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Abstract

Background: Natural and artificial selection leads to changes in certain regions of the genome resulting in selection
signatures that can reveal genes associated with the selected traits. Selection signatures may be identified using
different methodologies, of which some are based on detecting contiguous sequences of homozygous identical-by-
descent haplotypes, called runs of homozygosity (ROH), or estimating fixation index (FST) of genomic windows that
indicates genetic differentiation. This study aimed to identify selection signatures in a paternal broiler TT line at
generations 7th and 16th of selection and to investigate the genes annotated in these regions as well as the biological
pathways involved. For such purpose, ROH and FST-based analysis were performed using whole genome sequence of
twenty-eight chickens from two different generations.

Results: ROH analysis identified homozygous regions of short and moderate size. Analysis of ROH patterns revealed
regions commonly shared among animals and changes in ROH abundance and size between the two generations.
Results also suggest that whole genome sequencing (WGS) outperforms SNPchip data avoiding overestimation of ROH
size and underestimation of ROH number; however, sequencing costs can limited the number of animals analyzed. FST-
based analysis revealed genetic differentiation in several genomic windows. Annotation of the consensus regions of
ROH and FST windows revealed new and previously identified genes associated with traits of economic interest, such
as APOB, IGF1, IGFBP2, POMC, PPARG, and ZNF423. Over-representation analysis of the genes resulted in biological terms
of skeletal muscle, matrilin proteins, adipose tissue, hyperglycemia, diabetes, Salmonella infections and tyrosine.

Conclusions: Identification of ROH and FST-based analyses revealed selection signatures in TT line and genes that have
important role in traits of economic interest. Changes in the genome of the chickens were observed between the 7th
and 16th generations showing that ancient and recent selection in TT line may have acted over genomic regions
affecting diseases and performance traits.
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Background
Artificial selection of animals lead to changes on particular
genomic regions that affect traits of economic interest, as
well as traits involved in adaptation to climatic and stress
conditions, immune response, and disease resistance [1].
Thus, selection signature regions are printed along the gen-
ome as a result of selection pressure. Detecting selection
signatures is important for a better understanding of popu-
lation history and genetic mechanisms affecting phenotypic
differentiation in humans, livestock and wild animals [2].
Understanding how selection acts on livestock populations
may also benefit breeding programs in order to improve
traits of economic interest in these animals, such as chicken
breeds which have been intensively selected for fast growth
and muscle development [3]. Detection approaches rely on
scanning the genome for regions of homozygosity, as well
as on estimating allele or haplotype frequency differences
between populations or generations within a population.
There are several statistical methods for these analyses,
such as extended haplotype homozygosity (EHH) [4], inte-
grated haplotype score (iHS) [5], runs of homozygosity
(ROH) [2], and FST statistics [6].
Runs of homozygosity are regions in the genome con-

taining contiguous homozygous genotypes identical by
descent (IBD), i.e. regions where the pairs of alleles are
most likely inherited from a common ancestor [2]. Recent
studies used this approach to better understand human
diseases [7–9], human ancestry [10], and population struc-
ture and traits of interest in livestock species, such as cat-
tle [11–14], swine [15], poultry [16, 17], and sheep [18].
The fixation index (FST), first defined by Wright [19], is a
measure that exploits differences in allele frequencies to
infer the genetic differentiation between populations or
generations [20]. A certain locus under selection pressure
changes its frequency over the generations. Thus, high
values of FST indicate candidate selection signatures due
to differences in locus frequency among populations or
across generations. Previous studies have reported import-
ant selection signatures in Virginia [21] and Brazilian
broiler and layer chicken lines [22] using this method.
Embrapa Swine and Poultry, a Brazilian National

Research Center, has been raising experimental chicken
populations under selection since the 1970’s. One of these
lines is the paternal broiler line called TT, which has been
under multi-trait selection since 1992 [23]. Identification
of selection signatures in chicken lines can help under-
stand which regions underwent selection pressure over
time and how their biological mechanisms act to express
the traits of interest, such as muscle growth and fat depos-
ition. In this sense, we aimed to investigate selection
signatures in TT broiler line by detecting ROH in the 7th
and 16th generations, raised in the years of 1998 and
2007, respectively, and estimating FST statistic between
these two generations. The identification of those regions

will provide better understanding of artificial selection ef-
fects on broiler lines, and may point out candidate genes
and biological mechanisms underlying performance traits.

Methods
Ethics statement
This study followed experimental protocols pertinent to
animal experimentation with the approval of the Embrapa
Swine and Poultry Ethics Committee on Animal Utilization
(CEUA) in Concordia, Santa Catarina State, Brazil, on reso-
lution number 011/2010. It followed the rules of National
Council of Animal Experimentation Control (CONCEA) in
accordance with international guidelines to guarantee ani-
mal welfare.

Chicken population
Chickens used in this study were from a broiler line devel-
oped by the Embrapa Swine and Poultry National Research
Center. This line, called TT, was originated from Cornish
and White Plymouth Rock breeds, that has been under a
multi-trait selection process focused on body weight, feed
conversion, cut yields, breast weight, abdominal fat, and
other traits, since 1992 [17, 23, 24]. The chickens were
raised in open sided poultry houses, receiving commercial
broiler diet and water ad libitum [17, 24]. Chickens were
euthanized by cervical dislocation at 42 days of age. Two
groups of animals from this line were analyzed, 14 chickens
(half male and half female) from the seventh-generation
(7th) raised in the year of 1998 and 14 male chickens from
the sixteenth-generation (16th) raised in 2007.
The performance of birds from the 7th generation, as

hatched average live weight at 35 days of age was 2272 g;
the breast area in the live bird was 96,1 cm2 and the in-
dividual feed conversion rate (FCR) for males, from 36
to 43 days of age was 2268 g. The performance of birds
from 16th, as hatched average live weight at 42 days of
age was 2457 g; the breast area was 112 cm2 and the in-
dividual FCR from 43 to 49 days of age was 2798 g [17].
Note that the age of selection for BW and BA has chan-
ged from 35 to 42 days of age in the described period, as
well as the FCR evaluation period, which has changed
from 36 to 43 days in 1998 to 43–49 days of age in 2007.

