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Abstract

Background: Motifs are crucial patterns that have numerous applications including the identification of
transcription factors and their binding sites, composite regulatory patterns, similarity between families of proteins,
etc. Several motif models have been proposed in the literature. The (/, d)-motif model is one of these that has been
studied widely. However, this model will sometimes report too many spurious motifs than expected. We interpret a
motif as a biologically significant entity that is evolutionarily preserved within some distance. It may be highly
improbable that the motif undergoes the same number of changes in each of the species. To address this issue, in this
paper, we introduce a new model which is more general than (/, d)-motif model. This model is called (/, d;, d>)-motif
model (LDDMS) and is NP-hard as well. We present three elegant as well as efficient algorithms to solve the LDDMS
problem, i.e, LDDMST, LDDMS2 and LDDMS3. They are all exact algorithms.

Results: We did both theoretical analyses and empirical tests on these algorithms. Theoretical analyses demonstrate
that our algorithms have less computational cost than the pattern driven approach. Empirical results on both simulated
datasets and real datasets show that each of the three algorithms has some advantages on some (/, d1, dy) instances.

Conclusions: We proposed LDDMS model which is more practically relevant. We also proposed three exact efficient
algorithms to solve the problem. Besides, our algorithms can be nicely parallelized. We believe that the idea in this
new model can also be extended to other motif search problems such as Edit-distance-based Motif Search (EMS) and

Simple Motif Search (SMS).
Keywords: Motif search, Radix sort, Neighborhood tree

Background

Motif search has many applications in solving some cru-
cial biological problems. For example, finding DNA motifs
is very important for the determination of open reading
frames, identification of gene promoter elements, location
of RNA degradation signals, and the identification of alter-
native splicing sites [1, 2]. For more than 15 years, motif
search has stimulated a lot of interest from researchers in
different areas.

There are many models of motif search. One popular
model that has been studied extensively is the (/, d)-motif
model. The corresponding motif search problem is called
LDMS. The input for the LDMS problem consists of n
input sequences each of length m, and two integers [ and d.
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The task is to find all the strings (also called (/, d)-motifs)
of length / each that occur in each of the input sequences
within a hamming distance of d. The LDMS problem is
known to be NP-hard [3, 4].

Motifs can be thought of as evolutionarily preserved
biological information. This information might have
undergone different changes in different species. The
(/, d)-motif model captures this possibility by requiring
that the motif occur within a hamming distance of d in
each sequence. However, this requirement may be more
stringent than needed. When some biological information
undergoes changes (e.g., mutations) in various species,
the amount of change may not be the same across all the
species. Some might have undergone more changes than
the others. If we think of d as an upper bound on the
amount of change, then it is conceivable (and very likely)
that some of the species have undergone less changes. As
a result, the (/,d)-motif model is likely to admit many
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spurious strings as motifs. These strings might occur by
random chance and get qualified as motifs. Because of
this, the LDMS algorithms might take longer time than
actually needed. To rectify these shortcomings, in this
paper we propose a new model of motifs. This model is
called (/,d;,d>)-model. The corresponding motif search
problem is called the LDDMS problem and defined next.

Definition 1 The input for the LDDMS problem has
n biological sequences each of length m and three inte-
gers 1, dy, and dy. The problem is to find all the strings
M of length [ that have the following two properties: 1) M
should occur in each of the n input strings within a ham-
ming distance of d1. This requirement is referred to as the
(I, dv)-condition; and 2) M should occur in at least one of
the n input strings within a hamming distance of dy. This
requirement is referred to as the (I, dy)-condition.

Validity of the (/, d1, d2)-motif model

In this section we demonstrate the validity of the
(I, d1, dy)-motif model with a simple random model for
mutations. Assume that the species under consideration
have the same origin. Let M be an original motif of
length /. Consider a random model where the number
of mutations occurring in the species is uniformly dis-

tributed in the range [0, %] Let n be the number of species

and let the number of mutations that have occurred in
these species be X1, X», ..., X}, respectively and let Y =
min{X7,X,...,X,} and Z = max{X1,Xo,...,X,}. It is
easy to show that:

1/2 n_ _n
E[¥]— Zk(l/z —k+1D"—(1/2-k)

(/24 1)"

k=1

/2
> Tk+ 1" =k

k=1

Elz= 12+ 1)"

Thus the difference between Y and Z could be quite large!
As an example consider an input of 20 sequences, each
of length 600 and let / = 10. Assume that the number of
mutations d is uniformly random in the range [0, 5]. If we
set dp = 1, the probability that there exists at least one
DNA sequence such that the motif occurs with a hamming
distance of at most d> is:

4 20
p=1- <6> ~ 0.9997

When # is larger than 20, this probability will become
even higher. Therefore, it is quite reasonable to add the
(1, dy)-condition into the LDMS model.

