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Abstract

Background: The next generation sequencing technology allows us to obtain a large amount of short DNA
sequence (DNA-seq) reads at a genome-wide level. DNA-seq data have been increasingly collected during the
recent years. Count-type data analysis is a widely used approach for DNA-seq data. However, the related data
pre-processing is based on the moving window method, in which a window size need to be defined in
order to obtain count-type data. Furthermore, useful information can be reduced after data pre-processing for
count-type data.

Results: In this study, we propose to analyze DNA-seq data based on the related distance-type measure. Distances are
measured in base pairs (bps) between two adjacent alignments of short reads mapped to a reference genome. Our
experimental data based simulation study confirms the advantages of distance-type measure approach in both
detection power and detection accuracy. Furthermore, we propose artificial censoring for the distance data so
that distances larger than a given value are considered potential outliers. Our purpose is to simplify the pre-processing
of DNA-seq data. Statistically, we consider a mixture of right censored geometric distributions to model the distance
data. Additionally, to reduce the GC-content bias, we extend the mixture model to a mixture of generalized linear
models (GLMs). The estimation of model can be achieved by the Newton-Raphson algorithm as well as the
Expectation-Maximization (E-M) algorithm. We have conducted simulations to evaluate the performance of our
approach. Based on the rank based inverse normal transformation of distance data, we can obtain the related
z-values for a follow-up analysis. For an illustration, an application to the DNA-seq data from a pair of normal
and tumor cell lines is presented with a change-point analysis of z-values to detect DNA copy number alterations.

Conclusion: Our distance-type measure approach is novel. It does not require either a fixed or a sliding window
procedure for generating count-type data. Its advantages have been demonstrated by our simulation studies and its
practical usefulness has been illustrated by an experimental data application.
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Background
The next generation sequencing technology has advanced
significantly during the recent decade. It allows us to ob-
tain a large amount of short DNA sequence (DNA-seq)
reads at a genome-wide level [1]. DNA-seq data have been
increasingly collected during the recent years [2, 3].
Count-type data analysis is a widely used approach for
DNA-seq data [4]. However, for data pre-processing, a
moving window with the related window size need to be
defined in order to obtain count-type data [5]. During the
data pre-processing, given a window of genomic region,
the observations within the region are summarized. How-
ever, useful information from the original data can be re-
duced after data pre-processing for count-type data.
DNA-seq has been widely used for the detection of

copy number variation/alteration [1, 4]. Both copy num-
ber variation (CNV) analysis and copy number alteration
(CNA) analysis are based on the assumption that the ob-
served number of short reads of a local genomic region
is proportional to the underlying copy number of DNA.
CNV/CAN can also be discovered by other biomedical
techniques such as fluorescent in situ hybridization,
comparative genomic hybridization, array comparative
genomic hybridization, and by virtual karyotyping with
SNP arrays [2, 6, 7]. The next generation sequencing
technology allows us to obtain millions of short DNA
reads in a relatively short amount of time [8–10]. Digital
karyotyping is a simple and powerful method [6]. Many
statistical methods for CNV/CAN analysis are based on
the count-type DNA-seq data [2, 3, 5, 11]. It is also ne-
cessary to consider GC content bias in the DNA-seq
data [12]. The GC content can be calculated based on
the Guanine (G) and Cytosine (C) bases in a reference
genome. GC content bias refers to the dependence be-
tween the sequencing data and the related GC content.
Due to the limitations of current sequencing tech-

niques, the sequencing data cannot be obtained for cer-
tain genomic regions. Then, the related count-type
measure is simply zero. For a DNA sequence containing
such a genomic region, a large gap without any short
reads is observed. Then, the related distance-type meas-
ure can be very large (considered outliers statistically,
see below for the definition of distance-type measure)
and an artificial censoring can be considered.
In this study, we consider distance-type measure. Dis-

tances are measured in base pairs (bps) between two adja-
cent alignments of short reads mapped to a reference
genome. Our distance-type measure approach is novel. It
does not require either a fixed or a sliding window pro-
cedure for generating count-type data. Furthermore, we
propose artificial censoring for the distance data so that
distances larger than a given value are considered poten-
tial outliers. Our purpose is to simplify the pre-processing
of DNA-seq data.

