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Abstract

Background: Time series single-cell RNA sequencing (scRNA-seq) data are emerging. However, the analysis of time
series scCRNA-seq data could be compromised by 1) distortion created by assorted sources of data collection and
generation across time samples and 2) inheritance of cell-to-cell variations by stochastic dynamic patterns of gene
expression. This calls for the development of an algorithm able to visualize time series scRNA-seq data in order to
reveal latent structures and uncover dynamic transition processes.

Results: In this study, we propose an algorithm, termed time series elastic embedding (TSEE), by incorporating
experimental temporal information into the elastic embedding (EE) method, in order to visualize time series
scRNA-seq data. TSEE extends the EE algorithm by penalizing the proximal placement of latent points that correspond
to data points otherwise separated by experimental time intervals. TSEE is herein used to visualize time series
scRNA-seq datasets of embryonic developmental processed in human and zebrafish. We demonstrate that TSEE
outperforms existing methods (e.g. PCA, tSNE and EE) in preserving local and global structures as well as enhancing
the temporal resolution of samples. Meanwhile, TSEE reveals the dynamic oscillation patterns of gene expression
waves during zebrafish embryogenesis.

Conclusions: TSEE can efficiently visualize time series scRNA-seq data by diluting the distortions of assorted sources
of data variation across time stages and achieve the temporal resolution enhancement by preserving temporal order
and structure. TSEE uncovers the subtle dynamic structures of gene expression patterns, facilitating further
downstream dynamic modeling and analysis of gene expression processes. The computational framework of TSEE is
generalizable by allowing the incorporation of other sources of information.
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Background

Single-cell RNA sequencing (scRNA-seq) technology pro-
vides snapshots of transcriptomes at single-cell resolution,
offering a comprehensive approach to study complex bio-
logical processes, such as cell fate decisions [1-3]. Given
the challenges raised by high-dimensional gene expres-
sion profiles of large-scale heterogeneous cell populations
at diverse stages during cell state-transitions, many com-
putational methods have been proposed for the visual-
ization, clustering, and reconstruction of scRNA-seq data
(see [4], a recent review).

Cells used for a single-cell experiment are snapshot
of heterogeneous dynamic populations. However, the
dynamic range is usually limited, and only specific cell
fate decisions can be analyzed when the samples are col-
lected at a single stage or condition. Therefore, to extend
the dynamic range and account for whole processes of cell
development, time series scRNA-seq data are emerging.
These time series data are generated by sampling single
cells collected and sequenced at multiple time stages along
the time course of cell developmental processes [5, 6]. Yet,
by integrating time series analysis into scRNA-seq, new
questions and challenges arise. Importantly, we know that
scRNA-seq data across time stages are contaminated by
assorted sources of variations during data collection and
generation [7]. Moreover , the cell-to-cell gene expres-
sion is highly variable across the stochastic dynamics of
gene transcription [8]. To address these issues, a hand-
ful computational time series scRNA-seq methods have
been developed to (1) determine temporal trajectories [9],
(2) reconstruct cell development landscapes based on the
sophisticated mathematical tool of optimal transport [10],
and (3) identify gene-gene interactions, as well as gene
networks [8, 11].

However, for such methods to perform model reduc-
tion, computation and validation, they must incorporate
dimensionality reduction and/or visualization of single-
cell high-dimensional gene expression profiles. Accord-
ingly, dimensionality reduction would ideally reveal the
intrinsic structure of the data by representing both global
structure by preserving the topology and geometry and
local structure by preserving the neighborhood rela-
tionship. Among the numerous dimensionality reduction
and visualization methods, principal component analysis
(PCA) and t-distributed stochastic neighbor embedding
(tSNE) are most widely used in the single-cell commu-
nity to visualize data structures [4, 12]. However, PCA
is designed to preserve linear structure based on eigen-
decomposition of a matrix into canonical form, and as
such, it is incapable of handling nonlinear structures.
While tSNE emphasizes neighborhood information to
reveal the local cluster structures of the data, it tends
to shatter trajectories and fails to preserve the global
structures [12].
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To address the limits of dimensionality reduction
methods, like PCA and tSNE, we recently adopted
the nonlinear dimensionality reduction algorithm, Elas-
tic Embedding (EE) [13], to accurately visualize and
reconstruct the embedded intrinsic latent space of cell
development trajectory[14]. Both tSNE and EE embed
high-dimensional data points into low-dimensional latent
space by modeling the data points interactively with two
terms. One term is an attractive force that attracts pairs of
points towards each other, while the other term activates
a repulsive force that simultaneously separates all pairs of
points. A similar embedding idea was adopted in force-
directed layout embedding [15], which has also been used
in the visualization of scRNA-seq [16]. As an extension of
tSNE, the EE algorithm penalizes placing latent points far
from similar data points, as well as penalizes placing latent
points from dissimilar data points close together [13],
thereby preserving both local and global intrinsic data
structures [17].