It is easy to see that if dy > d, then the (/, d2)-condition
becomes trivial and the LDDMS problem will become the
standard LDMS problem. Thus, the LDMS problem is a
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special case of the LDDMS problem. If dy = 0, it means
that we want to look for a motif that appears exactly in at
least one of the input sequences. In the rest of this paper
we assume that dy < d;.

Related work

(I,d) motif search is also referred to as Planted Motif
Search (PMS) problem in some literature. Since (/, d1, d2)
motif search is closely related to PMS and we will use
a PMS solver in one of the LDDMS algorithms, it is
necessary to discuss some of the latest PMS algorithms.

In 2012, Yu, et al.,, proposed PairMotif to solve PMS
problems [5]. They reduced the size of candidate motifs
and scanned /-mers by selecting pairs of /-mers from dif-
ferent input sequences and then generate the common
neighbors. The authors tested PairMotif algorithm on
simulated data as well as on five real data sets from [6],
which are preproinsulin, DHFR, c-fos, metallothionein
and Yeast ECB. It can solve the weak instance (27, 9)
within 10 hours. They also showed that PairMotif is more
stable in solving PMS problem in longer input sequences
[5].

Sometimes, biologists may also be interested in motifs
that occur in a fraction of the input strings. The problem
of identifying such motifs is known as quorum Planted
Motif Search (qPMS). In this case, in addition to ! and
d and 7 strings there is an extra input parameter g. The
problem is to identify all the (/, d, g)-motifs, that is, all the
(1, d)-motifs that occur in at least g% of the input strings.
In 2014, Tanaka proposed TraverStringRef in [7]. This
algorithm is based on the PMS8 algorithm of Nicolae and
Rajasekaran [8]. This is the first algorithm that solved the
challenging DNA instance with (/,d, q) = (25,10, 20) in a
reasonable amount of time.

In 2015, Nicolae and Rajasekaran proposed qPMS9 [9].
It can solve challenging instances up to (25,10) using a
single core machine and up to (30, 13) using a 48-core
machine. The algorithm is based on PMS8 proposed by
the same authors [8], but it added quorum support and
also included better pruning techniques to significantly
reduce the size of the search space.

In 2016, Xiao, Pal and Rajasekaran proposed qPMS10
[3, 4]. PMS10 is a randomized algorithm based on the
idea of random sampling. It will first utilize any existing
PMS solver on a subset of the input. Then the candidate
motifs are filtered to get the correct motifs for the original
problem. Probability analysis shows that with high proba-
bility, the result is correct. Experimental result shows that
this algorithm is competitive especially when the dataset
is large.

Not only mutations, but also insertions and deletions are
important as they may also play critical roles in divergence
of biological sequences [10, 11]. In this case, edit dis-
tance instead of hamming distance should be considered
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[12, 13]. This corresponding problem is modeled as Edit-
distance-based Motif Search (EMS) problem. There are
also some works in the literature on EMS (see e.g., [1, 12—
15], and so on).

However, as far as the authors know, no such general-
izations of PMS model exist in the published literature.
Therefore, we propose LDDMS model and the corre-
sponding algorithms.

Methods

Since the LDMS problem is NP-hard, the LDDMS prob-
lem is also NP-hard. All the known exact algorithms for
solving the LDMS problem take time that is exponential
in some of the underlying parameters. In this paper, we
present three efficient algorithms for solving the LDDMS
problem. These algorithms are referred to as LDDMSI,
LDDMS2 and LDDMS3. Time complexities of these three
algorithms are analysed. Experimental results on simu-
lated dataset and real datasets both demonstrate that our
algorithms are efficient.

Description of LDDMS algorithms

For any /-mer u we define its d-friendhood as the set of /-
mers v whose hamming distance is exactly d from u; define
its d-neighborhood as the set of /-mers v whose hamming
distance is at most d from u.

