 1.0. But in the practical case of ε > 0, we need to
consider two scenarios in order to determine the proba-
bility of observing two identical characters at an aligned
position in the overlap: 1) the characters from S1 and S2
are correct; 2) the two characters from S1 and S2 are errors
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Fig. 3 The dot plot of k-mer hits and group seeds matches for one overlapping pair from the E. coli PacBio dataset used in Results. Each dot is a
k-mer hit. The x-axis and y-axis show the locations of the hits on the reads. The overlap region is roughly from 0 to 2800 on the x-axis, and from 1000
to 3800 on the y-axis. Top: all 9-mer hits. Bottom: 9-mer hits that passed the group hit criteria. A group seed is represented by closely located dots of
the same color

and are randomly substituted by the same character. The
two cases are visualized in Fig. 4. So the probability is
given by [15]:

Po =
[
(1 − ε)2 + ε2 1

|�| − 1

]k
(2)

Considering both random k-mer matches and k-mer
matches in an overlap, the expected number of shared
k-mers between two overlapping reads is estimated by:

E [Xo] = Po · M +
(

1
|�|

)k
· L2 (3)

M is the size of the overlap. Note that the above equation
slightly over-counts the number of k-mer hits in an over-
lap because the random k-mer hits inside the overlap may

be counted twice with probability Po ·
(

1
|�|

)k
. (Also, we

assume that the probabilities of substitution and inser-
tion/deletion are on the same order and thus do not
distinguish them in the above equation.)

As we are mainly interested in finding small overlaps or
overlaps with low sequence identity, we plot the expected
number of k-mer hits with the overlap size being 1/4 of
the read size in Fig. 5. In order to plot the figure, we com-
pute E [Xo] and E [Xr] using the read lengths from a 15X
E. coli PacBio dataset (the data of our second experiment
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Fig. 4 Two cases contributed to the identical characters at an aligned position in the overlapping region of S1 and S2. S1 and S2 are two reads
sequenced from the same region of the underlying genome and form an overlap. Top: both bases on S1 and S2 are correct, forming a match.
Bottom: both bases on S1 and S2 are sequencing errors, and substituted by the same character

in Results). We only consider reads of length above 2,000.
These figures allow us to choose the appropriate threshold
for k-mer-counting based filtration. For example, Fig. 5
shows the expected number of 15-mers between reads of
different error rates. E [Xr] started as 4 when ε = 0.15.
And, for larger ε, E [Xr] is even smaller. Thus, our default
filtration threshold is two 15-mers in order to ensure high

filtration sensitivity. The implementation details of the k-
mer counting stage can be found towards the end of the
“Methods” section.

Group hit criteria
Sequencing errors tend to produce short k-mer matches.
In addition, the insertion/deletion errors lead to k-mer

Fig. 5 The change of E [Xo] and E [Xr ] (y-axis) with the increase of the read length (x-axis), which is obtained from a real PacBio dataset. The overlap
size is set as the 1/4 of the read length as we focus on identifying the hard case of small overlaps. k = 15
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matches on different diagonals. Thus, instead of using rel-
atively long k-mers (such as 15 or 16-mers) as existing
tools do, we use a group of short k-mers (such as 9-mer)
to accommodate the high insertion or deletion error rates.
A group seed is a set of possibly overlapping k-mer hits
with statistically calculated constraints. The region con-
taining group seeds is more likely to be inside an overlap
than a single k-mer hit. Reference [25] first introduced the
group hit criteria and also derived the method to calculate
the criteria statistically. We apply their method for overlap
detection.

Assume that we have two reads S1 and S2 of length m
and n, respectively. The numbers of k-mers at different
positions in S1 and S2 are m − k + 1 and n − k + 1,
respectively. A k-mer hit at position (i, j) is defined by
S1[ i . . . i+k−1] = S2[ j . . . j+k−1], where i ≤ m−k+1 and
j ≤ n−k+1. For two k-mer hits at

(
i1, j1

)
and

(
i2, j2

)
, their

inter-seed distance D
((

i1, j1
)

,
(
i2, j2

))
is the maximum of

|i2 − i1| and
∣∣j2 − j1

∣∣. The k-mer diagonal of a k-mer hit at
(i, j), d(i, j), is defined as j − i.