Sequencing and quality control
Whole genome sequencing (WGS) data of 28 chickens
were used in this study. Animals were individually
sequenced to a minimum coverage of 11.4x using the
HiSeq2500 (Illumina) platform, and the alignment of reads
was done against the chicken genome assembly (Gallus_
gallus-5.0, UCSC) chicken reference genome using Bow-
tie2 [25]. Detailed information about library preparation,
sequencing, quality control of reads, alignment and SNP
and INDEL identification are fully described in Boschiero
et al. [22] and Moreira et al. [26]. Variants identified in
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sexual, mitochondrial, random or unplaced chromosomes
were removed from our analysis.

Principal component analysis
Genetic relationship between the 28 animals was assessed
with a principal component analysis (PCA) using the SNP
dataset (n = 9,914,904). The analysis was performed using
the SNPRelate package of Bioconductor by means of an
in-house script in R.

Identification of runs of homozygosity
The identification of ROH was chosen to obtain informa-
tion about selection signatures and how they are shared
between animals in both generations. Analyses were per-
formed using PLINK v1.9 software [27, 28], which uses a
sliding window approach: a window, with a minimum size,
slides across the genome, calling a segment if it is in
accordance with the parameters established and the
threshold of calculated proportion of homozygous win-
dows overlapping each SNP in that segment. The parame-
ters used in the analysis were set based on Ceballos et al.
[29] and they are listed in Table 1.
Dataset of the 28 animals comprised 9,914,904 SNP,

and all INDEL were excluded. The parameter -homozyg-
group was also used to obtain information of the
overlapping ROH (pools), i.e., ROH that appeared in at
least two animals in the same region of the genome. The
output plink.hom.overlap shows each ROH of each
animal overlapping and their respective union (uROH)
and consensus sequences (cROH), besides their genome
position, size and number of SNP. The consensus ROH
(cROH, i.e. a consensus segment of ROH that appeared in
a common region in at least two animals) of the pools were
used for annotation and enrichment analysis, to avoid ran-
domly assigned ROH and to represent what changed and
what is conserved between the animals [30, 31]. In addition,
we used an in-house script in R to check the overlap

between the regions of all cROH and the ROH previously
identified in the TT Reference population (originated from
TT broiler line) by Marchesi et al. [17], given the positional
coordinates (chromosome, start and end) of these regions
and considering at least one overlapped base pair.

Genomic inbreeding coefficients
Individual genomic inbreeding coefficients were calcu-
lated based on ROH data (FROH), as defined by McQuil-
lan et al. [32], to know if there was a difference of
inbreeding between the 7th and 16th generations. FROH

was calculated as:

FROH ¼ LROH
Laut

;

where LROH is the total size of ROH in the genome and
Laut is the total size of autosomal genome covered by
SNP of an individual (933.071Mb, Gallus_gallus-5.0
chicken reference genome - UCSC).

FST analysis
This method was applied to compare the two genera-
tions, i.e. to identify selection signatures by estimating
the differences in allele frequency between the 7th
and 16th generations. The fixation index was calcu-
lated according to Weir and Cockerham’s pairwise
estimator method [33] using VCFtools v.1.16 software
[34], in which SNP and INDEL analyses were run
separately, comprising datasets of 9,914,904 SNP and
793,603 INDEL. The same parameters used recently
in chickens by Boschiero et al. [22] were applied: FST
values were calculated using overlapping windows of
20 Kb size sliding by steps of 10 Kb size. Windows
with less than 10 SNP or 5 INDEL were removed,
and all negative values were set to zero. FST values of
the remaining windows were ranked, and those equal
or above 0.3 were considered as candidate selection

Table 1 PLINK parameters for run of homozygosity (ROH) analysis

Parameter Value Definition

-homozyg-snp 50 Minimum number of SNP required to consider a ROH;

-homozyg-kb 300 Size (Kb) of the sliding window;

-homozyg-density 50 Minimum density required to consider a ROH;

-homozyg-gap 1000 Maximum size (Kb) between two SNP to be considered
in the same ROH;

-homozyg-window-snp 50 Number of SNP present in the sliding window;

-homozyg-window-het 3 Number of heterozygous SNP allowed in a ROH;

-homozyg-window-
missing

5 Number of missing calls allowed in a ROH;

-homozyg-window-threshold 0.05 Proportion of overlapping windows that must be called
homozygous to define a given SNP as in a homozygous segment.
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signatures. The software BEDTools [35] was used to
check if there were equivalent regions identified in
both datasets.

Functional analysis
Functional analysis was performed to identify genes an-
notated within the candidate selection signature regions
identified and, consequently, the biological mechanisms
that may be involved with traits of adaptation and per-
formance. Such information was obtained assessing the
position (start and end coordinates) of the candidate
selection signatures (cROH and FST windows ≥0.3) in
the chicken genome available at BioMart Ensembl gen-
ome browser platform (Ensembl Genes release 94,
Gallus_gallus-5.0 assembly) [36].
We also assessed the genes annotated in the candidate

selection signatures under different perspectives in order to
understand the effects of selection on TT line in different
periods. First, we investigated changes that occurred
between the 7th and 16th generations: (i) cROH of regions
shared exclusively among animals of the 7th; (ii) cROH of
regions shared exclusively among animals of the 16th; (iii)
cROH of regions that were shared among at least four ani-
mals of the 16th more than animals of 7th; (iv) FST SNP
windows (≥ 0.3); and (v) FST INDEL windows (≥ 0.3). In
addition, we looked for genes annotated in (vi) cROH of
regions shared with 12 or more animals (among the 28), to
identify regions probably related to chicken domestication
or even, specialization into broilers.
Functional enrichment was performed using MeSH

Enrichment and Semantic Analysis, Bioconductor’s pack-
age [37, 38], in R software [39] to investigate if there was
overrepresentation of any biological processes and compo-
nents. For such purpose, datasets of genes annotated in
the specific candidate selection signatures previously men-
tioned (i-vi) were analyzed separately. The p-value was ad-
justed using the Benjamin-Hochberg false discovery rate
(FDR) method [40].