For all the LDDMS algorithms, the input is a database S
containing 7 sequences, each of length m, and integers /,
dj and d; the output is all the strings of length / that meet
both (I, d1)-condition and (/, d3)-condition.

A straight-forward solution is the pattern driven
approach. If ¥ is the alphabet under concern, there are
|| possible /[-mers. For every such /-mer, check if it
meets both the ([, d1)-condition and the (/, dy)-condition.
If so, output this /-mer. Obviously, this algorithm takes too
much time.

In addition to pattern driven approaches, we also have
sample driven approaches. We could employ the follow-
ing two step algorithm: 1) First find all the motifs that
satisfy the (/, dq)-condition. This can be done using any
of the LDMS algorithms. Let C; be the set of these
motifs; and 2) For every motif x € Cj, check if x satis-
fies the (I, dy)-condition and if so output x. We call this
algorithm LDDMS]. Since qPMS9 is currently the most
efficient LDMS algorithm [9], we will take advantage of it
in LDDMSI1 (See Algorithm 1).

Equivalently, we can also find (/, d2)-motifs in the first
step, and then for every such motif check if it satisfies the
(1, d1)-condition. We refer to this algorithm as LDDMS2
(See Algorithm 2).

Note that each valid motif has at least one dy-neighbor
in at least one of the input sequences. We generate n(m —
[ 4+ 1) [-mers from each of the input sequences. dy-
neighborhood of an /-mer u can be found by constructing
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Algorithm 1 LDDMS1
1: Run any LDMS algorithm to solve the (/, d1)-motif
search problem on the input S. Let C; be the set of
motifs found;
2: O1 = . For every x € Cy, check if x is a ([, dy)-motif
in S. If so, add x to Oy;
3: return Oy;

the neighborhood tree. With u being the root and the
height of the tree being dy, the level of a node is the ham-
ming distance between u and this node. All the nodes of
this tree, including the root and the leaves, will constitute
the da-neighborhood of u. In Step 3 of LDDMS2, we can
employ radix sort and eliminate duplicates. In Step 4 the
output O, of valid motifs found will be in sorted order.

Algorithm 2 LDDMS2

1: Generate all possible /-mers from out of each of the #
input sequences. Let the collection of these /-mers be
L;

2: For every u € L, generate all the /-mers v such that v
is a dy-neighborhood of u. Let the union of v be N;

3: Sort all the elements in N, in lexicographic order, and
remove the duplicates. Let the sorted and reduced set
be Cz;

4: Oy = . For every x € Cy, check if x is a ([, d1)-motif
in S. If so, add x to Oo;

5: return Oo;

If dy is very small (for example, dy = 0 or 1), we can
expect LDDMS2 to run faster than LDDMSI. This is
because the dy-neighborhhod for any /-mer will be small.
However, when dj is large, the neighborhood tree will
be large and so will be the number of candidate motifs.
Therefore, LDDMS2 takes much more time and memory
when d;, is large. To save time, one idea is to check the can-
didate motifs concurrently while constructing the neigh-
borhood tree. During the checking process, some pruning
conditions can be developed such that once certain con-
ditions hold, a node is not explored deeper. The stronger
the pruning condition is, the faster the algorithm will be.
Inspired by similar pruning ideas proposed for the LDMS
model [16], we develop LDDMS3 (See Algorithm 3).

Definition 2 Given an I-mer u from Sequence i (i €
[1,#]), comnstruct its do-neighborhood tree. Let x be any
node in this tree, denote §(x,i,q) as the smallest ham-
ming distance between x and any l-mer out of Sequence
q. Denote §(x,i,1) to be the maximum of §(x,i,q) where
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Algorithm 3 LDDMS3

1: Fori =1,2,...n, generate all possible /-mers from out
of the input sequence S;. Let the collection of these
[-mers be from the sequence S; be L;, for 1 <i < n;

2: For every u € L;, construct a dy-neighborhood tree;

3: O3 = . Traverse the neighborhood tree and for each
node x compute 8 (x, i, /) and based on Theorem 1, add
x or x/ into Os3;

4: Sort all the elements in O3, in lexicographic order, and
remove the duplicates;

5. return Os;

q=12,..,nand q #i.

max min Hd (v, %)

n
§(x,i,]) = max 6(x,i,q9) =
@0, 1) x Sig) = max min

9=lq

If v is an [-mer in the sequence S;, we denote it as: v <
s4. Also, Hd(v,x) is the hamming distance between v and
x. By computing §(x, i, I), we have the following pruning
conditions [16].