Statistically, we consider a mixture of right censored geo-
metric distributions to model the distance data. Addition-
ally, to reduce the GC-content bias, we extend the mixture
model to a mixture of generalized linear models (GLMs).
Our approach can be considered as an alternative to the
method proposed by Shen and Zhang [11]. The estimation
of model can be achieved by on the Newton-Raphson algo-
rithm as well as the Expectation-Maximization (E-M) algo-
rithm. Then, based on the rank based inverse normal
transformation of distance data, we can obtain the related
z-values for a follow-up analysis.
In the following, we first demonstrate how to conduct

experimental data based simulation study to confirm the
advantages of distance-type measure approach in both de-
tection power and detection accuracy. Then, we introduce
our statistical models and the related estimation proced-
ure. The model performance can be demonstrated by
simulation studies. The practical usefulness of our ap-
proach can be illustrated by an application to the
DNA-seq data from a pair of normal and tumor cell lines
[1] as well as a follow-up change-point analysis of z-values
for the detection of DNA copy number alterations.

Methods
We consider a novel distance-type measure approach to
the analysis of DNA-seq data. Distances are measured in
base pairs (bps) between two adjacent alignments of
short reads mapped to a reference genome. An illustra-
tion is shown in Fig. 1. A clear advantage is that the
moving window method is no longer required for data
pre-processing.
We first introduce how to compare the distance-type

vs. count-type data so that more advantages of
distance-type data can be confirmed. Then, we introduce
a finite mixture [13, 14] of generalized linear models
(GLMs) for modeling the distance between two adjacent
reads with the adjustment to the GC-content. Artificial
censoring of distance-type data can be considered so
that potential outliers can be accommodated in the
model. The basic distribution component for our
method is the right censored geometric distribution. In
the following, we briefly describe our method and the
related estimation procedure. Their details are given in
the Additional file 1.

Comparing distance-type vs. count-type data
The widely used coverage depth (or count-type) based
approach can be briefly described as follows. For a gen-
omic region, it is divided into non-overlapping smaller
regions (windows or bins) and the number of sequencing
reads is counted for each bin. For example, if a genomic
region is divided into 100 bins, then 100 count-type data
can be obtained from these bins. The original sequen-
cing read data are then simplified to count-type data by
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this approach. (Our proposed distance based approach is
to maintain the overall structure as well as the overall
size of original sequencing read data.)
In this study, the DNA sequencing data were collected

for the detection of copy number variations. A certain
type of data (distance or count) is generated from the
original sequencing read data (by the distance based ap-
proach or the coverage depth based approach, respect-
ively). Between these two types of data, our choice is
decided based on the statistical power for detecting
changes. To demonstrate the advantage of our approach,
we perform a simulation study to evaluate whether the
distance based approach can be more statistically power-
ful than the coverage depth based approach. We con-
sider a relatively simple scenario: if two genomic regions
are known to be different in copy numbers, then which
approach is more likely to detect the change? Further-
more, can accurate detection of change location be
achieved when the distance-type data are used in the
copy number variation/alteration analysis?
To address which type of data is more likely to detect

the change (detection power), we consider the following
simulation. Our simulation data were generated based
on some real experimental sequencing data (instead of
simulating data completely from some statistical distri-
butions). We generated data based on the region with
position 10-30Mbps from the normal sample (as pre-
sented in the section Application to Sequencing Data,
but we used the original sequencing read data). In this
region, we randomly selected two bins with length L for
each bin. For each of the original sequencing reads from
the second bin, we removed it randomly with 50% prob-
ability. (The purpose was to simulate a deletion of 50%
copy number.) We kept all the original sequencing reads
from the first bin. In this way, we simulated sequencing
data for two genomic regions with different copy num-
bers. The distance-type data can be obtained as described

at the beginning of Methods section. To obtain
count-type data, we divided each region into bins with
length W for each bin (and then counted the number of
sequencing reads in each bin). To achieve an unbiased
comparison between the distance-type data and the
count-type data, we used the non-parametric Komogorov-
Smirnov two-sample test to compare the empirical distri-
butions of simulated data for two genomic regions. Notice
that either the distance based approach or the coverage
depth based approach is to generate a certain type of data
(distance-type or count-type, respectively). It is necessary
to compare which type of data can be more statistically
powerful in the detection of changes. Our evaluation strat-
egy does not depend on data type, as it does not require
any parametric or statistical distribution assumptions.
We considered different values for L: 50,000, 200,000

and 1,000,000 bps for different lengths of copy number
variations, as well as different values for W: 5000, 10,000
and 25,000 bps for different bin sizes. (We considered
the range of bin size 5-25 kbps to avoid zero counts or
very few count data.) For each setting, we repeated our
simulation and analysis for 5000 times.
To address whether accurate detection of change loca-

tion can be achieved (detection accuracy), we obtained
more analysis results from the above simulation setting.
In each simulation repetition, we considered the data for
two genomic regions were connected. We evaluated how
accurate the boundary (change) between two regions
could be detected. As the data for two regions were
ordered, the change location could be between any two
consecutive data (for both distance-type and count-type).
Therefore, we screened all the possible locations and
considered the location with the lowest p-value as the
identified change location. In this way, from each simu-
lation repetition, we obtained the identified change loca-
tion and its related p-value. Although the lowest p-value
was considered, some cutoff values would still be usually