Overlapping selection signatures with QTL
In order to confirm the role of the selection signa-
tures detected herein in the regulation of important
phenotypes in chickens, we investigated the overlap
with QTL associated with traits of economic interest.
The analysis was performed using an in-house script
in R to overlap the regions of all cROH, FST SNP and
INDEL windows against the QTLs available at the
Chicken QTL database [41], given the positions
(chromosome, start and end) of these regions and
considering at least one overlapped base pair. Particu-
larly, we also analyzed if there was overlap of candi-
date selection signatures with QTL associated with fat
deposition previously identified by Moreira et al. [42]

in the TT Reference population, originated from an
expansion of TT line in 2007 for genomic studies
purpose [17].

Results
Principal component analysis
Principal component analysis using genomic data re-
vealed a cluster separation between animals of the 7th
and the 16th generations (Fig. 1). The distinct clustering
demonstrated that genome data successfully separate
these animals accordingly to their generation.

Runs of homozygosity
Analysis of the whole genome sequence data of the 28
animals (14 of the 7th and 14 of the 16th generation)
with PLINK’s sliding window approach identified 5721
ROH (1944 in the 7th and 3777 in the 16th generation
animals) (Additional file 1). The average number of
segments per animal was lower in the 7th (138.9 ROH/
animal) than in the 16th generation (269.8 ROH/animal)
(Table 2). The ROH presented small and moderate sizes,
ranging between 300 Kb and 4.9Mb, and most of them
had sizes smaller than 1.0Mb in both generations (1821
ROH in the 7th and 3120 in the 16th generation ani-
mals). A change in the distribution of ROH sizes was
also observed between both generations (Fig. 2). The
proportion of ROH smaller than 1.0Mb decreased
(93.7% in the 7th to 82.6% in 16th generation) while the
proportion of ROH with sizes between 1.0 and 2.0Mb
increased (6.1% in the 7th to 14.7% in the 16thgenera-
tion) as well as ROH bigger than 2.0Mb (0.3% in the 7th
to 2.7% in 16th generation). The average total size of
ROH per animal was 73.2 Mb in the 7th and 188.6Mb
in the 16th generation (Table 2).
ROH were identified in all chromosomes, except on

GGA16 and GGA30–32 (Table 3). Figure 3 represents
all ROH, with their proportional sizes, distributed across
GGA2 for the 28 animals. Regions where ROH is pre-
sented in more than one animal formed a sharing pat-
tern. Figures of other chromosomes are provided as
Additional file 2. The four longest ROH (> 4Mb) were
located on different macro chromosomes (GGA2: 116,
060,874 – 120,088,450; GGA5: 39,097,092 – 43,183,508;
GGA3: 25,504,098 – 29,639,462; GGA4: 69,071,022 –
73,960,022). Overlaps of ROH from at least two animals
established 1941 pools (Additional file 3). There was one
pool of ROH shared among the 28 animals, and it was
located in the GGA2 with a consensus sequence of 300.2
Kb (82,146,603 – 82,446,837). Furthermore, most of the
pools consisted in regions shared among two to seven
animals (74.4%). There were 87 regions with ROH com-
monly shared with at least 12 animals, and most of them
identified on GGA1.
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Regions commonly shared among the animals become
more frequent in the 16th generation. We observed a
greater number of ROH pools shared among animals
from 16th generation than animals from 7th generation
(Fig. 4-a, b and c).

Genomic inbreeding coefficients
Individual genomic inbreeding coefficients based on
ROH (FROH) were calculated for both generations (Table
2). Mean, maximum and minimum individual FROH for
animals of the 7th generation were 0.0784, 0.1340, and
0.0215, respectively, with a coefficient of variation (CV)
of 52.8%. For animals of the 16th, the mean, maximum
and minimum individual FROH were 0.2021, 0.2213, and
0.1761 (CV = 7.4%).

FST windows
FST analysis identified 91,638 and 86,404 windows for SNP
and INDEL datasets, respectively, after removing windows
with less than 10 SNP and five INDEL. The number of
markers per window ranged from 10 to 1562 SNP (aver-
age of 216.3 SNP/window) and from five to 72 INDEL
(average of 18.2 INDEL/window). Mean FST values for
SNP and INDEL datasets were 0.040 and 0.038, respect-
ively, while the highest FST values were 0.598 and 0.555.
Windows with FST values equal or higher than 0.3

were considered candidate selection signatures. There
were 178 windows using SNP dataset (Fig. 5) and 154
windows using INDEL dataset (Fig. 6) above this thresh-
old value (FST ≥ 0.3). More information about these

windows are available in the Additional files 5 and 6.
Most of these windows were in the macrochromosomes
(Table 3) and approximately 87% of the INDEL windows
overlapped with SNP windows (Fig. 4 – c and d).

Genes in consensus selection signature regions
Annotation analysis using the Ensembl genome
browser revealed 5681 genes annotated in the 1941
cROH pools shared among at least two of the 28 ani-
mals (Additional file 7). Annotation of FST windows
(Fst ≥0.3) identified 56 and 60 genes for SNP and
INDEL datasets, respectively (Additional files 8 and 9).
Since a great part of SNP windows overlapped with
INDEL windows, 37 of these genes were common for
both datasets (Table 4). In addition, about 46.1% of
SNP FST windows and 37.7% of INDEL FST windows
overlapped with cROH. Thus, we found 34 genes an-
notated in cROH in common with genes annotated in
FST (SNP and/or INDEL) windows (Table 4).
Based on Biomart Ensembl database, some of the genes

commonly annotated in Fst and cROH regions, plays a
role in biological processes involved in traits of economic
interest in chicken or in other model animals; all the bio-
logical processes related to the genes mentioned in Table
4, are available at Additional file 10. There were genes
involved in lipid metabolic processes, glucose metabolism
and homeostasis and adipose tissue development. Other
genes were described to be involved in muscle cell differ-
entiation, muscle tissue development, and constituents of

Fig. 1 Principal component analysis using genomic data (SNP = 9,914,904) for 7th and 16th generations
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skeletal muscle. Moreover, there were a group of genes
related to different types of behavior, such as
grooming, locomotion, fear response, feeding behavior,
aggressiveness, and social, exploration and maternal
behaviors. Genes involved in the immune humoral
system, differentiation, proliferation, homeostasis and
chemotaxis of B cells, and regulation of cytokines
production were also annotated in regions of the can-
didate selection signatures.
In order to complement the Fst analysis we identified

genes in cROH regions that were either exclusive between
the 7th and 16th generations. There were 71 genes anno-
tated in the regions that were in homozygosity only in the

7th generation and 1881 genes annotated in regions of
cROH shared only among animals of the 16th generation.
We also identified genes in cROH regions that had chan-
ged between the 7th and 16th generations. For that, we
considered regions that either increased or decreased by
at least four animals in cROH regions between genera-
tions. There were 1318 genes annotated on these regions.
For example, the gene IGF-I (GGA1 55,335,204 – 55,383,
631) was annotated in a cROH region (GGA1 55,149,208
– 55,359,089) shared between seven animals of the 7th
and 13 animals of the 16th. Additional file 11 presents
genes annotated in these regions and that were previously
associated with traits of economic interest in chickens..