With these notations, the goal is to solve the follow-
ing inequalities given confidence level 1 − α defined by
significance level α:

D
((

i1, j1
)

,
(
i2, j2

)) ≤ ρ (4)
|d (

i1, j1
) − d

(
i2, j2

) | ≤ δ (5)

ρ and δ are integers we need to define the group hit cri-
teria. For example, when α = 0.05, our goal is to derive
ρ and δ so that with 95% chance the inter-seed distance
and the diagonal shift between two k-mers in overlapping
reads are at most ρ and δ, respectively.

Constraint on k-mer distance We followed the model
described in the article [25]. Runs of head in n-
independent Bernoulli trials are used to model k-mer
matches, with the probability p for a match and (1−p) for
a mismatch. In this model, a k-mer match can be treated
as k consecutive match runs with probability of pk . From
the waiting time distribution [28, 29], the probabilities of
the inter-seed distance x of two k-mers in an overlap are:

P
[
Dk = x

] =

⎧⎪⎪⎨
⎪⎪⎩

0 for 0 ≤ x < k
pk for x = k
(1 − p)pk

(
1 − ∑x−k−1

i=0 P
[
Dk = i

])
for x > k

(6)

With the confidence level 1 − α, ρ can be solved using
following equation:

P [Dk ≤ ρ] = 1 − α (7)

In the actual implementation we use α = 0.05. Thus, there
is 95% chance that the inter-seed distance of the two seeds
in an overlap is less than the ρ calculated using Eq. 7.

Constraint on k-mer diagonal distance The diagonal
shift between two k-mers,

∣∣d (
i1, j1

) − d
(
i2, j2

)∣∣, in two
overlapping reads is caused by insertions and deletions.
Note that the insertions and deletions are defined by
comparing two reads, not between a read to a reference
genome. So the insertion rate and deletion rate are treated
equally.

The diagonal shift between two k-mer hits can be mod-
eled by a discrete one-dimensional random walk model
[25, 30]. The diagonal shift starts from 0. Let the steps of
the random walk be l. Assume that the insertion and dele-
tion rate is q across the whole read. Thus, the probability
of a diagonal change is q, and the probability of staying
in place is 1 − 2q. Also, we assume that in l steps, there
are ni inserted nucleotides (increase shift), nd deleted
nucleotides (decrease shift), and nm matched nucleotides
(no impact on shift). If the final diagonal shift is i, we have
the following equations:{

ni + nd + nm = l
ni − nd = i (8)

Reference [25] calculated the probability of obtaining a
diagonal shift i after l steps in the random walk. Accord-
ing to Eq. (8), we have ni = i + nd and nm = l − (i + 2nd).
For a specific nd , the probability of a random walk produc-
ing diagonal shift i can be calculated as the number of the
possible paths

( l
i+2nd

) · (i+2nd
i+nd

)
, times the probability prod-

uct of all insertions, deletions, and no shift change at each
step qnd qnd+i(1 − 2q)l−(i+2nd). To calculate the probabil-
ity of generating a diagonal shift i given l, P[ i, l], we need
to consider all possible values of nd, which is from 0 (no
deletion) to (l − i)/2 (no match). So we have:

P[ i, l]=
∑(l−i)/2

nd=0

(
l

i + 2nd

)
·
(

i + 2nd
i + nd

)
· qnd qnd+i(1−2q)l−(i+2nd)

(9)

To calculate δ, we sum up the probabilities P[ i, l] for
i = 0, ±1, ±2, ..., ±l until we reach the level 1−α. We refer
the reader to the original article [25] for a more detailed
discussion of the model and a practical implementation
using generating functions.

In our experiment, we set the sequencing accuracy p =
0.85 and the indel rate q = 0.06, as PacBio reads tend to
have higher indel rates than substitution error rates. Users
can adjust these parameters based on their data proper-
ties. The significance level α is 0.05 and k is 9. Using Eq. 6,
we can obtain ρ = 54. Using Eq. 9 and ρ as an estimation
of l, we can obtain δ = 5 given ρ = 54. Thus, when k = 9,
seeds with inter-seed distance D

((
i1, j1

)
,
(
i2, j2

)) ≤ 54
and diagonal shift

∣∣d (
i1, j1

) − d
(
i2, j2

)∣∣ ≤ 5 are clustered
in the same group. In addition, if k-mers

(
i1, j1

)
and

(
i2, j2

)
are in the same group and k-mers

(
i2, j2

)
and

(
i3, j3

)
are in

the same group, we will cluster
(
i1, j1

)
and

(
i3, j3

)
as well.
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Group chaining
With group hit criteria, GroupK can find short similar
regions. To identify the overlapping region, we aim to find
a chain of group seed matches that maximizes the number
of matched bases. We used the modified sparse dynamic
programming for chaining [31, 32].