Fig. 1 Illustration of distance measure, which is measured in base pairs (bps) between the first aligned base pair of two adjacent alignments of
short reads mapped to a reference sequence
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considered in practice. As all the possible change loca-
tions were screened, a cutoff value lower than the con-
ventional cutoff value 0.05 would be usually considered.
Therefore, we considered the following cutoff values for
the lowest p-values: 0.01, 0.001, 0.0001, 0.00001,
0.000001 and 0.0000001. Based on the results for detec-
tion power comparison (also see Table 1), the advantage
of distance-type data was clear for short L and the ad-
vantage of count-type data became clear for long L.
Therefore, we considered several moderate L values:
150,000, 300,000 and 450,000 bps for different lengths of
copy number variations. 5000, 10,000 and 25,000 bps
were still considered for W (bin sizes). For each setting,
we still repeated our simulation and analysis for 5000
times.
For each simulation repetition, if the returned p-value

was lower than the cutoff value, then we calculated the
difference between the identified and true change loca-
tion; otherwise, we considered the difference as
no-detection (ND). Then, we would evaluate whether
the overall difference based on the distance-type data
was lower than the overall difference based on the

count-type data. (Notice that a lower difference means a
more accurate detection.) Statistically, the traditional
Wilcoxon-Mann-Whitney rank sum test would be an
appropriate choice (for testing “distance-type based dif-
ference” < “count-type based difference”). In the test, for
these ND differences, we changed them to be a value
larger than any observed differences as no-detection
(ND) would be the worst scenario.

Right censored geometric distribution
Suppose Y is a random variable (e.g. distance-type meas-
ure) with a right censored geometric distribution with p
as the probability of success. Notice that a geometric
distribution can be considered as a model for the num-
ber of failures until first success. Let T be a given con-
stant for the censoring value (e.g. the value for artificial
right censoring). The indicator function δ = 1 if y ≥ T and
δ = 0 if y < T. The probability distribution function of
right censored geometric distribution is given by:

f yð Þ ¼ p 1−pð Þyð Þδ 1−pð Þ Tþ1ð Þ
� � 1−δð Þ

ð1Þ

Mixture of Right Censored Geometric Distribution.
Based on the above right censored geometric distribu-

tion, a mixture of right censored geometric distribution
can be described. Let Y1,… , Yn denote a random sample
of size n. Each mixture component is a right censored
geometric distribution given by Eq. (1) where pj is the
success probability for the j-th component. The prob-
ability distribution function of a mixture of g compo-
nents is given by:

f y;π1;π2;…;πg
� � ¼

Xg

j¼1
π j f j yð Þ ð2Þ

where

f j yð Þ ¼ pj 1−pj

� �y� �δ
1−pj

� � Tþ1ð Þ� � 1−δð Þ

π1, π2,… , πg are the component proportions subject
to the constraint

Pg
j¼1 π j ¼ 1 and all πj ∈ [0, 1], all pj ∈

[0, 1]. The indicator function δ = 1 if y ≥ T and δ = 0 if y
< T. All the sample data are (artificially) censored at the
same value T.

Mixture of right censured geometric distribution based
GLMs
Based on the above mixture of right censored geometric
distribution, a mixture of right censored geometric dis-
tribution based GLMs can be described. Eq. (2) can be
extended to a finite mixture of g-component GLMs. Let
y1,… , yn be n independent observations of the response
variable. For each yi, there is a covariate xi. π1,… , πg are

Table 1 Simulation based performance comparison between
the distance-type data and the count-type data (for the detection
power; W is the bin size)

p-value
cutoff

Distance-type
data

Count-type data

W = 25,000
bps

W = 10,000
bps

W = 5000
bps

Region length L = 50,000 bps

0.05 28.9% 0 12.8% 16.1%

0.01 12.8% 0 0.1% 7.1%

0.001 3.4% 0 0 2.1%

0.0001 0.8% 0 0 0.3%

0.00001 0.1% 0 0 0

0.000001 0 0 0 0

Region length L = 200,000 bps

0.05 73.8% 62.4% 68.2% 64.5%

0.01 59.4% 42.8% 50.3% 52.9%

0.001 40.5% 20.2% 30.5% 34.5%

0.0001 26.6% 0 14.3% 24.1%

0.00001 15.3% 0 8.0% 11.3%

0.000001 8.7% 0 1.6% 5.7%

Region length L = 1,000,000 bps

0.05 97.6% 97.0% 96.8% 96.6%

0.01 94.7% 94.0% 94.1% 94.0%

0.001 89.7% 88.6% 90.1% 90.6%

0.0001 85.3% 83.0% 84.9% 85.9%

0.00001 80.7% 72.1% 80.2% 80.7%

0.000001 75.8% 62.8% 72.7% 75.7%
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the component proportions as defined above. The mix-
ture is given by:

f y; xð Þ ¼
Xg

j¼1
π j f j y; xð Þ ð3Þ

where fj(y; x) = (pj(x)(1 − pj(x))
y)δ((1 − pj(x))

(T + 1))(1 − δ).
Notice that each pj is a function of x. We first define μj
= (1 − pj)/pj and then we use a link function ηj = log(μj)
= βj0 + β1x for j = 1,… , g. Here, β1 is common for all dif-
ferent components since it represents the GC-content
effect. Furthermore, the component proportions π1,… ,
πg do not depend on the covariate since they are consid-
ered as global parameters (not local). Therefore, the vec-
tor Ψ of parameters is given by Ψ = (π1, … , πg − 1, β10,
… , βg0, β1). The intercepts (β10, … , βg0) are different for
different distribution components.

Estimation procedure for mixture GLM based on
geometric distribution
The log-likelihood based on Eq. (3) is given by
lðψÞ ¼ logLðψÞ ¼ Pn

i¼1 log ½Pg
j¼1π j f jðyi; xiÞ�:

The EM algorithm [15] can be used to obtain the max-
imum likelihood estimate of Ψ. For each yi, missing
component information can be considered. Accordingly,
the vector {zij} is introduced: zij = 1 if yi belongs to the
j-th component of the mixture model; zij = 0 otherwise (j
= 1, … , g; i = 1, … , n). Then, the log-likelihood of
“complete data” is given by:

lC Ψð Þ ¼ logLC Ψð Þ ¼
Xn

i¼1

Xg

j¼1
zij logπi þ log f j yi; xið Þ
n o

:

For the E-step, we calculate:
τij ¼ Ε ðzijjyÞ ¼ π j f jðyi; xiÞ=½

Pg
h¼1πh f h ðyi; xiÞ:�

For the M-step, we first calculate:
π j ¼

Pn
i¼1τij=n:

The calculation for (β10, … , βg0, β1) requires a numer-
ical optimization procedure, which is used to solve the
following equation system.

Xn
i¼1

τij
∂

∂β j0
log f j yi; xið Þ ¼ 0 for j ¼ 1;…; g

and

Xn
i¼1

Xg

j¼1

τij
∂
∂β1

log f j yi; xið Þ ¼ 0

Based on the Newton-Ralphson method, we have the
following iterative equation for β = (β10, … , βg0, β1):

β rð Þ ¼ XTWX
� 	−1

XTWz:

The details for this iterative equation as well as the
EM algorithm are given in the Additional file 1.

Number of components
The number of components in the mixture model is de-
termined by a likelihood ratio test (LRT) based ap-
proach. Consider two integers g0 < g1. We test the null
hypothesis H0 : g = g0 against H1 : g = g1. We first use the
observed data to fit a mixture model with g0 compo-
nents and a mixture model with g1 components. A LRT
score can be calculated for the observed data. Then, we
can simulate data based on the fitted model with g0
components (parametric bootstrap). For each set of sim-
ulated data, we can calculate the related bootstrapped
LRT score. After B rounds of parametric bootstrap repe-
titions, the p-value of observed LRT score can be ap-
proximately calculated based on B bootstrapped LRT
scores. (If p-value< 0.05, the null hypothesis can be
rejected.)

Results
Distance-type data vs. count-type data
For the detection power based comparison, our evalu-
ation results are summarized in Table 1. As different
p-value cutoff values may be used in different scenarios
of copy number variation analysis, we considered 0.05,
0.01, 0.001, 0.0001, 0.00001, and 0.000001. Given a cut-
off value, a better approach should show a higher pro-
portion (of p-values less than the cutoff value). When
the regions are as long as 200 kbps, the advantage of dis-
tance based approach (distance-type data) can be clearly
observed. It is more difficult to detect changes as the re-
gions become shorter. However, the advantage of dis-
tance based approach (distance-type data) becomes even
clearer when the regions are as short as 50 kbps. When
the regions are as long as 1Mbps, two approaches per-
form overall similarly. From Table 1, it is also clear that
the performance of coverage depth based approach
(count-type data) depends on the choice of bin size. This
has already been discussed in the literature. As our focus
in this study is on the choice between distance-type data
or count-type data, we prefer not to discuss the choice
of bin size for count-type data.
For the detection accuracy based comparison, our