Table 2 ROH features for each animal of 7th and 16th generations

IID Number of ROHa Total sizeb (Kb) Mean size of segments (Kb) FROH

7th_01 130 60,492.6 465.328 0.0648

7th_02 212 125,062.0 589.913 0.1340

7th_03 131 63,732.1 486.504 0.0683

7th_04 61 25,416.8 416.668 0.0272

7th_05 65 30,014.6 461.763 0.0322

7th_06 85 38,303.9 450.634 0.0411

7th_07 183 103,302.0 564.491 0.1107

7th_08 148 71,381.7 482.309 0.0765

7th_09 209 138,608.0 663.195 0.1486

7th_10 219 128,120.0 585.024 0.1373

7th_11 94 42,055.7 447.401 0.0451

7th_12 175 82,420.5 470.974 0.0883

7th_13 188 95,302.7 506.929 0.1021

7th_14 44 20,107.3 456.985 0.0215

Means (CV) of the 7th generation 139 (43.8%) 73,165.7 (54.8%) 503,437 (13.9%) 0,0784 (54.8%)

16th_01 245 164,355.0 670.839 0.1761

16th_02 241 183,336.0 760.729 0.1965

16th_03 254 174,906.0 688.608 0.1875

16th_04 280 200,919.0 717.567 0.2153

16th_05 268 188,023.0 701.579 0.2015

16th_06 318 200,111.0 629.281 0.2145

16th_07 256 181,422.0 708.681 0.1944

16th_08 290 196,574.0 677.843 0.2107

16th_09 289 206,456.0 714.381 0.2213

16th_10 283 215,635.0 761.963 0.2311

16th_11 275 187,931.0 683.386 0.2014

16th_12 254 181,634.0 715.095 0.1947

16th_13 242 167,875.0 693.697 0.1799

16th_14 282 191,333.0 678.484 0.2051

Means (CV) of the 16th generation 270 (8.3%) 188,607.9 (7.7%) 700.152 (4.9%) 0.2021 (7.7%)

IID individual identification, CV coefficient of variation %
aTotal number of ROH identified in each animal
bTotal size of autosomal genome covered by ROH
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Fig. 2 Percentage of ROH in 7th and 16th generations distributed in size classes. A decrease in the proportion of ROH smaller than 1.0 Mb in
16th is observed, meanwhile the proportions of ROH with sizes above 1.0 MB increased

Table 3 Summary of runs of homozygosity (ROH), pools of ROH, FST SNP windows, and FST INDEL windows by chromosome in TT
population in all animals from 7th and 16th generations

GGA Size (Mb) Number of ROH Number of pools Number of FST SNP windows (≥ 0.3) Number of FST INDEL windows (≥ 0.3)

1 196.20 1230 415 53 65

2 149.56 1087 338 28 28

3 111.30 609 228 28 23

4 91.28 582 212 5 4

5 59.83 392 137 6 9

6 35.47 211 77 4 5

7 36.95 267 85 17 21

8 29.96 213 66 1 2

9 24.09 106 39 6 10

10 20.44 106 39 – 2

11 20.22 114 36 1 1

12 19.95 90 41 – –

13 18.41 107 35 1 2

14 15.60 101 32 – 1

15 12.76 81 32 – –

17 10.96 72 22 – –

18 11.05 87 28 1 –

19 9.98 61 16 – 2

20 14.11 54 19 – –

21 6.86 26 7 – –

22 4.73 13 4 2 3

23 5.79 21 7 1 –

24 6.28 30 12 – –

25 2.91 7 1 – –

26 5.31 9 1 – –

27 5.66 16 5 – –

28 4.97 25 6 – –

33 1.65 4 1 – –
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These different gene lists were used to perform MeSH
overrepresentation analysis, with the purpose of having
an integrated knowledge of biological processes may be
involved in the selection of TT line. MeSH analysis indi-
cates if there is an overrepresentation of a particular
group of genes in a biological category, such as anatomy,
diseases or phenomena and processes. In this sense,
overrepresentation analysis resulted in eight different
biological terms: ‘matrilin proteins’, ‘skeletal muscle’, ‘Sal-
monella infections in animals’, ‘adipose tissue’, ‘cystatins’,
‘tyrosine’, ‘pregnancy in diabetics’, and ‘hyperglycemia’.
Table 5 presents each one of these terms and their
respective gene counts and p-values.

Selection signatures in overlap with QTL in the TT line
To identify selection signatures associated with quantitative
traits, we investigated the overlap between the regions of
cROH, FST SNP and INDEL windows (≥ 0.3) with QTL re-
gions previously associated with traits of economic interest
in chickens available at the Chicken QTL database (release
37). About 72.8% of the 1941 cROH overlapped with QTL
regions (n = 2617). There were also overlap of 60.1% of the
178 FST SNP windows and 68.2% of the 154 FST INDEL
windows with QTL regions (n = 107 and 105, respectively).
These QTL regions were associated with 143 different traits
(Additional file 12) of which some are very important for
broilers’ breeding program goals such as feed conversion
rate, feed intake, average daily gain, body weight, breast
muscle weight, and others (Figs. 7, 8 and 9).
We also identified cROH regions that overlapped with

10 QTL previously mapped for fatness traits on GGA5,
GGA9, GGA10, GGA13, GGA15, and GGA27 in the same
population utilized herein (TT Reference Population)

(Table 6) [42]. There was no overlap between the FST win-
dows (≥ 0.3) and these QTLs mapped for fatness.