After generating a chain of group seed matches, we need
to determine whether this chaining defines an overlap. We
develop two criteria for this purpose. First, we calculate
the expected number of matched bases from the group hit
criteria, assuming that the chain covers the possible over-
lapping region with length LO (LO can be estimated by the
extension of both ends of the optimal chain). We used the
following equation to calculate the expected number of
the matched bases ne:

ne = 1
c

· LO
ρ

· k (10)

Where c is a coefficient to control the criteria, k is the size
of k-mer, ρ is the group hit criteria for the inter-k-mer
distance. We only report the chaining result if the number
of matched bases n ≥ ne. Second, we require that both
reads have similar sizes inside the overlapping region.

In our experiment, we found that sometimes using the
optimal chain generated from sparse dynamic program-
ming may overestimate the overlap region, as shown in
Fig. 6. This overestimation can jeopardize the sensitiv-
ity of detecting small overlaps. We fix this problem by
only keeping the collinear group seeds, which are used to
estimate the overlap size.

Fig. 6 An example of the overlap size estimation. The suffix of read 1
and the prefix of read 2 form an overlap. Each short solid line
represents a group seed match in the optimal chain. The black
dashed line indicates the true overlap alignment region between the
two reads. The gray dashed line, which is formed by the two ending
group seeds in the optimal chain, can overestimate the overlap size

Implementation details of the major components
Filtration by k-mer counts In the first step of our
pipeline, we use k-mer counting-based filtration to
remove large numbers of read pairs that are not likely
sequenced from the same loci on the underlying genome.
We implemented k-mer counting using a generalized suf-
fix array and the derived longest common prefix (LCP)
array. The generalized suffix array SA is created from the
concatenated reads (delimited by special characters such
as $) using a linear algorithm [33]. Then, we create the
LCP using both the suffix array SA and the reversed suf-
fix array SA′ [34, 35]. Let the sequence of concatenated
reads be T. Following the definition of the reversed suf-
fix array, for a suffix starting at position SA[ i], we have
SA′[ SA[ i] ] = i. For each position i in the LCP, LCP[i]
contains the size of the longest common prefix between
SA[ i] and SA[ i − 1]. The key observation [33] for effi-
cient computation of LCP[i] is: for a position j in T, if
LCP[ SA′[ j−1] ] is L, LCP[ SA′[ j] ] ≥ L−1. The whole LCP
array construction takes linear time to the size of T [33].

In order to count the shared k-mers between reads and
also report read pairs passing the k-mer counting thresh-
old, we use both LCP and an auxiliary data structure
recording the read IDs (denoted as array readID). For a
suffix starting at position SA[ i], its read ID is at readID[ i].
The pseudocode of finding the number of shared k-
mers can be found in Algorithm 1. In practice, we also
count k-mers between a read and the other read’s reverse
complement.

Group seed match and chaining Any pair of reads
that pass the above filtration stage will be used as input
for finding group seed matches. All other pairs will be
discarded. Currently, we are using the codes of YASS
[36, 37] for finding the group seed matches. The pro-
gram uses hashing table to find short exact matches
and creates the groups of matches on the fly. It is
our future work to re-implement group seed matching
using more efficient indexing-based methods. Implemen-
tation of chaining algorithm has been modified from
the program of global chaining algorithm in SeqAn
library [38].