However, to the best of our knowledge, no dimension-
ality reduction and visualization methods can now incor-
porate temporal information of single-cell experiments
into times series scRNA-seq data, i.e., time stages when
samples are collected. Instead, scRNA-seq data from dif-
ferent time stages are combined as the input for methods
like PCA and tSNE to obtain 2-dimensional visualiza-
tion of the data structure [5, 6, 10]. TSEE can carefully
incorporate experimental temporal information, resulting
in significant improvement of temporal resolution of the
cells on the 2-dimensional plane, as well as uncovering the
subtle structures of dynamic gene expression patterns.

In this study, we propose a time series elastic embed-
ding (TSEE) algorithm for dimensionality reduction and
visualization of time series scRNA-seq data by incorpo-
rating the temporal information of the experiments. TSEE
is an extension of EE by introducing an additional repul-
sive force term when pairs of data points are collected at
distinct time stages (see Eq. 1). TSEE penalizes placing
latent points in close proximity to data points otherwise
separated by experimental time interval. For developmen-
tal processes, the rationale that underlies TSEE holds
that data points sampled at the same time stage should
be more similar than those sampled from adjacent time
stages, while those data points sampled from adjacent
time stages should be more similar than data points sam-
pled from the nonadjacent time stages. In this way, TSEE
preserves the temporal order and structure of time series
data through the input of experimental temporal infor-
mation. A similar motivation was successfully applied in
the time-dependent community detection of time-varying
networks [18].

In this paper, we first introduce the TSEE algorithm,
and then provide an efficient numerical implementation
of TSEE based on the partial-Hessian method developed
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by EE [19]. Next, we demonstrate the power of TSEE in
the visualization of two datasets of time series scRNA-
seq: human preimplantation embryo (hereinafter denoted
as HPE) dataset [5] and early zebrafish embryonic devel-
opment (hereinafter denoted as Zebrafish) dataset [6].
By establishing a new constraint term of temporal repul-
sive force, TSEE dilutes the distortions of the assorted
sources of data variations across time stages and achieves
temporal resolution enhancement. Compared to existing
methods such as PCA, tSNE and EE, our TSEE shows
superior ability to gain time resolution on 2-dimensional
space by preserving local, global and temporal structures
of time series sScCRNA-seq data. Furthermore, the visual-
ization represented by TSEE uncovers the subtle patterns
of dynamic gene expression by showing continuous pat-
terns with regularity at the interface between samples
from adjacent time stages. For example, TSEE reveals
the oscillating waves of gene expression for HERI, HER?,
SOX2 and etc. along the time course, providing a solid
foundation for downstream mathematical modeling and
analysis. We also demonstrate robustness in the choice of
TSEE.

Methods

Time series elastic embedding (TSEE)

Given the time series sScCRNA-seq dataset, the single-cell
samples are collected at n time stages {t1,%, ..., %}, and
for each time stage £;(1 < i < n), a number of m; single
cells are sequenced with the corresponding gene expres-
sion vectors y(lti), oy e RP, where D is the number
of genes for single cells. Thus, the single cell gene expres-
sion profile of a total number of N = Y"1, m; cells is
contained in the data matrix

T
(t1) t (&n) tn
11,...,y£n11),...,...,y1 ()) .

YNxD = ()’

TSEE is an extension of EE, a nonlinear dimensionality
reduction method [13] by incorporating the information
of t;, embedding the N data points in D-dimensional space
into the latent d-dimensional (d <« D) coordinates of

T
t (&n) tn
,xﬁ,}l),...,...,xl ~~,x£nn)> .

XNxd = (xitl), ce

In a manner that minimizes the pseudo potential energy
function as

N N

EDXGAB1=) Whplln—2ml®+0 D (Whty+Blum) exp (Hlxn—xmll*),

1)

nm=1
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where the weights w” , wN

> W tnm are defined as

— 90 — ym|I*
wh =NTwi =NTexp (nzazm ,
wh = N"wy, = N7 llyn — ymll,

tum = N~ |£(n) — t(m)].

Among these, Nt and N~ are normalization fac-
tors of weights for the two summation terms which,

(Z;\{mzl Wf{m>_1 and N~ =

-1
(X0t Wi + BIEOD = £0m)]) 5 [£0n) — £ s the
time interval between sample y,, and y,,. TSEE is different
from EE by incorporating additional temporal informa-
tion of £, in the model.