Discussion
Runs of homozygosity
ROH studies have addressed human evolution and
diseases, conservation and evolution of wild species, and
genomic features of livestock animals [2, 7, 13, 17]. The
investigation of ROH as selection signatures using differ-
ent generations of the TT line provided two new insights.
First, the identification of important selection signatures
that may refer to periods preceding the generations under
study. Second, it allowed the comparison of how these se-
lection signatures were shared among the individuals and
how they have changed over the generations. Since shared
ROH is an indication of regions under selection [18], the
consensus regions of ROH (cROH) were used in this study
to understand the possible biological consequences of
selection in this broiler line.
The ROH identified in animals of TT line presented

small to moderate sizes, ranging from 300 Kb to 4.9Mb.
Short ROH are most probable to be IBD genomic regions
inherited from ancient ancestors indicating long term
selection [43]. Over the generations, IBD segments tends
to break down due to recombination events by repeated
meiosis. Thus, ROH size is associated with the degree of
shared parental ancestry and for how long it was passed
across generations [32] and, as expected, short ROH
regions shared between animals of the 7th and 16th gener-
ations encompassed genes associated with traits of interest
(Additional file 10). It is important to mention that not all
short ROH are IBD and a proportion of them may be
identical-by-state (IBS) due to genetic drift, as well as

Fig. 3 Genome wide distribution of runs of homozygosity (ROH) in TT population. Size and location of ROH in chromosome 2 for each animal
are represented in parallel. Patterns of shared ROH can be observed in some regions of the chromosome. In addition, a higher frequency of ROH
in animals of 16G was observed
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Fig. 4 (See legend on next page.)
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population bottlenecks, and therefore some authors rec-
ommend caution in attributing these regions as candidate
selection signatures [18, 44, 45]. The minimum size of 300
Kb was set in our analysis to detect ROH, considering that
the use of WGS data calls ROH with smaller sizes com-
pared to SNPchip data. A limitation in our study is that
we were not able to determine which proportion of ROH
is attributed to genetic drift and may lead to false posi-
tives. However, strategies were adopted to improve the
chances to detect true selection signatures associated with
the selection program. They were (i) using ROH regions
in common with at least two animals, (ii) overlapping
these regions with the Chicken QTL database, and (iii)
performing MeSH overrepresentation analysis. These
combined strategies reduce the chance to detect candidate
selection signatures due to genetic drift.
In a study with offspring from animals of the 16th

generation, Marchesi et al. [17] identified ROH in 1279
chickens using a high-density 600 K genotyping array
data. They adopted the same parameters used in the
present study, except for the minimum size of ROH and
number of heterozygous SNP allowed. As expected, re-
gions of ROH were commonly shared between both
populations. More than 98% of the cROH identified
herein in animals of the 16th generations, overlapped
with ROH identified in the study of Marchesi et al. [17],
corroborating our findings (Additional file 4). However,
a higher number of ROH per animal and ROH with
smaller sizes were identified in the 28 animals compared
to those of Marchesi et al. [17]. We suggest that the rea-
sons for identifying shorter ROH relies on the higher
resolution of WGS data in comparison with SNPchip
data. This difference in ROH calling was also observed

in another study with feline that used both types of data-
set for the same individuals [46].
It is also important to highlight that low coverage

WGS data may present higher error rate of variant call-
ing in comparison with SNPchip data, and this may lead
to inaccuracy of ROH calling [29]. Thus, we followed pa-
rameters based on Ceballos et al. [29], which demon-
strated equivalent results to SNPchip data’s results, when
dealing with low coverage WGS. Moreover, in order to
extend the chances of detecting accurate ROH, we opted
to investigate consensus regions of ROH, i.e. regions of
ROH in common with at least two animals, that might
indicate regions under selection [18, 30]. All these obser-
vations corroborate with our suggestion that the smaller
size and higher number of ROH possibly relies on the
better resolution of WGS.
In our study, an increase in ROH abundance was ob-

served, i.e. between the 7th and 16th generations there
was an increase on the average number of ROH seg-
ments per animal and in the average size of segment per
animal (Fig. 2 and Table 2). Investigation of the history
of the breeding program indicate that these differences
may have occurred due to a bottleneck effect. Marchesi
et al. [17] estimated the Ne in TT line backing to 200
generations ago and reported a decay in Ne, especially in
the last five generations, ranging from 157 to 113 chick-
ens (Ne of TT Reference Population). Thus, when a
population size is reduced, the average of heterozygosity
in a certain locus is expected to decline, depending on
the Ne [47, 48]. The occurrence of a bottleneck effect is
supported by the observed increase in the mean gen-
omic inbreeding coefficient from the 7th to the 16th
generation (7th FROH = 0.078 and 16th FROH = 0.202). It

(See figure on previous page.)
Fig. 4 Manhattan plot of genomic regions and percentage of animals that shares the candidate selection signatures as well, SNPs and INDELs Fst
windows. a: ROH pools detected in all the 28 animals; b: ROH pools detected in the 14 birds from 16th generation; c: ROH pools detected in the
14 birds from 7th generation; d: SNPs Fst windows; e: INDELS Fst windows. For a, b and c, the X-axis represents the chromosomes, and Y-axis
shows the proportion of animals that shares the ROH pools. For d and e, the X-axis represents the chromosomes, and Y-axis shows the Fst values

Fig. 5 Manhattan plot of genome wide distribution of FST windows for SNP dataset. Red line represents threshold of 0.3, windows above this
value were considered candidate selection signature
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is worth to mention that, even if mating between close
related individuals is avoided some level of inbreeding is
unavoidable, because TT line is a closed population [17].
Furthermore, the percentage of animals sharing a

ROH region increased from the 7th to the 16th gener-
ation (Fig. 4). Mastrangelo et al. [18] reported similar
observations of an increase in the abundance of ROH in
a sheep breed it and suggested that a decrease in the ef-
fective population size (Ne) had occurred resulting in re-
cent and historical autozygosity events. Thus, we suggest
that the increase in homozygous regions across genera-
tions in TT line is consequence of selection pressure
over genomic regions that are important to the breeding
program’s goals jointly to reduction on the Ne and in-
breeding. In fact, genes associated with traits of eco-
nomic interest, such as the APOB, POMC, PPARG and
other genes (Additional file 10), were annotated in re-
gions shared with more animals of the 16th than with
7th generation, supporting that the regions containing
these genes were under selection pressure in the respect-
ive period.