evaluation results are summarized in Table 2. The pro-
portion of the lowest p-value less than a given cutoff
value is presented for each type of data. The proportion
based on the distance-type data is always higher. Then,
the one-sided p-value for each pair of comparison test is
presented in Table 2. (Notice that, the relationship
between one-sided and two-sided p-values for
Wilcoxon-Mann-Whitney rank sum test is actually sim-
ple.) When L is relatively short as 150,000 bps, the de-
tection accuracy based on the distance-type data is
always better than the detection of accuracy based on
the count-type data. When L is increased to 300,000 bps,
the detection accuracy based on the distance-type data is
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still clearly better when the cutoff value is 0.001 or
lower. When L is relatively long as 450,000 bps, the de-
tection accuracy based on the count-type data is better,
but the detection accuracy based on the distance-type
data is still better when the cutoff value is 0.0001 or
lower. (Notice that, low cutoff values are necessarily
considered in many practical situations.)

Estimation and testing performance for mixture of right
censored geometric distributions
We performed a comprehensive simulation study to
evaluate the estimation and also the testing performance
of our proposed mixture of right censored geometric
distribution. To understand estimation when artificial
right censoring is applied we simulated a mixture of
3-component geometric with the parameters π1 = 0.3, π2
= 0.5, π3 = 0.2 and p1 = 0.002, p2 = 0.02, p3 = 0.2 (Fig. 2
and Additional file 2: Figures S1-S5). Another simulation
was based on a mixture of 3-component geometric with
the parameters π1 = 0.008, π2 = 0.754, π3 = 0.238 and p1
= 0.999, p2 = 0.011, p3 = 0.0006 (Fig. 3 and Additional file
2: Figure S6-S10). For estimation performance evalu-
ation, we simulated 1000 times with 100, 250, 500, 1000
and 5000 samples each with no censoring, censoring at

250, 500 and 1000. We evaluated the bias, variance and
root mean square error and used boxplots to summarize
the findings (most figures provided as supplementary
materials).
The standard deviation and the root mean square

error (RMSE, Figs. 2 and 3) decreases with sample size
and the censoring value. The RMSE combines both bias
and variance. It shows a steady decline as the sample
size increases. It also decreases with as the censoring
value for observations increases. However for the second
simulation, for p1 = 0.999 we observed that the median
consistently underestimated the true parameter value.
Therefore, we need to be cautious when the true param-
eter value is close to 1. The inter-quartile range becomes
narrower with increasing sample size and the artificial
censoring value of the observations as well. Overall, both
simulation studies support the use of right censored geo-
metric distribution for DNA-seq data.
Furthermore, we have evaluated the effect of censoring

on the performance of hypothesis testing. A data set can
be simulated as above and we can test the hypothesis of
3 components vs. 4 based on 500 parametric boot-
strap p-values. These steps can be repeated 500 times
for each case (sample size and censoring value) to

Table 2 Simulation based performance comparison between the distance-type data and the count-type data (for the detection
accuracy evaluation; W is the bin size)

p-value
cutoff

Distance-type
based proportion

Count-type based proportion, and test p-value for distance-type data vs. count-type data