The pseudo potential energy function of TSEE has two
terms on the right hand side of Eq. 1. The first term
(attractive term) attracts pairs of data points towards
each other, while the second term (repulsive term) sep-
arates all pairs of points. The weights W* = (wf ) of
the attractive term are defined based on the similarity
between data points in high-dimensional space (original
space) [20], enabling TSEE to place neighboring points in
high-dimensional space still close to each other in low-
dimensional embedding space. The weights of the repul-
sive term of TESS are composed of two parts. The weights
WN = (wl ) are the disparities between data points in
high-dimensional space (original space), and T~ = (£,)
are the time intervals between samples. Thus, in the con-
structed latent space, TSEE not only preserves the local
and global structures of data hidden in original high-
dimensional space, as EE does [14, 17], but also further
preserves temporal structure of data by penalizing placing
close together latent points that correspond to data points
separated by experimental time intervals. Intuitively, the
experimental temporal information of the experimental
time of samples reflects, to some extent, cell development
stages. In other words, the later a cell is collected in time,
the more likely it will be in later developmental stages, and
a longer experimental time interval between two cells typ-
ically indicates a longer distance between the cells, along
the developmental process.

TSEE has two regularization parameters in Eq. 1.
Parameter X trades off the attractive and repulsive terms,
while parameter § trades off the composite weights of data
disparities in high-dimensional space and time intervals
on the repulsive term. By fixing A, a smaller g will have
smaller effects by the temporal order/structure of sam-
ples, leading to less consideration of temporal informa-
tion. If 8 = 0, TSEE degenerates into EE, and no temporal
information will be incorporated. If fixing 8, a smaller A
makes TSEE focus on local structures, determining X x4
based on the attractive term, and when A = 0, TSEE
degenerates to Laplacian Eigenmap methods [13]. Choices

respectively, are NT =
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and robustness analysis of both A and 8 on embeddings in
latent space are discussed in “Results” section. If either A
or f is too large, the result will either be distortion of local
structures or loss of global structures in latent space.

The pseudocode of TSEE is in Algorithm 1.

Algorithm 1: TSEE algorithm
Input :single cell expression
Ynxp = (Y1,..., Yn)T, time of single cells
T = (t,...,tN), A and B, the default of
which are both set to be 10
Output: low-dimensional embedding

Xnwa = (X1, X))
1 Stepl: Normalize data
Y — mini,j Yij

Y <«

max;; y; — min;; yi,-’
T — min; ¢;
T« ——
max; t; — min; ¢;
Step2: Calculate two weight graphs W7”, W
wP <entropic affinities of Y1,..., Yy
W= < {lIlYi = YjllInxN
T~ < {lti — GlInxnN
WN — W~ 4 BT~
Normalize graphs:
8 WP« % (WP + (WP)T), diagonal(Wp) < 0,
WP wP
T
9 WN % (WN + (WN)T>, diagonal(Wy) < 0,
wN wN
T
10 Step3: Calculate low-dimensional embedding X
11

NG s W N

X < TSEE (W%, W™, 1)

The numerical implementation of TSEE

In the numerical implementation of TSEE, we adopt the
efficient computational method of partial-Hessian pro-
posed in [19] to find X 4 that minimizes the function E
of TSEE (Eq. 1).

For a given symmetric weighted graph (matrix) W =
(Wym), the Laplacian matrix graph is defined as L =
D — W, where D = diagonal (Z%:l wnm) is defined as
degree matrix. L is positive semi-definite if W is non-
negative. The gradient of objective function E of TSEE can
be represented in terms of Laplacian as

VE = 4LX,
where L is the Laplacian matrix of W = (wy,,,) with

W = Why — o (Wi + Bum) exp (= — xml|?) .
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This optimization problem can be solved by an iterative
approach in the form of

Xk+1 = ¥k + Pk,

where ax > 0 is the step size in each iteration that sat-
isfies the linear search principles (e.g., Armijo rule), and
pr € RNP is the search direction. In each iteration, py is
determined by

Bipr = —g

where gi is the gradient at k-th iteration, and By is a
positive-definite matrix to achieve a descent direction sat-
isfying ngk < 0. The procedures iterate until certain
conditions are satisfied, for example, the iteration termi-
nates when the number of iterations achieves the given
constraint, or the distance between x; and x4 obtained
by two adjacent iterations is less than a given threshold.