Theorem 1 Traverse the dy-neighborhood tree of u in a
depth-first manner and compute 5(x, i, I) where x is a node
in the tree, h is the level of x (root is at level 0);

1 Ifé(x,i,1) < dy, output x;

2 If8(x,i,I) — dy > dp — h, prune all the descendants
from x;

3 If8(x,i,I) — dy = do — h, consider only x/ such that
x7 is a child of x and 8§ (x/, i, 1) = (%, i, 1) — 1;

4 If8(x,i,I) —diy = dy — h — 1, consider only x/ such
that x/ is a child of x and § (x/, i, 1) < 8(x,i,1).

Analysis of LDDMS algorithms

Candidate size and expected number of motifs

In this section, we estimate candidate sizes of LDDMS1
and LDDMS?2, i.e., |C;| and |Cy|, and also the expected
number of motifs that would be found. Such estimation
is useful in computing the time complexities of these two
algorithms.

Recall that in the benchmark dataset all the characters
are generated from i.i.d. and there are n sequences with
length m each. Given an /-mer M, the number of /-mers
that have a hamming distance of < d; from M is:

di
i ,
N = — 1)
(L) =) (l.)<|z| 1) 4y
i=0
where ¥ is the alphabet under concern.
The probability that a randomly chosen /-mer has a
hamming distance of at most d; from M is:

_ N(Z,Ldy)
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The probability that in a sequence of length s, there is at
least one string u such that # and M are within a hamming
distance of d; is:

pr=1—(1—p)" 1 (3)

The probability that a randomly chosen /-mer occurs
within a hamming distance of d; in each of the # input
sequences, each of length m is:

p3=p) (4)
Therefore, the expected number of (/, d;)-motifs is:
C1l = |ZI'p3 (5)

Similarly, the probability that a randomly chosen /-mer
has a hamming distance of at most dy from M is:

Y2, (x| -1y

pa= Bl (6)

The probability that in a sequence of length s, there is at
least one string u that has a hamming distance of at most
dy from M is:

ps=1—(1—py" 1 (7)

Therefore, the expected number of (/, dy)-motifs is:
1Cal =121 (1= (1 = ps)") (8)

In all of the above assertions we have assumed that
the /-mers of a sequence are independent. Clearly, this
is incorrect. However, such analyses have proven useful
in estimating the number of motifs in practice (see e.g.,
[17]). Along these lines, let us look at the expected num-
ber of motifs that will be found, i.e., |O1| or |Oy|. Let M
be a random /-mer, A; be the event that M has a neighbor
that is within a hamming distance of dy in exactly i of the
input sequences. Similarly, let B; be the event that M has a
neighbor that is within a hamming distance of (d,d;] in
exactly j of the input sequences. It should be noted here
that if M has a neighbor whose hamming distance is at
most dy in an input sequence, then it automatically will
also have a neighbor that is within a hamming distance of
dj in such sequence since we assume dy < dj.

We want to know the probability that events A; and
B,_; both happen, which means in each of the # input
sequences, there is an /-mer that is within a hamming dis-
tance of dy from M and also, in each of the remaining n — i
input sequences, there will be an /-mer that is within a
hamming distance of (d3, d1] from M.

Given an [-mer M, the probability that a random string u
of length [ has a hamming distance in the range of (dy, d1]
from M is:

g1 (VIZI =1
|= |

©)

Pe =
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In one sequence, there are m — [ + 1 such /-mers. The
probability that in such a sequence, there is at least one /-
mer that is within a hamming distance of d; but no /-mer
that is within a hamming distance of dy from M is:

" om0

- k —l+1-k

pr = ]2; ( . >p6(1—p4—p6><’" 0 (10)
k=

Therefore, the probability that a random /-mer out of
such dataset meets both (/, d7) and (I, d)-condition is:

n n
N
ps=Y PANB )=y <l.)pgp§” )
i=1

i=1

(11)

In conclusion, the expected number of spurious motifs
we can find in the LDDMS model is:

101] = |0a] = |03] = |Z|'ps (12)

Time complexity of the algorithms

Note that all the three algorithms (LDDMS1, LDDMS2,
and LDDMS3) can be nicely parallelized. For LDDMS]I,
there are parallel versions of LDMS solvers, such as PMS9.
For every candidate motif, the checking process is inde-
pendent and can also be parallelized. For LDDMS2 and
LDDMS3, we need to generate the neighnorhood tree for
n(m — [ + 1) I-mers out of the input sequences. There
are n(m — [ + 1) independent subproblems and can be
assigned to different processors. However, in this paper,
we only implement these algorithms sequentially and ana-
lyze the time complexity of the sequential versions of these
algorithms.