FST windows
An alternative approach applied in this study for identifi-
cation of selection signatures was the genetic differenti-
ation method based on allele frequency differences
called FST statistics. Previous studies have used this
method for detecting selection signature in livestock
species, such as broilers [14, 21, 22, 49, 50]. Here we
compared two groups of animals of TT broiler line, 10
generations distant from each other. The parameters
were the same used by Boschiero et al. [22], in the com-
parison of the TT line against a layer line. The authors
states that windows of 20 Kb allow a finer resolution of
the regions in addition to windows with sufficient num-
ber of markers, considering that the amount of variants
in a window is essential for increasing the power of the
analysis [22, 51]. This intent was achieved in our results
since we obtained an average of 216 SNP/window and

18 INDEL/window, which were similar to the results ob-
tained by Boschiero et al. [22] with averages of 268 SNP/
window and 26 INDEL/window. Furthermore, there was
a considerable number of windows in common between
SNP and INDEL datasets with 87% of overlapping, a fact
also observed by Boschiero et al. [22].
Estimates of FST range from zero, meaning no genetic

difference between the subpopulations, up to 1.0, mean-
ing complete genetic differentiation [52]. Although there
is not a determined threshold to capture regions that in-
dicate genetic differentiation as a candidate selection sig-
nature, some authors use a threshold for the top 0.1%
values of FST [21, 22]. Here we established a threshold
value of 0.3 in order to obtain regions that might be in a
differentiation process in the TT line. Only 0.002% of
the windows had FST values above this threshold, for
SNP and INDEL datasets, and the highest estimated
values were 0.598 and 0.555 for SNP and INDEL data-
sets, respectively. In addition, as discussed by Boschiero
et al. [22], combining strategies to detect selection signa-
tures minimizes the occurrence of false positives.

Selection signatures of broiler performance and
adaptation
Besides identifying regions in the chicken genome under
selection pressure, knowing the genes annotated in these
regions and how they biologically act is essential for un-
derstanding how the selection signatures contributed to
the current phenotype of the evaluated animals. Since
TT broiler line is under multi-trait selection since 1992
aiming to improve body weight, feed conversion, cut
yields, breast weight, viability, fertility, and hatchability
and to reduce abdominal fat [17, 23], it is expected that
genes influencing the performance of these traits are
under selection pressure.
Therefore, investigating which genes were annotated

in the candidate selection signatures regions identified in
both FST and ROH analysis helps to understand the bio-
logical mechanisms that affected the construction and

Fig. 6 Manhattan plot of genome wide distribution of FST windows for INDEL dataset. Red line represents threshold of 0.3, windows above this
value were considered candidate selection signatures
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Table 4 Genes annotated commonly between selection signatures of two or more datasets

Gene ID Gene name Description

FST SNP and INDEL windows (≥0.3) datasets

ENSGALG00000000242 EBF2 early B cell factor 2

ENSGALG00000002370 SH2D4B SH2 domain containing 4B

ENSGALG00000002414 TSPAN14 tetraspanin 14

ENSGALG00000004045 AGAP1 ArfGAP with GTPase domain, ankyrin repeat and PH domain 1

ENSGALG00000004116 TRPM8 transient receptor potential cation channel subfamily M member 8

ENSGALG00000004129 SPP2 secreted phosphoprotein 2

ENSGALG00000007555 CCND1 cyclin D1

ENSGALG00000007556 LTO1 LTO1, ABCE1 maturation factor

ENSGALG00000012542 RASD2 RASD family member 2

ENSGALG00000015402 C3orf38 chromosome 3 open reading frame 38

ENSGALG00000015403 EPHA3 EPH receptor A3

ENSGALG00000015570 GPR63 G protein-coupled receptor 63

ENSGALG00000015573 FHL5 four and a half LIM domains 5

ENSGALG00000016518 PHKA2 phosphorylase kinase regulatory subunit alpha 2

ENSGALG00000016522 PPEF1 protein phosphatase with EF-hand domain 1

ENSGALG00000016529 CDKL5 cyclin dependent kinase like 5

ENSGALG00000016541 novel gene BEN domain containing 2

ENSGALG00000016543 NHS NHS actin remodeling regulator

ENSGALG00000022866 ZNF654 zinc finger protein 654

ENSGALG00000026372 novel gene --

ENSGALG00000028376 FGF19 fibroblast growth factor 19

ENSGALG00000032974 ADAMTS2 ADAM metallopeptidase with thrombospondin type 1 motif 2

ENSGALG00000033076 novel gene --

ENSGALG00000035116 STAG1 stromal antigen 1

ENSGALG00000035393 LRRC14B leucine rich repeat containing 14B

ENSGALG00000035906 YTHDC1 YTH domain containing 1

ENSGALG00000036204 novel gene --

ENSGALG00000036327 NGEF neuronal guanine nucleotide exchange

ENSGALG00000036730 MRPS35 mitochondrial ribosomal protein S35

ENSGALG00000036938 RALYL RALY RNA binding protein like

ENSGALG00000038154 YAP1 Yes associated protein 1

ENSGALG00000038730 GIGYF2 GRB10 interacting GYF protein 2

ENSGALG00000039139 TNS3 tensin 3

ENSGALG00000039690 STMN2 stathmin 2

ENSGALG00000039738 SLC9A3 solute carrier family 9 member A3

ENSGALG00000040264 C9H2ORF82 chromosome 9 open reading frame, human C2orf82

ENSGALG00000042764 COG5 component of oligomeric golgi complex 5

cROH and FST SNP windows (≥0.3)

ENSGALG00000000242 EBF2 early B cell factor 2

ENSGALG00000001153 AUTS2 AUTS2, activator of transcription and developmental regulator

ENSGALG00000003705 VPS13C vacuolar protein sorting 13 homolog C

ENSGALG00000004045 AGAP1 ArfGAP with GTPase domain, ankyrin repeat and PH domain 1

ENSGALG00000004116 TRPM8 transient receptor potential cation channel subfamily M member 8
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Table 4 Genes annotated commonly between selection signatures of two or more datasets (Continued)