Time complexity analysis If we have N reads with aver-
age read length L, our text size is NL. Therefore, we have
NL elements in the suffix array and the corresponding
LCP array. For each suffix in the suffix array, suppose on
average, it can form LCPs with m other suffixes with size
above k, which is the size of k-mer used in the k-mer-
count filtration steps. So the time complexity of finding
all the shared k-mers for all possible reading pairs is
O(mNL). If k is large enough (e.g., k = 15 and 11 in our
experiment), we have m � NL, so the time complexity
will be dominated by NL.
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Algorithm 1 Counting k-mers between reads
Input: LCP array LCP[ 1..n], read ID array readID[ 0..n],
k-mer size k, k-mer counts threshold τ

Output: Read pairs whose shared k-mer counts ≥ τ

1: Initialize a map counts[ key] [ value] for recording
k-mer counts

2: for i = 1 to n do
3: readi ← readID[ i]
4: j ← i + 1
5: L ← LCP[ j]
6: while L ≥ k and j ≤ n do
7: readj ← readID[ j]
8: if readi < readj then
9: key ← readi : readj

10: end if
11: if readj < readi then
12: key ← readj : readi
13: end if
14: if counts[ key] does not exist then
15: counts[ key] ← 1
16: else
17: counts[ key]++
18: end if
19: j + +
20: L ← min (L, LCP[ j]) � min(L, LCP[ j]) returns

the minimum of L and LCP[ j]
21: end while
22: end for
23: for all key in counts do
24: if counts[ key] ≥ τ then
25: output key � key contains read pair IDs

passing the k-mer count threshold
26: end if
27: end for

For N ′ read pairs that pass the filtration stage, let the
average number of k-mer hits for each pair be q. Sorting
the hits will need O(q log q) and iterating through all hits
to find groups is linear to q. For all the read pairs, the time
complexity is O(N ′q log q).

Assuming finally we have r group seeds, the chaining
procedure has complexity in O(r log r) for each read pairs.
For all the read pairs, the time complexity is O(N ′r log r).
It is practically very fast because the number of group seed
matches is very small compared to the original seed hits
(indicated by Fig. 3).

Results
We focus on evaluating the sensitivity and precision of
overlap detection. We applied GroupK to three PacBio
datasets and one ONT dataset: a simulated PacBio RSII
E. coli sequencing dataset, a real PacBio RSII E. coli

sequencing dataset, a PacBio RSII human foot metage-
nomic sequencing dataset, and an ONT E. coli (SQK-
MAP-006) dataset. For simulated E. coli dataset, we have
the true sampling position for each read as our ground
truth. For the real E. coli dataset and human foot dataset,
we determine the ground truth via BLASR’s [18] align-
ments against the reference genome.

We benchmarked GroupK’s performance with Minimap
[16], Minimap2 [14], DALIGNER [17], MHAP [15], and
GraphMap [19]. Those tools and methods are represen-
tative overlap detection tools for long erroneous reads
from PacBio or ONT [13]. All the detailed parameters can
be found at the website listed in “Availability of data and
materials”. Our main metrics include: (1) sensitivity, which
measures the ratio of the true overlaps identified by each
program to the whole set of overlapping pairs; (2) preci-
sion, which quantifies the ratio of true overlap detected
by each program to the total reported overlapping pairs;
and (3) F1 score, which is the harmonic mean of sensitiv-
ity and precision. A reported overlapping pair is regarded
as correct if it is also present in our ground truth. The
detailed overlap region and overlap length were not con-
sidered in the current evaluation because these read pairs
can go through a more accurate alignment program for
generating the final overlap alignment. As we discussed
in Background, our goal is to identify overlapping reads
without using error correction. All tested tools will thus
be applied to their raw data set.

Simulated E. coli dataset
We first evaluated the performance of our method on a
simulated E. coli dataset. The dataset was generated using
PBSIM [26] with E. coli K-12 MG1655 as the reference
genome [39]. The length distribution and the quality pro-
file were derived from real PacBio P6-C4 E. coli dataset
[40]. The simulated dataset has 5620 reads, with average
length of 8,344.78 bps and 14.5% average error rate (8.6%
insertions, 4.4% deletions, and 1.4% substitutions).

From the report by PBSIM, we can obtain the exact
locations where the simulated reads are sampled in the
genome. This information provides us with the ground
truth for reads’ overlaps so that we can calculate the
sensitivity and precision.

Following the pipeline we discussed in Methods, we first
used k-mer-counting as the filtration stage. According to
Eq. 1, Eq. 3, and Fig. 5, we discarded all read pairs with
less than two 15-mer matches. The sensitivity of the filtra-
tion is 0.979 and only about 6% of read pairs are kept for
downstream analysis.