The partial-Hessian method relies on the spectral direc-
tion based on partial Hessian, the attractive Hessian L” ®
1, to strike the best compromise between deep descent
and efficient computation, where L” is the Laplacian
matrix of W”. In order to prevent the problem of singu-
larity, a small px/ is added to the partial Hessian, ensuring
positive definiteness of By, that is

By =L @ Iy + il

and puy is set as 10710 min; (Lp)l.yj in this study.
Algorithm 2 shows the detailed steps of Partial-Hessian
strategies. The authors of EE [19] demonstrated that the
spectral direction obtained, as described above, can be
rapidly computed, leading to global and fast convergence.
Compared with EE, TSEE adds an additional repulsive fac-
tor in the objective function, which results in a simple
modification of W and L with no effect on computational
performance, making the complexity of TSEE comparable
to that of EE. In terms of the large-scale Zebrafish dataset
with sample size ~ 40k, the computational time of EE and
TSEE is 38 min and 45 min, respectively.

Datasets

Two publicly available datasets of time series scRNA-
seq are used in this study. The Zebrafish dataset [6]
was obtained across 12 closely spaced stages of early
zebrafish development spanning from high blastula stage
(3.3 hours-postfertilization (hpf), just after transcription
from the zygotic genome begins) to six-somite stage
(12 hpf, shortly after the completion of gastrulation).
The number of cells at each time stage ranges from
200 to 7162, comprising a total of 39,505 cells. The
UMI count data can be accessed at NCBI GEO (acces-
sion n0.GSE106587). The human preimplantation embryo
(HPE) dataset [5] consists of individually isolated embry-
onic cells during the human preimplantation process,
starting from the 8-cell stage at embryonic day 3 (E3) up to
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Algorithm 2: TSEE: Partial-Hessian Strategy

Input : two weighted graphs W’, Wy, A

Output: low-dimensional embedding X

Stepl: Calculate positive definite matrix based on
Partial Hessian

2 DP « diagonal (ijl wf])), P <« DP —w?P

3 B <« 4x (LP +10' min {1{/’ P> o}leN>

R < upper triangular cholesky factorization of B
Step2: Search spectral directions

initialize:

opts.maxit < 100, count < 1

Xold <random initial coordinates

Eold <value of objective function at Xold
10 while count < opts.maxit do

11 W «~ {Wf; — Awlz.\j[ exp (—||Xold,' - Xoldj||2) }NxN

—

LC=-JN BN B S

12 D ediagonul(zj w,',')
13 L<~D-W

14 G < 4LX
objective function

15 | P« — (RT)_1 R™1G # Pis the spectral

# @ is the gradient of

direction
16 line search on step size:
17 o<1 p<«<08 c<«01
18 E <«value of objective function at Xold + o P

19 tmp <« Zi,jpiigti
20 while E > Eold + o x ¢ X tmp do

21 a<—axp
22 E < value of objective function at Xold + aP
23 end

24 X < Xold + aP

25 Xold < X

26 count < count + 1
27 end

the time point just prior to implantation at E7, consisting
of a total of 1529 single cells. The data can be downloaded
from https://www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-3929/.

In addition, the scRNA-seq dataset of Drosophila
embryos [21] is utilized here as a demonstration of the
generalizability of TSEE for incorporating spatial informa-
tion. The high-quality data of a total 1297 cells, as defined
in [21], were selected. The data are used to reconstruct the
spatial positions of cells in the precisely staged embryos.
The 84 genes used as predictors of spatial positions of
cells in the precisely staged embryos as in [21] are uti-
lized as our spatial genes. The data can be obtained at
https://shiny.mdc-berlin.de/DVEX/.
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Preprocessing of time series scRNA-seq data

Prior to the implementation of TSEE, the time series
scRNA-seq data are preprocessed as follows. First, we
select out the most variable genes according to the Z-
scores of their variations across all samples. Second, the
selected gene expression profile is normalized with all val-
ues, subtracting the minimum in the matrix, followed by
dividing all values by their maximum of the processed
matrix, such that the values of the elements of the nor-
malized profile matrix range from O to 1. The time points
of samples are also normalized to range from 0 to 1 with
the initial time stage set as 0 and the final time stage set
as 1. Third, the PCA algorithm is utilized to select the
top principal components which preserve most variations,
and the dimension of components is determined follow-
ing the procedure in [14]. Finally, the data of top PCA
components are further normalized, as described in the
second step.

Performance comparisons

We compare TSEE with PCA, tSNE and EE to evaluate
their individual performance on visualizing data, pre-
serving local and global structures, and revealing gene
expression patterns.

The scatting plots of cells on the 2-dimensional embed-
ded space are first displayed to compare their visualization
results. A good visualization result should reveal the local
and global structures, as well as uncover the latent specific
gene expression patterns.

To measure the preservation of structures quantita-
tively, we adopt 1) the in-group proportion (IGP) [22]
and 2) IGP2, a modification of IGP, to evaluate local
structure preservation. In addition, we adopt the Pearson
correlation coefficient (PCC) between experimental time
and pseudotime obtained by DensityPath [14], to evaluate
global structure preservation.