W = 25,000 bps W = 10,000 bps W = 5000 bps

Region length L = 150,000 bps

0.01 68.6% 38.2%, < 10− 6 55.0%, 6 × 10− 6 57.0%, < 10− 6

0.001 42.6% < 0.1%, < 10− 6 28.1%, < 10− 6 32.9%, < 10− 6

0.0001 24.7% < 0.1%, < 10− 6 9.7%, < 10− 6 18.5%, < 10− 6

0.00001 13.0% < 0.1%, < 10− 6 3.1%, < 10− 6 8.9%, < 10− 6

0.000001 6.3% < 0.1%, < 10− 6 0.5%, < 10− 6 4.5%, 2 × 10− 5

0.0000001 3.0% < 0.1%, < 10− 6 < 0.1%, < 10− 6 1.3%, < 10− 6

Region length L = 300,000 bps

0.01 86.4% 73.8%, > 0.99 78.1%, 0.929 78.8%, 7 × 10− 3

0.001 70.3% 46.6%, < 10− 6 58.8%, < 10− 6 62.1%, 2 × 10− 6

0.0001 53.4% 26.9%, < 10− 6 41.4%, < 10− 6 47.5%, 3 × 10− 5

0.00001 39.9% < 0.1%, < 10− 6 27.3%, < 10− 6 33.6%, < 10− 6

0.000001 29.1% < 0.1%, < 10− 6 19.1%, < 10− 6 24.2%, < 10− 6

0.0000001 20.7% < 0.1%, < 10− 6 10.1%, < 10− 6 17.6%, 3 × 10− 4

Region length L = 450,000 bps

0.01 92.0% 85.4%, > 0.99 87.7%, > 0.99 87.6%, 0.214

0.001 81.0% 69.3%, > 0.99 75.2%, 0.493 76.2%, 9 × 10− 3

0.0001 69.1% 49.2%, < 10− 6 60.9%, 1 × 10− 3 64.3%, 3 × 10− 3

0.00001 57.5% 35.3%, < 10− 6 49.1%, 1 × 10− 5 52.6%, 6 × 10− 4

0.000001 48.0% 14.7%, < 10− 6 38.0%, < 10− 6 43.4%, 5 × 10− 4

0.0000001 38.9% 5.5%, < 10− 6 28.6%, < 10− 6 36.1%, 0.041
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generate the empirical distribution of p-values. The em-
pirical distribution plots for these p-values show uniform
distribution like patterns (results not shown). Therefore,
the hypothesis testing p-values can be appropriately cal-
culated by the parametric bootstrap procedure.

Estimation and testing performance for mixture GLM
where response variable has right censored geometric
distributions
To understand estimation and testing performance when
artificial right censoring is applied in the case of a mixture
GLM, we simulated a mixture of 3-component GLM with
the parameters π1 = 0.3, π2 = 0.5, π3 = 0.2 and β10 = 6.0,
β20 = 3.6, β30 = 1, 1, β1 = 2.0. The choice of the component
proportions are the same as above and the choice of β10,

β20, β30 was based on setting β1 = 2.0 and using p1 = 0.002,
p2 = 0.02, p3 = 0.2 as above (consistent with a previous
simulation). For estimation performance evaluation, we
simulated 1000 times with 10,000 samples each with no
censoring (NC), censoring at 570, 937, and 1309 respect-
ively (Additional file 2: Figure S11-S12). The censoring
values were set such that approximately on average about
10, 5 and 2.5% of the data is censored (consistent with our
previous simulations; also about 1–3% in our application).
We generated the x-variable from the Uniform [0, 0.25]
distribution. A second simulation was based on a mixture
of 3-component geometric with the parameters π1 = 0.3,
π2 = 0.5, π3 = 0.2 and β10 = 6.2, β20 = 3.9, β30 = 1.4, β1 =
0.1. The group proportions were set according to the same
strategy as explained above (based on β1 = 0.1). For

Fig. 2 RMSE of the parameter estimates (π1 = 0.3, π2 = 0.5, π3 = 0.2 and p1 = 0.002, p2 = 0.02, p3 = 0.2)
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estimation performance evaluation, we simulated 1000
times with 10,000 samples each with no censoring (NC),
censoring at 1241, 895 and 549 (Additional file 2: Figure
S13-S14). The censoring values were also set according to
the same strategy as explained above. We evaluated the
bias, variance and root mean square error (results not
shown) and used boxplots to summarize the findings
(most figures provided as supplementary materials).
The standard deviation and the root mean square

error (RMSE) decreases with the increasing censoring
value. The RMSE also decreases as the artificial censor-
ing value for observations increases. The median gets
closer to the true value with the increasing censoring
value of the observations. The inter-quartile range gets
narrower with increasing sample size and the censoring

value of the observations as well. Overall, both simula-
tion studies support the use of right censoring in mix-
ture GLM.
Furthermore, we have evaluated the effect of censoring

on the testing performance. A data set can be simulated
as above and we can test the hypothesis of 3 components
vs. 4 based on 100 parametric bootstrap p-values. These
steps can be repeated 200 times for the first simulation
scenario or 100 times for the second simulation scenario
(also for each censoring value) to generate the empirical
distribution of the p-values. (The number of parametric
bootstraps was limited to 200 or 100 due to computational
burden as this evaluation took much longer time in com-
puting.) Additional file 2: Figure S15 (for the first simula-
tion scenario) and Additional file 2: Figure S16 (for the

Fig. 3 RMSE of the parameter estimates (π1 = 0.008, π2 = 0.754, π3 = 0.238 and p1 = 0.999, p2 = 0.011, p3 = 0.0006)
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second simulation scenario) show the empirical distribu-
tion plots for these p-values. Uniform distribution like pat-
terns can be observed. Therefore, the hypothesis testing
p-values can be appropriately calculated by the parametric
bootstrap procedure.