Given a candidate motif of length /, checking if it meets
(I,d1) and (I, dy)-condition in an input of # sequences,
each of length m, will take O ((m — [ + 1)nl) = O(mnl)
time. It is easy to see that the brute-force algorithm takes
time O(|Z|'mnl).

For LDDMS]1, qPMS9 can be implemented in
Om*mnN(Z,1,dy)) time. N(Z, 1, d;) has the same defini-
tion as in Eq. 1. k is a dynamic variable between 1 and ».
We get the following:

Theorem 2 The time complexity of LDDMS]1 algorithm
is

Trppmst = Om*mnN(Z, 1,dy) + |Cy|mnl)

where |Ci| is the candidate size of (I,d1)-motif. An
expected number can be obtained from Eq. 5.

For LDDMS2, in Step 1 and Step 2, generating the
neighborhoods from all /-mers out of each of the input
sequences will take time O ((m — [+ 1)uN(X,[,dy)). In
Step 3, radix sort and removing the duplicates will take
time O ((m — [+ 1)nIN (X, [,d>)). Thus we arrive at:
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Theorem 3 LDDMS?2 can be implemented in time

Tippms2 = O ((m — 1+ DnIN (%, 1, d2)) + O(|Cy|mnl)
= O(mnIN (%, 1,dy) + |Cy|mnl)

where |Cy| is the candidate size of (I,da)-motif. An
expected number is given in Eq. 8.

The following lemma from [16] is useful in computing
the time complexity of LDDMS3.

Lemma 1 For a node x in the neighborhood tree, 5(x, i,1)
can be updated in O(mn) time.

Theorem 4 LDDMS3 can be implemented in time
Trppmss = O (nzmzN (2,1, dy))

Note this is only the worst-case time complexity and
d; does not appear in this expression. The actual run
time could be much less because a lot of branches can be
“pruned”

Results and discussion

LDDMS1, LDDMS2 and LDDMS3 are tested on synthetic
datasets as well as real datasets. We evaluated our algo-
rithms on a Dell Precisions Workstation T7910 running
RHEL 7.0 on two sockets each containing 8 Dual Intel
Xeon Processors E5-2667 (8C HT, 20MB Cache, 3.2GHz)
and 256GB RAM.

Synthetic datasets

Following the tradition, we employ combinations of (/, d1)
that are challenging [3]. We vary dy from 0 to |d1/2].
The challenging instances of n = 20, m = 600 for DNA
sequences and the values of dy for carrying out the test are
listed in Table 1.

The challenging instances correspond to a small num-
ber of spurious motifs. This will make the candidate size
in LDDMSI very small and hence the time spent in Step 2
in LDDMS1 is trivial. To avoid such problems, we slightly
change the way we plant the motifs. We will randomly
generate two [-mers, M; and My. The hamming distance
of M; and M, is q. Then we insert M into each of the first
[n/2] input sequences and M into each of the rest |1/2]
input sequences. A detailed algorithm for generating the
test cases is given in Algorithm 4.

In this way, the common neighbors that are within dy
hamming distance of M; and M are (I, d1, d2)-motifs we
plant. Generally, when g is small, there will be more com-
mon neighbors between M; and M,. Conversely, when g
is large, there are fewer common neighbors between M;
and M,. By varying ¢, we can control the output motif
size. There is a theory proposed in [8] which proves to be
useful here.
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Table 1 Challenging instances and value of d; for test
(n =20,m = 600)

/ d d>

7 1 0

8 1 0

9 2 [0,1]
10 2 [0,1]
11 3 [0,1]
12 3 [0,1]
13 4 [0,2]
14 4 [0,2]
15 5 [0,2]
16 5 [0,2]
17 6 [0,3]
18 6 [0,3]
19 7 [0,3]

Algorithm 4 generateTestCases

1: Generate n sequences, each of length m from the
alphabet X;

2: Randomly generate two /-mers, denoted as M; and
M. The hamming distance between M; and M is g;

3: Insert M into each of the first [#/2] input sequences.
Insert My into each of the remaining |[#n/2] input
sequences. The starting position of M; (i = 1,2) is
randomly chosen from 1 to m — [ + 1.