The IGP, defined as the proportion of samples in a
group, the nearest neighbors of which are also in the same
group [22], can be used to assess the accuracy of dis-
tinction of cells on 2-dimensional space. In this study, we
use temporal information to define groups. For a given
dataset X = f{x1,%9,...,xx}, consisting of N samples
which belong to n groups U = {1,2,...,u,...,n}, we
define /N = arg ming; || — x| as the index of x;’s near-
est sample, and we regard Class, (/) as the label for sample
;. Based on the definition above, IGP of group u based on
dataset X is defined as

# {j|Classx (/) = Class, (/N) = u}
#{j|Classy (/) = u}

IGP(u, X) =

The value of IGP ranges from 0 to 1, and a higher value

indicates a better cell distinction between groups.
Because of the heterogeneity of cells, the cells at distinct

time stages may still belong to the same cell type, which
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Fig. 1 Visualization results by PCA, tSNE, EE and TSEE. The four dimensionality reduction methods are applied to two datasets of time series
scRNA-seq: a HPE and b Zebrafish. Each cell is colored according to the corresponding experimental time stage

means that /GP tends to underestimate the performance
of cell-specific distinction. Consequently, we weaken the
requirements of /GP and propose a new IGP score by
defining the proportion of samples in a group, the near-
est neighbors of which are also in the same, or adjacent
group (adjacent time stages here). The so-called IGP2 of
the adapted index is formulated as

IGP2(u, X) = # {/||Cla8sx (/) — Classy (jN) | < 1,Classy (j) = u}
= #{j|Classy (]) = u) .

)

In this study, the tSNE algorithm is implemented by the
Rtsne function in the R package Rtsne with default param-
eters, and the EE algorithm is performed according to
the code downloaded from http://faculty.ucmerced.edu/
mcarreira-perpinan/software.html.

Table 1 Evaluation of local structure preservation based on
averaged values of IGP

Results

We analyze two time series datasets: Zebrafish [6] and
HPE [5] (see “Methods” section for details). To validate
the performance of TSEE, we compare it with three other
dimensionality reduction algorithms, PCA, tSNE and EE.

TSEE outperforms other dimensionality reduction methods
in visualization and structure preservation
We apply the 4 dimensionality reduction algorithms noted
above to HPE and Zebrafish datasets and demonstrate the
embedding results on the 2-dimensional embedding space
to visualize cell development structures. TSEE not only
preserves the local and global data structures, but also
has higher temporal resolution of cells with different time
stages (Fig. 1).

More specifically, in the HPE dataset, PCA combines
cells from E4 to E7 tightly, grouping cells into two groups
visually, one mainly containing cells at E3 and the other

Table 2 Evaluation of local structure preservation based on
averaged values of IGP2

PCA tSNE EE TSEE PCA tSNE EE TSEE
HPE 0.7747 0.8900 0.8466 0.9407 HPE 0.9661 0.9961 0.9936 0.9965
Zebrafish 04757 0.8799 0.7127 08943  Zebrafish 0.8525 0.9930 0.9196 0.9954
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Fig. 2 Comparison of local structure preservation performance by /GP and IGP2. Performances in local structure preservation of PCA, tSNE, EE and
TSEE is individually evaluated based on two metrics, a IGP and b IGP2, on the HPE and Zebrafish datasets

filled with cells from E4 to E7, which would affect down-
stream analysis, such as clustering. The embedded points
with various stages obtained by tSNE and EE are both
evenly distributed as a whole, but cells from E5 to E7 heav-
ily overlap, with some E7 cells even falling into the area of
E5 cells (Fig. 1a). For TSEE, cells at different time stages
are well separated so that only cells at adjacent time stages
are mixed in agreement with the heterogeneity of cells
(Fig. 1a).

For the Zebrafish dataset, all four methods arrange cells
along time with relatively large gaps arising in early devel-
opmental stages (Fig. 1b). However, PCA and EE results
show that cells from 8 to 12 hpf are highly mixed, almost
stacked together, even when two or more time intervals
exist among them. Although clearly separating points with
different time stages, tSNE shows distorted 2-dimensional
temporal structures in that cells from 3.3 hpf to 4.3 hpf
are distributed along time course, while cells at 4.7 hpf are
separated with the cells before 4.7 hpf by cells at 5.3 hpf

(Fig. 1b). In contrast, for TSEE, the cells from 3.3 to 6 hpf
are obviously separated. Even though cells from 7 hpfto 12
hpf are not separated as distinctly as the cells before 6 hpf,
significant gaps still exist between cells at adjacent time
stages, thus showing the best performance on preserving
structures along time (Fig. 1b).