Application to sequencing data
We considered an application to the DNA-seq data from
Chiang et al. [1]. The data set was made publicly avail-
able and we selected a normal cell line and the related
tumor cell line (HCC1954) for breast carcinoma. Fur-
thermore, we focused on chromosome 9 for an illustra-
tion of our method. The value 5000 (bps) was used for
the artificial right censoring (we observed at most 1–3%
distance data greater than 5000 bps so most of the dis-
tance data were relatively short).
A 4-component mixture of right censored geometric

distribution based generalized linear models was esti-
mated for the normal sample and then for the tumor
sample (Table 3). GC-content adjustment was consid-
ered. (We downloaded the 50Kbps-window based
GC-content data from http://bioinfo-out.curie.fr/pro
jects/freec .) Notice that, as the GC-content data were
based on a reference genome, the model coefficient for
GC-content was first estimated based on the normal
sample data and then fixed in the model for tumor sam-
ple data (all the other model parameters were estimated
separately for different sample data). This approach
(pseudo-maximum likelihood estimation) was based on
the work by Gong and Samaniego [16]. (About the num-
ber of mixture components, we could not perform the
related hypothesis testing because the related computing
could be not afforded. However, we conducted a prelim-
inary data analysis based on the mixture of right
censored geometric distributions without considering
any covariates, in which we could performed hypothesis
testing on the number of mixture components and four
distinct components were confirmed. Therefore, we

reasonably assumed 4-component for the mixture of
GLMs.)
Inverse normal transformations (INTs) have been

widely considered in practice. The purpose is to make
the (transformed) data more similar to normal distribu-
tions. Both rank-based INTs and non-rank based INTs
can be considered [17–26]. We considered the following
INT. Based on our estimated model (for normal or
tumor sample, see Table 3), the cumulative distribution
function (CDF) for an observations y (not artificially
right censored) was calculated by:

F y; xð Þ ¼
Xg

j¼1
π j F j y; xð Þ ð4Þ

where Fj was the CDF based on fj given in Eq. (3). Then,
an inverse normal distribution function was applied.
Through this INT, we obtain the distance-type measure
related INT values.
The comparison between the distance data (log2 of

distance+ 1) and the related INT values (inverse normal
transformed values; not related to artificially right cen-
sored distance data) is shown in Fig. 4. Some uneven
patterns can be visualized from the plots of distance
data. These were not observed from the plots of
z-values. Therefore, the GC-content adjustments have
been well considered in our method.
Then, for the INT values related to these artificially

right censored distance data, we simply assign a value 10
(larger than any INT values in Fig. 4). In Fig. 5, more de-
tails can be visualized for INT values. Notice that cen-
sored observations are highlighted by red vertical lines
(there are 31 instances for the normal sample and 35 in-
stances for the tumor sample). Some differences on the
region around 200 K-38M bps (chromosome 9) can be
observed and we performed a change-point analysis for
this region. (The normality was checked for INT values.
We randomly selected regions with length 100 K bps for
both the normal and tumor samples and generated the
related quantile-quantile plots [Q-Q plots, Additional
file 2: Figure S17-S18]. Then, we assumed that INT
values were normally distributed, which was helpful to
avoid the permutation based p-value calculation [27] in
the next change-point analysis.)
For a change-point analysis of the above selected region

(as an illustration), we considered a recursive combination
approach [28]. For each round of recursion, at a given
level αC, any two adjacent blocks of INT values with
two-sample test p-values larger than αC were selected.
Among them, the combination to generate the largest
overall likelihood was applied. The recursion stopped
when all the test p-values were less than αC. Considering
the large number of two-sample comparisons, we used 50
K bps bins to group INT values before the change-point
analysis. We set αC = 0.05/(m ∗ (m − 1)/2), where m is the

Table 3 Parameter estimates from mixture of GLM (censored at
5000 bps)

Parameter Tumor Normal

π1 0.0065 0.0064

π2 0.1802 0.0359

π3 0.5414 0.5763

π4 0.2719 0.3814

β10 −1.106 −2.021

β20 6.757 6.691

β30 8.240 8.681

β40 9.268 9.457

β1 −4.428 −4.428
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number of bins (767 for normal sample and 772 for tumor
sample).
The change-point analysis results are shown in Fig. 6.

For both normal and tumor samples, there is a
change-point around 6-7M bps. However, the magni-
tude of changes is small. This detection is unlikely to be
biologically relevant. For the tumor sample, there is an
additional change-point around 18-19M bps, which im-
plies a clear deletion (larger distance related to less DNA

copy number). Cytobands have been widely considered
in biomedical studies [29]. A search in UCSC data base
(http://www.genome.ucsc.edu/cgi-bin/hgTracks) shows
that the cytobands p13.2, p13.3, p21.1, p21.2, p21.3 and
p22.1 are related to this detected region. To understand
biological significance of this detected deletion, a litera-
ture search shows that this region has been investigated
by many studies on the relationship between these cyto-
bands and breast cancer [30, 31].