We evaluated the performance of our tool by adjusting
the group seed match criteria coefficient c, which is intro-
duced in Methods. With the increase of c, sensitivity will
become higher, and the precision will become lower. As
shown in Fig. 7, GroupK can achieve 5 to 6% improvement
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Fig. 7 The ROC-like plot using GroupK, Minimap, Minimap2, DALIGNER, MHAP, and GraphMap on the simulated PacBio E. coli dataset. The x-axis
represents the false discovery rate (FDR = 1 − precision). Y-axis is the sensitivity (0.5 to 1)

on the sensitivity with similar precision to other overlap
detection tools.

Running time and memory usage
We evaluated the running time and the peak memory
usage of the tested tools in this experiment. We run all
overlap detection tools with a single core of 2.4Ghz 14-
core Intel Xeon E5-2680v4 CPU and 32 GB memory
requested from the High-Performance Computing Center
at Michigan State University. The performance is mea-
sured with the best F1 score. The results are reported in
Table 1. For the memory usage, Minimap2 is the most effi-
cient one but all others are comparable. GroupK is slower
than other tools, partially because we use small k-mers.
We found that the bottleneck of our program is the group
matching stage, which accounts for about 1200 of 1871 s.
By implementing a more efficient indexing-based method,
we expect to reduce the running time of this stage. For
example, we can speed up k-mer counting by adopting the
method used in KMC [41].

Real PacBio E. coli dataset
After using the simulated dataset to evaluate our method’s
performance, we applied GroupK to a real PacBio RS II

Table 1 Computational performance on the simulated E. coli
dataset

GroupK Minimap Minimap2 DALIGNER GraphMap MHAP

Time
(seconds)

1871 30 16 39 171 858

Memory (GB) 1.994 1.754 1.097 2.288 1.873 2.562

The computational performance of overlap detection using GroupK, Minimap,
Minimap2, DALIGNER, MHAP, and GraphMap on the simulated E. coli dataset

(P6-C4) E. coli dataset [40]. The coverage of the whole
dataset is 150X. To test the performance of low coverage
data, we sampled a 15X coverage dataset based on the read
length distribution of the whole dataset. The dataset has
14,262 reads, with the average length of 4,882.09 bps and
average error rate of 14.14% (error rate is estimated using
quality score).

We applied BLASR to map the reads to the reference
genome to estimate the ground truth (BLASR was run
with parameters: minReadLength, 2000; maxScore, 1000;
maxLCPLength, 16; minMatch, 12; m 4 and nCandi-
dates/bestn set to 10× sequencing coverage). The map-
ping result from BLASR may contain short alignments due
to the repeat in the genomes. So when we determine the
ground truth, we only consider the alignments that cover
at least 80% of the read. By removing short noisy align-
ments, we can make sure the BLASR alignments are close
to the underlying ground truth.

We used the same filtration setup adopted in the simu-
lated E. coli experiment. Among all overlap detection tools
we tested, GroupK still achieved the highest sensitivity
with comparable precision (Table 2). With slightly higher

Table 2 Overlap detection on the real E. coli dataset

GroupK Minimap Minimap2 DALIGNER GraphMap MHAP

Best F1
score

0.9311 0.9037 0.8426 0.8340 0.7758 0.7023

Sensitivity 0.9330 0.8939 0.8778 0.9066 0.6741 0.7258

Precision 0.9292 0.9138 0.8101 0.7722 0.9137 0.6802

The performance of overlap detection using GroupK, Minimap, Minimap2,
DALIGNER, MHAP, and GraphMap on the real PacBio RS II (P6-C4) E. coli dataset. Here
we only report the experiment results with the highest F1 score for each tool
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precision, our sensitivity is 4% better than the next best
tool, Minimap. Compared to the previous experiment, the
difference in sensitivity is smaller. One reason lies in the
construction of the ground truth dataset. In the simu-
lated dataset, we used the sample positions of all reads to
determine whether two reads form an overlap. Thus, that
dataset can include reads with small overlaps or reads with
higher error rates. In this dataset, our method discarded
BLASR alignments with high error rates and the remain-
ing alignments have higher similarities with the reference
genome and thus produce fewer “hard cases”. As Minimap
is the second best tool for this dataset, we further analyzed
the performance of GroupK and Minimap on read pairs of
different overlap size in the next section.