Gene ID Gene name Description

ENSGALG00000006237 PKN2 protein kinase N2

ENSGALG00000007555 CCND1 cyclin D1

ENSGALG00000007556 LTO1 LTO1, ABCE1 maturation factor

ENSGALG00000015402 C3orf38 chromosome 3 open reading frame 38

ENSGALG00000015403 EPHA3 EPH receptor A3

ENSGALG00000016518 PHKA2 phosphorylase kinase regulatory subunit alpha

ENSGALG00000016522 PPEF1 protein phosphatase with EF-hand domain 1

ENSGALG00000016529 CDKL5 cyclin dependent kinase like 5

ENSGALG00000022866 ZNF654 zinc finger protein 654

ENSGALG00000025253 gga-mir-1694 gga-mir-1694

ENSGALG00000028376 FGF19 fibroblast growth factor 19

ENSGALG00000030580 RPS6KA5 ribosomal protein S6 kinase A5

ENSGALG00000032958 AMPH amphiphysin

ENSGALG00000034119 novel gene collagen type XV alpha 1 chain

ENSGALG00000035116 STAG1 stromal antigen 1

ENSGALG00000035906 YTHDC1 YTH domain containing 1

ENSGALG00000036938 RALYL RALY RNA binding protein like

ENSGALG00000038730 GIGYF2 GRB10 interacting GYF protein 2

ENSGALG00000040167 TPD52 tumor protein D52

cROH and FST INDEL windows (≥0.3) datasets

ENSGALG00000000242 EBF2 early B cell factor 2

ENSGALG00000000667 EDN2 endothelin 2

ENSGALG00000004045 AGAP1 ArfGAP with GTPase domain, ankyrin repeat and PH domain 1

ENSGALG00000004116 TRPM8 transient receptor potential cation channel subfamily M member 8

ENSGALG00000007555 CCND1 cyclin D1

ENSGALG00000007556 LTO1 LTO1, ABCE1 maturation factor

ENSGALG00000008163 PSME4 proteasome activator subunit 4

ENSGALG00000015402 C3orf38 chromosome 3 open reading frame 38

ENSGALG00000015403 EPHA3 EPH receptor A3

ENSGALG00000016518 PHKA2 phosphorylase kinase regulatory subunit alpha

ENSGALG00000016522 PPEF1 protein phosphatase with EF-hand domain 1

ENSGALG00000016529 CDKL5 cyclin dependent kinase like 5

ENSGALG00000022866 ZNF654 zinc finger protein 654

ENSGALG00000025789 gga-mir-6614 gga-mir-6614

ENSGALG00000027632 ACYP2 acylphosphatase 2

ENSGALG00000027960 GRPR gastrin releasing peptide receptor

ENSGALG00000028376 FGF19 fibroblast growth factor 19

ENSGALG00000034516 SHISA6 shisa family member 6

ENSGALG00000035116 STAG1 stromal antigen 1

ENSGALG00000035906 YTHDC1 YTH domain containing 1

ENSGALG00000036810 novel gene --

ENSGALG00000036938 RALYL RALY RNA binding protein like

ENSGALG00000038730 GIGYF2 GRB10 interacting GYF protein 2

ENSGALG00000039102 TOX thymocyte selection associated high mobility
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evolution of the phenotype of TT line. In this sense,
genes involved with traits of economic interest were
identified in these regions. The genes IGFB2, TGFB2,
HOXD9, HOXD10, POMC SPP1, SPP2, and IGF1 were
some of the genes annotated in the candidate selection
signatures of TT line and that were previously found in
other selection signatures and associated with traits such
as growth, body weight and composition, abdominal fat,
organogenesis and feed intake and consumption [22, 50,
53–66]. Furthermore, we identified a group of genes an-
notated in the selection signatures that are involved with

structural constituents, cell differentiation, and develop-
ment of muscle tissue: ACTC1, AKAP6, ATP2A2,
KCNMA1, MYO1B, MYO1C, MYO1E, MYO1F, MYO6,
MYO7A, MYO10, MYO16, TPM4, VCL, and V1PR1 [22,
67]. Selection signatures identified in our analysis also
indicate regions involved in lipid metabolism and adi-
pose tissue development, encompassing the ADCY2,
AKAP6, APOB, ATPR2, IGFBP2, PLA2R1, PPARG,
SCARB1 and ZNF423 genes [22, 68–77].
Chickens raised in production systems are under sev-

eral stressful conditions that can affect performance and

Table 4 Genes annotated commonly between selection signatures of two or more datasets (Continued)

Gene ID Gene name Description

ENSGALG00000040322 novel gene --

cROH and FST SNP and INDEL windows (≥0.3) datasets

ENSGALG00000000242 EBF2 early B cell factor 2

ENSGALG00000004045 AGAP1 ArfGAP with GTPase domain, ankyrin repeat and PH domain 1

ENSGALG00000004116 TRPM8 transient receptor potential cation channel subfamily M member 8

ENSGALG00000007555 CCND1 cyclin D1

ENSGALG00000007556 LTO1 LTO1, ABCE1 maturation factor

ENSGALG00000015402 C3orf38 chromosome 3 open reading frame 38

ENSGALG00000015403 EPHA3 EPH receptor A3

ENSGALG00000016518 PHKA2 phosphorylase kinase regulatory subunit alpha

ENSGALG00000016522 PPEF1 protein phosphatase with EF-hand domain 1

ENSGALG00000016529 CDKL5 cyclin dependent kinase like 5

ENSGALG00000022866 ZNF654 zinc finger protein 654

ENSGALG00000028376 FGF19 fibroblast growth factor 19

ENSGALG00000035116 STAG1 stromal antigen 1

ENSGALG00000035906 YTHDC1 YTH domain containing 1

ENSGALG00000036938 RALYL RALY RNA binding protein like

ENSGALG00000038730 GIGYF2 GRB10 interacting GYF protein 2

Table 5 MeSH enrichment analysis of genes annotated in candidate selection signatures