Fig. 4 Plots of log2 of the distance and INT of the cumulative distribution. (a) Plot of log2 of the distance between short reads for the tumor
sample against the position on chromosome 9; (b) Plot of inverse normal transform of the cumulative distribution for the tumor sample versus
the position on chromosome 9; (c) Plot of log2 of the distance between short reads for the normal sample against the position on chromosome
9; (d) Plot of inverse normal transform of the cumulative-distribution for the normal sample versus the position on chromosome 9
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Discussion
Count-type data analysis is a widely used approach for
DNA-seq data. It requires either a fixed or a sliding win-
dow procedure for generating count-type data, and useful
information can be reduced after this data pre-processing.
In this study, we proposed to analyze DNA-seq data based
on the related distance-type measure. Our experimental
data based simulation study confirmed the advantages of
distance-type measure approach in both detection power
and detection accuracy. Furthermore, we proposed a mix-
ture of generalized linear models for analyzing the recent
DNA-seq data. Our model was based on the right cen-
sored geometric distribution. According to the mathemat-
ical details provided in the Additional file 1, our method is
linear in term of the number of sequencing reads. There-
fore, our method scales well. The validity and usefulness
of this approach were demonstrated by the estimation and
testing performances in our simulation study as well as an
application to experimental data. The selection of the cen-
soring value was based on that 1–3% of observed distance
data were larger than 5000 bps. The optimization of the
censoring value is an interesting research topic and we will
investigate this in our future study. Our distance-based

approach is novel with a clear advantage: it does not re-
quire either a fixed or a sliding window procedure for gen-
erating count-type data.
Similar as the exponential distribution (for continuous

measurements), which is widely used to model waiting
time processes, the geometric distribution (for discrete
measurements) is also a memoryless probability distribu-
tion. The artificial right-censoring has been proposed to
overcome the difficult in modeling extreme distance
values. (For example, it is difficult to obtain sequencing
reads near centromere regions.) Due to different biological
properties in different genomic regions, which results in
different distance distributions, different geometric com-
ponents are necessary to model the data. As one geomet-
ric distribution does not well fit the distance data, a
mixture of right-censored geometric distributions has
been proposed. To understand the connection between a
probability distribution component and its related under-
ling biological properties, we need further statistical and
biological investigations, which will be an interesting topic
for our future research.
In our application, interesting change-points were ob-

served from the tumor cell line data. The impact from

Fig. 5 Plots of INT of the cumulative distribution against the position on chromosome 9, represented as bps
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GC-content was considered in our analysis. In this
study, we chose a set of relatively simple DNA-seq data
for the purpose of illustration of our approach. Our ap-
proach can also be applied to paired-end DNA-seq data.
In practice, either paired-end reads or single-end reads
can be considered in sequencing experiments. If only
the starting position of each paired-end read is consid-
ered, then the analysis scenario is equivalent to the ana-
lysis of single-end reads. However, this strategy may not
well utilize the advantage of paired-end reads. (For ex-
ample, longer regions can be covered by a paired-end
read.) To consider the distance based approach and to
utilize the advantage of paired-end reads, we will need
to investigate which modifications or extensions are ne-
cessary to our method proposed in this study. This will
be an interesting topic for our future research.

Conclusion
With the next generation sequencing technology, a large
amount of short DNA sequence reads can be obtained
at a genome-wide level. DNA-seq data have been in-
creasingly used in different areas of biomedical studies.

Although the count-type based approaches have been
widely used for DNA-seq data analysis, a moving win-
dow based data pre-processing (or similar) is required
with a pre-specified window size. Useful information can
be reduced after the data pre-processing. In this study,
we have developed a distance-type measure based
method. Distances are measured in base pairs (bps) be-
tween two adjacent alignments of short reads mapped to
a reference genome. This is a novel approach. Its advan-
tages have been demonstrated by our simulation studies
and its practical usefulness has been illustrated by an ex-
perimental data application.

Additional files
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Additional file 2: Supplemental figures. (PDF 1697 kb)
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Fig. 6 INT of the cumulative distribution with the estimated mean represented by the red line. (a) Plot for the tumor sample where the red line
is the estimated mean from the recursive combination algorithm; (b) plot for the normal sample where the red line is the estimated mean from
the recursive combination algorithm
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