To quantitatively evaluate the performance of TSEE, we
apply IGP and IGP2 scores to measure the distinction
of cells, regarding time stages as standard of cell groups.
TSEE always has highest averaged values of IGP and IGP2
(see Tables 1 and 2), and its performance is similar to that
of tSNE based on the two scores across all time stages in
HPE and Zebrafish (Fig. 2), indicating that TSEE preserves
the local structures and differentiates cells at various time
stages better than the three other methods.

To evaluate the preservation of global and temporal
structures by the four methods, we measure performance
quantitatively by applying DensityPath [14], which has
high accuracy in the reconstruction of cell development

0.8

0.6 method
(6] [ pca
0.4 ] tsNE
o 0.2 ] ee

: ] TseE

0.0

HPE

dataset

Fig. 3 Quantitative comparison of global structure preservation. Performance in global structure preservation of PCA, tSNE, EE and TSEE is evaluated
based on PCC metric of pseudotime calculated by DensityPath and experimental time for the HPE and Zebrafish datasets

Zebrafish
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trajectory, as well as pseudotime calculation, for both
datasets. Since our purpose is to investigate the perfor-
mance of the four dimensionality reductions, we only
apply DensityPath to dimensionality reduced data of 2-
dimensional space by the four methods to reconstruct cell
state-transition path and calculate pseudotime. After set-
ting the root as 1472-th and 1-st cell in the HPE and
Zebrafish datasets, respectively, the accuracy of calculated
pseudotime is measured by PCC between the calculated
pseudotime and experimental time of the cells. A larger
value of PCC indicates more consistency in global struc-
ture preservation along time. We find that TSEE preserves
temporal structure information best, while the PCC value
of tSNE on the Zebrafish dataset is negative, indicat-
ing that the embedding of cells by tSNE distorts whole
structures of data along time (Fig. 3).

The hierarchical clustering algorithm is also applied
to measure the preservation of distance of time stage.
The complete linkage method is adopted here based
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on centroids of samples at each time stages, where
the calculated distance of the centroids is based on 2-
dimensional Euclidean distances of the four dimensional-
ity reduction methods separately. Although the adjacent
time stages are always close to each other in hierarchical
clustering trees based on the results of all four methods
(Fig. 4), the clustering tree constructed on the basis of
TSEE results shows the best consistency between the dis-
tance of centroids and the time order. Specifically, the
lengths of leaf nodes (3.3, 3.8, 4.3, 4.7, 5.3, and 6) to the
root of the clustering tree decrease with increasing time
stage from 3.3 to 6 hpf, and then the lengths of leaf nodes
(7, 8,9, 10, 11, and 12) to the root of clustering tree
increase with the increasing time stage from 7 to 12 hpf
(Fig. 4). As an indication of cell development processes,
the clustering tree result by TSEE indicates that the cen-
troids of cell populations propagate along one direction
from 3.3 to 6 hpf and then propagate along another direc-
tion from 7 to 12 hpf, which can be further supported by
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the large gap between 6 and 7 hpf on the 2-dimensional
space by tSNE, EE, and TSEE (Fig. 1b).

TSEE reveals subtle dynamic patterns of gene expression
during zebrafish embryogenesis on 2-dimensional space
The large-scale Zebrafish dataset with closely spaced
stages allows us to further explore dynamic patterns of
gene expression during zebrafish embryogenesis.

The power of TSEE to allow visualization of structures
that show dynamic patterns of gene expression can first be
illustrated through the expression of marker genes HERI
and HER?7 on the 2-dimensional space by PCA, tSNE, EE
and TSEE in Zebrafish data (Fig. 5). HER1 and HER?7, for
which the existence of oscillation expression patterns by
negative feedback has been reported in presomitic meso-
derm of zebrafish [23], clearly show oscillatory expression
patterns along time stages on the 2-dimensional space of
TSEE, indicating that TSEE successfully reveals the under-
lying dynamic patterns of gene expression. On the other
hand, PCA only shows two wide strips of highly expressed
genes on the whole plot, and tSNE gathers cells with
highly expressed genes together without any oscillation
pattern whatsoever. Meanwhile EE just shows a narrow
region with oscillation expression pattern in early devel-
opmental stages, and the cells with high-level expression
are stacked in the latter developmental stages, resulting in
low temporal resolution. For TSEE, however, points on the
2-dimensional plane clearly demonstrate the oscillation
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patterns of gene expression with high resolution, validat-
ing the effectiveness of TSEE in preserving the intrinsic
structures of data with high resolution, while, at the same
time, allowing visualization of the underlying dynamic
structures of genes.