Performance with different overlap size We divide all
overlapping pairs into bins of width 500 based on the over-
lap size. For example, the first bin has the read pairs with
overlap sizes from 0 to 499, and the second bin has read
pairs with overlap sizes from 500 to 999, and so on. For
each bin, we compared the sensitivity of GroupK and Min-
imap using parameters yielding the similar precision in
Fig. 8. For Minimap, we showed the result with the high-
est F1 score. For GroupK, we selected a parameter so that
it achieves similar precision to Minimap (F1 score: 0.9241,
sensitivity: 0.9344, precision: 0.9140). According to Fig. 8,
GroupK has much better sensitivity when the overlap size
is less than 2000. As we showed in Fig. 1, there are a sig-
nificant number of overlaps with overlap size smaller than
2000 even for 30X coverage. Being able to identify small

overlaps allows us to generate more complete assemblies
using long reads. This is particularly useful for low cov-
erage data, such as what we usually have in metagenomic
datasets.

Human foot metagenomic dataset
One of the major utilities of our tool is to identify overlaps
between reads in metagenomic data that are sequenced
using the PacBio platform. For complicated microbial
communities, metagenomic data containing only short
reads poses serious computational challenges for assem-
bly and the downstream composition/functional analysis.
Long reads hold the promise to produce more com-
plete and accurate microbial genome assemblies for the
metagenomic dataset. In this experiment, we evaluated
the performance of overlap detection for a mock metage-
nomic dataset constructed from a real human foot dataset
[5]. A particular challenge for this experiment is the low
coverage of the component species in the metagenomic
dataset, which could be caused by sequencing throughput
and complexity of the sample.

The human foot sample was sequenced by linear
PacBio RSII TdT (terminal deoxynucleotidyl transferase).
Sequences that can be mapped to the human genome
were removed as host-derived DNA. According to the
Supplementary Materials of [5], there are about 1,000 bac-
teria and viruses in this metagenomic dataset. However,
we cannot evaluate the performance of overlap detec-
tion on all the reads from the 1000 microbes because the
coverages of many species are too low to yield meaningful

Fig. 8 Sensitivity of GroupK and Minimap for detecting overlaps of different size on PacBio E. coli dataset. The x-axis represents the overlap size.
Y-axis is the corresponding sensitivity of the bin. The X-axis bin width is 500 and the figure only included the first 6 bins (i.e. up to overlap size 3000)
as their sensitivity becomes more similar with the increase of the overlap size
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overlaps. In order to construct the ground truth, we need
to align the reads against species with known reference
genomes and reasonable coverage. Thus, we only choose
reads satisfying the following criteria: 1) the reads are
sequenced from a species with known reference genome;
and 2) the coverage of the species cannot be too small
(e.g., >3X coverage). Based on these criteria, we keep
the reads sequenced from three bacteria: Corynebac-
terium aurimucosum (6.3X Coverage), Corynebacterium
tuberculostearicum (8.5X Coverage), and Staphylococcus
hominis (3.2X Coverage). The reads are recruited via
BLASR. The alignment positions are used to determine
which reads form an overlap. Note that Corynebacterium
aurimucosum and Corynebacterium tuberculostearicum
belong to the same genus and may contribute to the
false positive overlap detection due to their shared
regions. The average length of the reads is 1696.25 bps,
which is much shorter than the reads in the previous
experiments.

As this dataset contains much shorter reads, the
expected number of k-mer hits will change. Intuitively we
need to use shorter k-mers to ensure high filtration sen-
sitivity. Using the read length distribution, we calculated
E[ Xr] (Eq. 1) and E[ Xo] (Eq. 3) and determined the k-mer
counting-based filtration criteria. In this experiment, we
only kept read pairs that share at least three 11-mers.

For this mock metagenomic dataset, GroupK yielded
significantly better performance than other tools on met-
rics including F1 score, sensitivity, and precision (Table 3).
Compared to other tools, GroupK can produce much
higher sensitivity without sacrificing precision, leading to
the higher F1 score. Besides evaluating the performance
of various tools on all the reads from the three species, we
also reported the performance of different overlap detec-
tion tools on each single bacteria dataset without mixing
with other species (Table 3). In these tools, GraphMap
has high specificity for all three with sacrifice of sensitiv-
ity. However, GroupK still achieves the best performance
overall. The comparisons suggest that our method has
great potential to detect overlaps for data with very low
coverage (around 5X). This will enable better assembly for
PacBio sequenced metagenomic data, which will become
more available with the advances of long read sequencing
technologies.