Theorem 5 Two [-mers a and b have a common neigh-
bor M such that Hd(a, M) < d, and Hd(b, M) < dy, if and
only if Hd(a, b) < d, + dp.

Applying the above theorem, g has to be at a distance
of at most 2d; for M; and M; to have common neighbors
that are within a do hamming distance. When dy = 0, we
set ¢ = 0, then there will be at least N(X, [, d») (I, d1,d>)-
motifs that can be found. When dy # 0, ¢ = 2dj, there
will be at least (Zd‘?) (I, d1, dy)-motifs that can be found.
However, the number of planted (/, d;)-motifs, i.e., com-
mon neighbors that are within a d; hamming distance
between both M; and M», is much larger.

We have tested our algorithms on challenging instances
of (I,dy) from (7,1) upto (19,7), where dy varies from 0
to |d1/2]. Tables 2, 3 and 4 show the running times of
LDDMSI1, LDDMS2 and LDDMS3 on different ([, d1, d>)
values. For small instances such as (/,d;) = (7,1), (8,1),
9,2), (10,2), LDDMSI1 runs faster than LDDMS2 and
LDDMS3. This is because qPMS9 is fast and there are
only a few (/,d;)-motifs to check. However, for mod-
erate and relatively large instances, a small value of ds
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Table 2 Running time of LDDMS1

d> 0 1 2 3

()
@71 0.24s NA NA NA
(D] 0.19s NA NA NA
9,2) 044 s 042s NA NA
(10,2) 034s 031s NA NA
11,3) 191s 1245 NA NA
(12,3) 1835 0815 NA NA
(13,4) 20.19s 9.75s 7.36s NA
(14,4) 23.03s 811s 5.18s NA
(15,5) 475m 251m 1.5Tm NA
(16,5) 6.18m 2.32m 117 m NA
(17,6) 1.12h 2936 m 2063 m 1202 m
(18,6) 1.57h 36.55m 2451 m 1344 m
(19,7) 10.68 h 7.74h 6.13h 4.02h

will make LDDMS2 run much faster than LDDMS]. For
example, for ([,dy,dy) = (17,6,1), LDDMSI takes 29.36
minutes while LDDMS2 only takes 9.19 minutes to solve.
However, for large values of dy, LDDMS?2 is slow. Com-
pared to LDDMS2, LDDMS3 performs much better for
large instances although it will take more time when dj is
small. For example, it can solve instances which LDDMS2
cannot solve, such as ([, dy,d>) = (18,6, 3), (19,7, 3).

It is obvious that as (/,d;) instances become larger, all
the LDDMS algorithms will take more time. However, an
interesting observation is that for a fixed (/,d;) instance,
increasing the value of dy will make LDDMSI run faster
but LDDMS2 and LDDMS3 slower. This is because of the

Table 3 Running time of LDDMS2

d> 0 1 2 3

(,dv)
7.1 276 NA NA NA
@1 5265 NA NA NA
9,2) 534s 145m NA NA
(10,2) 786 347m NA NA
11,3) 7145 386 m NA NA
12,3) 946 s 576 m NA NA
(13,4) 8.66s 577m 1.68 h NA
(14,4) 10.74 s 773 m 2.54h NA
(15,5) 10.04 s 765m 272h NA
(16,5) 11.25s 9.25m 357h NA
(17,6) 10.62s 9.19m 384h 4727 h
(18,6) 12.38s 11.25m 496 h
19,7) 12.13s 11.54m 552h
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Table 4 Running time of LDDMS3