We also explore the expression patterns of genes related
to embryogenesis from the list provided by [6] on the
2-dimensional spaces by the four methods to examine
the developmental patterns. Here, visualization by TSEE
can also show clearer oscillation waves of gene expres-
sions along time compared to the other methods (see
Fig. 6 for four examples). PCA tends to distribute the
cells with high-level gene expression uniformly, or accu-
mulate them in the region of late developmental stages.
The tSNE methods tends to gather together the cells
with high gene expression, while small gaps occur among
them, but this only shows meaningful clusters of cells
without any evidence of patterns of gene expression. EE
displays the products resulting from mixtures of cells at
various time stages as the region of high-level gene expres-
sion, where genes are continuously expressed. The three
methods place together the regions where the specific
genes are highly expressed, failing to uncover the dynamic
structures even if some special gene expression patterns
exist among all cells. In TSEE, different patterns of gene
expression can be revealed. As examples, WNT8A, an
essential transcript for zebrafish axis development [24],
displays an oscillatory gene expression pattern throughout
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Fig. 5 Distribution of gene expression of HERT and HER7 in 2-dimensional space. The distribution of HERT and HER7 gene expression in
2-dimensional embedding obtained by PCA, tSNE, EE and TSEE, revealing the oscillatory expression pattern along the development of time course
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all samples. TBX6L, which contributes to posterior parax-
ial mesoderm formation during zebrafish embryogenesis
[25], reflects a periodically expressed pattern in the right
region. SOX2, identified as an essential transcription fac-
tor to maintain self-renewal or pluripotency [26], reflects
oscillation, as well, in the left region in the whole stages.
Finally, NOTO displays a periodic gene expression pattern
entirely, but fades away gradually along time. More genes

with an oscillating pattern if expression can be found at
https://github.com/ShaokunAn/TSEE.

Oscillating patterns of gene expression revealed by
TSEE may be linked to the genome-scale oscillations in
DNA methylation during exit from pluripotency [27].
Therefore, our TSEE results provide new insights and per-
spectives for subsequent analysis of dynamic transitions
and regulation mechanisms of key genes.


https://github.com/ShaokunAn/TSEE
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Parameter choices and robustness analysis of TSEE

Two tuning parameters, A and B, are found in the pseudo
potential energy function E of TSEE (Eq. 1). The param-
eter choices of A and B are critical to the embedding
results by TSEE. In the implementation of TSEE, we set
the default values of both A and 8 equal to 10.

To test the robustness of the parameter choices, we first
choose the values of each parameter separately in a wide
range from 1 to 1000, while keeping the other parame-
ter fixed at default, and calculate weighted mean of /GP
scores for both HPE and Zebrafish datasets (Fig. 7). The
weighted mean of IGP is the sum of IGPs at each time
stage, weighting by the proportion of samples (cells) at
each time stage.

When fixing 8 = 10, TSEE achieves the highest
weighted mean of IGP at A = 100 in both datasets
(Fig. 7a,b). However, the large A(> 100) tends to separate
samples into clusters on the 2-dimensional space of TSEE,
breaking the structure into discontinuities (Fig. 8a,c),
which is inappropriate for continuous embryonic devel-
opment. Therefore, A = 10 best balances the preservation
of local and global structures.

When fixing A = 10, the weighted mean of IGP
increases sharply when increasing § from 1 to 10 and
tends to be saturated after § > 100 (Fig. 7c,d). Although
the global structures of cells on the 2-dimensional space
of TSEE are stable by varying 8 from 1 to 1000, TSEE
may sacrifice some local structures with large S(> 100)
since the repulsive terms are determined by the differ-
ence between time stages, while the dissimilarities based
on gene expression are seldom considered. For example,
the two corner sections at stage E7 and the one at stage
E4 become less distinguishable as 8 grows in HPE data.
Therefore, 8 = 10 is sufficient for the incorporation
of temporal information data and trades off the weights
between gene expression and time stage.

To determine the parameters more precisely, as well
as analyze the robustness of TSEE, we further study the
performance of TSEE when the parameters are tested in
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detail in the region from 1 to 100. The three metrics IGP,
IGP2 and PCC are employed here. Based on IGP and
IGP2, TSEE has similar performance for various 8 and A
from 1 to 50 in the HPE and Zebrafish datasets, indicat-
ing that TSEE is quite robust to the change of parameters
on preserving local structures. We calculate PCC for HPE
and Zebrafish data to analyze the robustness to param-
eter choice, as well. Figure 9 demonstrates that TSEE is
quite robust for the choices of 8, as well as choices A, when
varying them separately in the range from 1 to 50.

Based on all the results above, we set the optimal default
values of both 8 and A to be equal to 10.