Real ONT E. coli dataset
We also tested our method on one ONT dataset. We
used downsampled 15X coverage 2D reads from the SQK-
MAP-006 dataset as 2D reads provide higher quality than
1D reads. We followed the same pipelines we used for the
real E. coli PacBio dataset. As 2D ONT reads have sim-
ilar error rates to the PacBio reads, we expect that our
tool can still achieve reasonable performance given the
same setup for the PacBio dataset. Therefore, we used the

Table 3 Overlap detection on the human metagenomic dataset

GroupK Minimap Minimap2 DALIGNER GraphMap MHAP

Total:

Best F1
score

0.9163 0.8306 0.8776 0.6911 0.7188 0.7812

Sensitivity 0.8954 0.7802 0.8352 0.6012 0.5721 0.6803

Precision 0.9381 0.8880 0.9245 0.8027 0.9666 0.9174

C. aurimu-
cosum:

Best F1
score

0.9512 0.8072 0.9117 0.7432 0.7397 0.8545

Sensitivity 0.9228 0.6858 0.8467 0.6266 0.5892 0.8045

Precision 0.9814 0.9806 0.9874 0.9131 0.9937 0.9111

C. tubercu-
lostearicum:

Best F1
score

0.9454 0.8688 0.9050 0.8315 0.7276 0.7961

Sensitivity 0.9105 0.7958 0.8346 0.7150 0.5727 0.7355

Precision 0.9830 0.9567 0.9884 0.9934 0.9977 0.8675

S. hominis:

Best F1
score

0.9163 0.7651 0.8024 0.8754 0.6343 0.6861

Sensitivity 0.8733 0.6887 0.6813 0.7967 0.4658 0.6348

Precision 0.9245 0.8606 0.9759 0.9713 0.9938 0.7464

The performance of overlap detection using GroupK, Minimap, Minimap2,
DALIGNER, MHAP, and GraphMap on the mock metagenomic dataset. Here we only
report the experimental results with the highest F1 score for each tool

same parameters as the ones we used for the PacBio E. coli
dataset.

Among these tools, GraphMap was designed for ONT
data, Minimap2 provides a specific setup for finding the
overlap on ONT dataset. All other tools are not specif-
ically designed for ONT datasets. GroupK achieves the
best F1 score compared to other tools’ default setup while
keeping the highest sensitivity (Table 4). This result sug-
gests that our strategy is robust with different types of long
reads.

Discussion
Seeding is a key step for overlap detection because of the
high error rate of long reads. Successful seeding strate-
gies should balance the sensitivity and the specificity to

Table 4 Overlap detection on the ONT E. coli dataset

GroupK Minimap Minimap2 DALIGNER GraphMap MHAP

F1 score 0.9383 0.9310 0.9090 0.8272 0.9280 0.8122

Sensitivity 0.9597 0.9546 0.9362 0.8730 0.8991 0.8871

Precision 0.9178 0.9085 0.8833 0.7860 0.9589 0.7490

The performance of overlap detection using GroupK, Minimap, Minimap2,
DALIGNER, MHAP, and GraphMap on the real ONT SQK-MAP-006 E. coli dataset.
Minimap2 uses the ava-ont setup, which is optimized for ONT data
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achieve the optimal performance. Popular seeding meth-
ods include maximal exact matches, spaced seeds, and
gapped spaced seeds. However, to successfully find a hit
between two reads, these methods still need either to find
relatively long continuous exact matches (large k-mer) or
to find inexact matches following certain error patterns
(spaced seed). Compared to these methods, group seed
matching is more flexible as it requires multiple short
exact matches without specifying the error patterns. This
flexibility leads to high sensitivity, and meanwhile the
specificity is still guaranteed with the group seed match
criteria.

Currently the group seed matching step based on hash
table is the bottleneck of our overlap detection pipeline. A
new method that can improve the running time efficiency
of this step is needed to make the algorithm achieve the
same speed as other faster overlap detection tools.

Conclusions
In this work, we developed an overlap detection tool for
third-generation sequencing data. By adopting the group
hit criteria to cluster a group of short k-mer hits that sat-
isfy statistically derived distance constrains, our method
can improve the sensitivity of overlap detection with-
out sacrificing precision. Our experimental results have
shown that for datasets with low sequencing coverage, our
program can detect significantly more overlapping pairs
while keeping high precision. One utility of our approach
is to detect small overlaps between long reads of rare
species in a microbial community.
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19. Sović I, Šikić M, Wilm A, Fenlon SN, Chen S, Nagarajan N. Fast and
sensitive mapping of nanopore sequencing reads with GraphMap. Nat
Commun. 2016;7:11307.