Page 7 of 8

Table 5 Real datasets from [18]

d 0 1 2 3 Datasets n m / d dy=d+2 dy
(I, dy) dmO1r 4 1500 18 3 5 0,2
7,1) 5595 NA NA NA 19 3 5 0,2
(D) 6.66s NA NA NA dmO3r 3 2000 18 2 4 0,2
9,2) 878s 879s NA NA 19 2 4 0,2
(10,2) 9325 9.17s NA NA dmOo4r 4 2000 18 3 5 0,2
11,3) 12.09s 12.22's NA NA 19 3 5 0,2
(12,3) 1149 11.97s NA NA dmO05r 3 2500 18 2 4 0,2
(13,4) 16.09 s 1644 s 2555 NA 19 2 4 0,2
(14,4) 1441s 14.71s 19.68 s NA
(15,5) 20.71s 21255 35735 NA
(16,5) 18355 1855 2836 s NA it will be less challenging. Generally, when dy is large,
17.6) N 2605 < i 830m LDDMS2 takes much more time. However, it is hard to
say for LDDMS1 and LDDMS3, which one performs bet-
(18,6) 24.27's 23.23s 4034 644M  ter, For example, on real dataset dm05r, when (I, d, do) =
(19,7) 32015 33665 1.08m 755m  (18,4,2), LDDMS3 (4.07 s) overperforms LDDMS1 (10.79

Time is in seconds (s), minutes (m) or hours (h). Cells with ‘NA" indicate instances
that are not defined. Cells with - imply the algorithm did not complete in the
stipulated 48 h

way we generate the test cases. If dy is very small, then
the two /-mers we plant will be almost identical. In this
case, we will find a lot of (/, d1)-motifs in the end of Step
2 in LDDMS]1. However, small values of dy will make the
neighborhood tree small, thus LDDMS2 and LDDMS3
will run faster.

Real datasets

We also used the datesets discussed in [18] to test
our algorithms. We chose a group of real datasets. We
excluded datasets with only one input sequence because
such datasets are not meaningful for our test.

We chose two relatively large number, 18 and 19 for the
motif length. Then we re-computed d; which will make
(1, d1) challanging instances since each dataset has differ-
ent number of input sequences and different length for
each sequence. However, as we noted before, the challeng-
ing instances will make the candidate size in LDDMS1
very small. In this case, we cannot manually plant a motif
to avoid such a problem. Therefore, we will increment
dy by 2. We tested the minimum and maximum num-
ber of ds, i.e.,, 0 and |dy/2]. Table 5 shows the datasets
information and the (I, d1, d3) instances we have tested.

Table 6 shows the running time of LDDMS1, LDDMS2
and LDDMS3 on real datasets. On the real dataset, for
fixed (/,d1), changing d does not affect the running time
of LDDMS]1 very much. This is because for a real dataset,
the candidate size, i.e., the number of (/,d;) motifs is
unchanged. This is also true for the number of (I, d>)
motifs for LDDMS2. Moreover, as one can find, for a fixed
dj, increasing [ will make LDDMSI1 run faster because

s). However, on the same dataset, when (/,di,dy) =
(19,4,2), LDDMS1 (2.31 s) overperforms LDDMS3 (4.55
s). The actual running time of these algorithms is highly
dependent on the dataset and (/, d1, d3) values.

Conclusions

Efficient motif search algorithms are crucial in solving
many bioinformatics problems effectively. In this paper,
we have presented the (/,d;,ds) motif model, a more
general model for the motif search problem. We also
have proposed LDDMS1, LDDMS2 and LDDMS3, three

Table 6 Running time of LDDMS1, LDDMS2, LDDMS3 on real

data
Datasets / d > LDDMS1 LDDMS2 LDDMS3
dmOT1r 18 5 0 2.04 m 4155 342s
2 203 m 161 h 6.67s
19 5 0 1746 s 443 s 333s
2 17355 1.92h 540s
dmO03r 18 4 0 14.80 s 4.64s 273s
2 14.73s 1.78 h 349s
19 4 0 330s 4.86s 283s
2 329s 207h 3225
dmO04r 18 5 0 437m 7165 589s
2 437m 283h 11.17s
19 5 0 42325 7.74s 580s
2 4248's 335h 9.035s
dmO05r 18 4 0 10.70's 7.03s 4.07s
2 10.79s 268h 4.77 s
19 4 0 232s 6.90s 421s
2 231s 3.15h 455s

Time is in seconds (s), minutes (m) or hours (h)
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exact efficient algorithms to solve the LDDMS problem.
Theoretical analysis shows that our algorithms are very
competitive. Experimental results also reveal that our
algorithms perform well in practice.

In future we will focus on solving harder LDDMS
instances, including those involving protein strings. We
also plan to implement our algorithms in parallel.
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