Discussion
In summary, we propose a novel visualization method,
TSEE, for time series scRNA-seq data. To the best of our
knowledge, in the single-cell community, TSEE is the first
visualization method that considers additional temporal
information.

TSEE enhances resolution of the map by correcting
for unknown noise variation. The repulsive force based
on time intervals of samples enables TSEE to align cells
along time, preserving temporal structures, while the
intrinsic structures remain well preserved owing to the
incorporation of the attractive term and the repulsive
term based on their distance in gene expression space.
Figure 10 displays the correction of cells by TSEE. The
samples colored in red are those for which the nearest
neighboring points are at least two time intervals apart,
indicating with high probability that they are misplaced
in the 2-dimensional plane. The misplaced points by EE
are distributed uniformly (Fig. 10a), but when displayed
on the 2-dimensional space obtained by TSEE (Fig. 10b),
they are aligned into their respective time stages, indi-
cating that TSEE corrects the misplacement of samples
by EE. Moreover, the misplaced cells by TSEE are gener-
ally located in the interface of two time stages (Fig. 10c),
which makes sense since cells are typically heterogeneous,
especially at late developmental stages. Because of the
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Fig. 7 Weighted mean of IGP under different parameter values. The y-axis is the weighted mean of /GP where the weights are the proportions of the
number of cells at each time stage. The x-axis represents parameter choices (in logarithmic scale). (@) results of different A for HPE dataset, (b) results
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ﬁ stage

B =100

Fig. 8 The 2-dimensional embeddings of TSEE under different parameter settings. The visualization results of TSEE by varying one parameter, while
the other is fixed at the default value of 10, are displayed on a, b for the HPE dataset and on ¢, d for the Zebrafish dataset

correction of cells along time, gene expression patterns
can be revealed, such as the oscillation process of HERI
and HER7 in Zebrafish data, as demonstrated in the
“Results” section. The increasing number of genes with
oscillatory expression pattern discovered is further sup-
ported by the genome-scale oscillations in DNA methyla-
tion[27], and the uncovered subtle dynamic structures of

time series scRNA-seq data, as, for example, through the
use of TSEE, can be utilized for further analysis of gene
expression.

The visualization tool of the forced-directed layout
[15] utilizes the concept of attractive force and repulsive
force, as well, to visualize network structures in low-
dimensional space. The data tend to be collapsed along
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branches, covering cell-to-cell heterogeneity, as well as
latent gene expression pattern, and the results in low-
dimensional space generally need to be adjusted manually.
For example, the marker WNT8A demonstrates an oscil-
lating expression pattern in the TSEE visualization result,
but the development tree result in the Supplementary File
of [6], which was obtained by a hand-tuned force-direct
layout merely shows a growing tendency along time, and
the heterogeneity of cells is hidden because cells collapse
along branches.

The computational framework of TSEE can also be
potentially extended to incorporate other sources of infor-
mation (e.g., spatial information) of scRNA-seq data. We
utilize the scRNA-seq data of embryo cells from [21] to
demonstrate the extended application based on spatial
information of cells. A set of 84 marker genes are consid-
ered to uniquely classify almost every position within the
embryo [21]. Therefore, we employ the information from
the 84 marker genes to quantify the spatial distance of
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single cells, defining as 1 — PCC (x;, xj) between samples i
and j, where x; and x; are the expression vectors of the 84
marker genes. Figure 11 displays the expression of three
markers of dorsal ectoderm in 2-dimensional space, as
obtained by tSNE, EE, and TSEE, respectively. Compared
to the results of EE and tSNE, the highly expressed genes
tend to locate along the boundary of the 2-dimensional
space by the modified spatial TSEE, showing better con-
sistency with the spatial patterns of the genes in the
embryo. The accurate reconstruction of spatial location
of single cells will be challenging, and this will be an
interesting topic for our future study.

Conclusions

In this study, we propose an efficient algorithm, TSEE,
for the visualization of time series scRNA-seq data. TSEE
is an extension of EE by introducing an additional repul-
sive force term when pairs of data points are collected
at distinct time stages, thereby balancing the effects from
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disparities between samples in high-dimensional gene
expression space.

To incorporate the temporal information of data, TSEE
adds additional terms of the time intervals between sam-
ples into the repulsive terms to balance the effects from
the disparities between samples in high-dimensional gene
expression space. In this way, TSEE dilutes the distortions
of the assorted sources of variations of the data across
time stages and achieves temporal resolution enhance-
ment by preserving temporal order and structure. In addi-
tion, TSEE uncovers the subtle dynamic structures of gene
expression patterns, as exemplified by oscillating waves
in our results, facilitating further downstream dynamic
modeling and analysis of gene expression processes. The
computational framework of TSEE is generalizable for the
incorporation of other sources of information.
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