20. Buhler J, Keich U, Sun Y. Designing seeds for similarity search in genomic
DNA. J Comput Syst Sci. 2005;70(3):342–63.

21. Sun Y, Buhler J. Designing multiple simultaneous seeds for DNA similarity
search. J Comput Biol. 2005;12(6):847–61.

22. Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homology
search. Bioinformatics. 2002;18(3):440–5.

23. Ma B, Li M. On the complexity of the spaced seeds. J Comput Syst Sci.
2007;73(7):1024–34.

24. Nicolas F, Rivals E. Hardness of optimal spaced seed design. J Comput
Syst Sci. 2008;74(5):831–49.

25. Noé L, Kucherov G. Improved hit criteria for DNA local alignment. BMC
Bioinformatics. 2004;5(1):149.

26. Ono Y, Asai K, Hamada Mq. PBSIM: PacBio reads simulator—toward
accurate genome assembly. Bioinformatics. 2012;29(1):119–21.

27. Myers EW. The fragment assembly string graph. Bioinformatics.
2005;21(suppl_2):79–85.

28. Aki S, Kuboki H, Hirano K. On discrete distributions of orderk. Ann Inst
Stat Math. 1984;36(1):431–40.

29. Benson G. Tandem repeats finder: a program to analyze DNA sequences.
Nucleic Acids Res. 1999;27(2):573.

30. Feller W. An Introduction to Probability: Theory and Its Applications vol. 1.
Hoboken, New Jersey, United States: Wiley; 2008.

31. Joseph D, Meidanis J, Tiwari P. Determining DNA sequence similarity
using maximum independent set algorithms for interval graphs. In:
Scandinavian Workshop on Algorithm Theory. Berlin: Springer; 1992.
p. 326–37.

32. Gusfield D. Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge, England: Cambridge
University Press; 1997.

33. Rajasekaran S, Nicolae M. An elegant algorithm for the construction of
suffix arrays. J Discret Algoritm. 2014;27:21–8.

34. Kärkkäinen J, Sanders P. Simple linear work suffix array construction. In:
International Colloquium on Automata, Languages, and Programming.
Berlin: Springer; 2003. p. 943–55.

35. Kasai T, Lee G, Arimura H, Arikawa S, Park K. Linear-time
longest-common-prefix computation in suffix arrays and its applications.
In: Annual Symposium on Combinatorial Pattern Matching. Berlin: Springer;
2001. p. 181–192.

36. Noé L, Kucherov G. YASS: Similarity search in DNA sequences. Research
Report. 2003;20. RR-485 2, INRIA.

37. Noé L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity
search. Nucleic Acids Res. 2005;33(suppl_2):540–3.

38. Döring A, Weese D, Rausch T, Reinert K. SeqAn an efficient, generic c++
library for sequence analysis. BMC Bioinformatics. 2008;9(1):11.

39. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo
E, Baba T, Wanner BL, Mori H, et al. Highly accurate genome sequences
of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol.
2006;2(1)2006.0007.

40. PacificBiosciences. E. coli Bacterial Assembly Primary Analysis (Instrument
Output) Data. 2016. https://github.com/PacificBiosciences/DevNet/wiki/
E.-coli-Bacterial-Assembly. Accessed 13 May 2016.

41. Kokot M, Długosz M, Deorowicz S. KMC 3: counting and manipulating
k-mer statistics. Bioinformatics. 2017;33(17):2759–61.

https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work
	Overview of our work

	Methods
	Pipeline
	Estimate the expected number of k-mers for the filtration stage
	Group hit criteria
	Constraint on k-mer distance
	Constraint on k-mer diagonal distance


	Group chaining
	Implementation details of the major components
	Filtration by k-mer counts
	Group seed match and chaining
	Time complexity analysis



	Results
	Simulated E. coli dataset
	Running time and memory usage

	Real PacBio E. coli dataset
	Performance with different overlap size

	Human foot metagenomic dataset
	Real ONT E. coli dataset

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