MeSH term (MeSH ID) Gene count P-value BHa Datasetb

Matrilin Proteins (D064235) 3 0.00008523 0.01605961 a

Muscle, Skeletal (D018482) 9 0.00037904 0.04927546 a

Salmonella Infections, Animal (D012481) 2 0.02170325 0.02893767 b

Adipose Tissue (D000273) 9 0.00246916 0.0157409 c

Cystatins (D015891) 2 0.00018075 0.01590614 d

2 0.00019528 0.02089512 e

Tyrosine (D014443) 3 0.00085140 0.03746136 d

Pregnancy in Diabetics (D011254) 1 0.00703107 0.03515533 d

1 0.00730629 0.03653145 e

Hyperglycemia (D006943) 1 0.01748688 0.04066230 d

1 0.01816762 0.04223941 e
aBenjamini & Hochberg procedure for controlling false discovery rate (FDR) [40]
bAnalysis considering dataset of: (a) 232 genes annotated in cROH of pools shared between at least 12 animals of both generations; (b) 71 genes annotated in
cROH of pools shared exclusively between 7th animals; (c) 1318 genes annotated in cROH of pools shared between at least four 16th animals more than 7th’s; (d)
56 genes annotated in FST windows of SNP data (FST ≥ 0.3); and (e) 60 genes annotated in FST windows of INDEL data (FST ≥ 0.3)
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the immune system of these animals [78, 79]. Stress
challenged animals respond by changing their response
behavior, metabolic rates, and functioning of cardiovas-
cular and immune systems [78]. Thus, a selective pres-
sure over genomic regions controlling responses to
stressor conditions may occur, and the selection signa-
tures identified with the ROH analysis shows a class of

genes involved in these aspects: ACE, BAG1, CACNA1C,
ELP2, HSPA8, MOCOS, MRTO4, MYH9, NSUN2, PAX5,
PQLC2 and TRPM8 [16, 17, 80, 81].

Changes in TT line across the generations
Enrichment analysis using MeSH was performed in
order to provide a better integrated view of the changes

Fig. 7 Manhattan plot of genome wide distribution of FST windows for INDEL dataset. Red line represents threshold of 0.3, windows above this
value were considered candidate selection signatures

Fig. 8 Manhattan plot of genome wide distribution of FST windows for INDEL dataset. Red line represents threshold of 0.3, windows above this
value were considered candidate selection signatures
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that occurred. [82]. Adipose tissue was in overrepresen-
tation among the genes of these regions, what is
expected since selection for growth in broilers, could
lead to elevated fat deposition [83]. In addition, overlaps
of cROH regions with QTL associated with fat depos-
ition in TT Reference population support that regions
affecting these traits were indirectly selected across gen-
erations in TT line. Hyperglycemia was also overrepre-
sented and it is possibly a consequence of fat deposition
in these animals. The excess of adipose tissue in chick-
ens may lead to a condition similar to the early stage of
type 2 diabetes in humans, manifesting hyperglycemia
and exogenous insulin resistance [84, 85]. Another over-
representation was ‘pregnancy in diabetics’, and, as it is
known, pregnancy is not a biological mechanism of
birds. However, Nadaf et al. [83] discuss that some QTL
associated with chicken fatness have genes playing a role
in obesity and diabetes in humans, and since MeSH is a
tool that comprises animals in general, this association
may have be done due to genes with similar functions.
Cystatins was among genes annotated in regions that

underwent allele frequency changes during the 7th and
16th generations. Cystatin is a superfamily of reversible
competitive inhibitors of cysteine proteases such as cal-
pains, cathepsins, and ficins, and the cystatin system

have important roles in protein turnover, antigen presen-
tation and disease immunity [86, 87]. As well, tyrosine
was overrepresented among the genes of FST SNP win-
dows, which is considered a nonessential amino acid in
animals [88].
The ROH analysis also provided information about

regions that may indicate selection in a period that pre-
cedes the studied generations. In these regions there
were overrepresentation of genes involved in skeletal
muscle and the matrilin proteins, both important for the
growth of chickens. Matrilin is a four-member family of
proteins composing extracellular matrix of some tissues
as cartilage, a connective tissue. They bind to collagen-
containing fiber and other matrix constituents and can
form oligomers [89].
Furthermore, the abundant amount of overlaps be-

tween cROH and FST windows and QTL regions associ-
ated with traits of economic interest in broilers, such as
feed conversion, feed intake, growth, and abdominal fat,
enforces the results of candidate selection signatures in-
volved in performance traits. This fact together corrobo-
rates that TT line have been selected for growth and
muscle deposition for a long period with a possible con-
sequence of increased fat deposition, and for some traits
such as proteic turnover and metabolism of tyrosine.

Fig. 9 Manhattan plot of genome wide distribution of FST windows for INDEL dataset. Red line represents threshold of 0.3, windows above this
value were considered candidate selection signature
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Conclusion
Regions under selection pressure in a paternal broiler
line were investigated in this study. Using ROH analysis,
we were able to identify regions that were inherited
backing to common ancestors since the beginning of the
broiler line origin, how these regions were shared
between the animals of both generations, and what has
changed in the genetic make-up of the TT line by selec-
tion between the 7th and 16th generations. FST-based
analysis revealed regions that changed between genera-
tions. Annotation and enrichment analysis revealed the
selection program affected genes and biological pro-
cesses involved in skeletal muscle, cartilage and adipose
tissues development. The investigation of selection
signatures provided valuable insights about genes and
biological processes involved in performance, adaptation
and disease traits.

Additional files

Additional file 1: A text file with information of the 5721 ROH identified
in the analysis with the 28 chickens. Information comprises individual
identification (IID), chromosome (CHR), start (POS1) and end (POS2)

positions, size (KB), number of SNP in each ROH (NSNP), and density of
SNP (DENSITY). (TXT 256 kb)

Additional file 2: A compressed file of images (TIFF format) of genome
wide distribution of runs of homozygosity (ROH) in TT population for
each chromosome. (RAR 144 kb)

Additional file 3: A text file with information about pools of overlapping
ROH among the 28 chickens. Information comprises pool identification
(POOL), family identification (FID), individual identification (IID), chromosome
(CHR), start (BP1) and end (BP2) positions, size (KB), and number of SNP in
each ROH of in the pool. Each pool has n + 2 lines: the n lines are respective
to the n individuals in overlap and the last two represents the union and
consensus regions of the overlap. (TXT 776 kb)

Additional file 4: A text file with information of FST windows using SNP
dataset. Information comprises chromosome (CHR), start (START) and end
(END) positions, number of variants (NVAR), and weighted FST values
(FST) for each window. (XLSX 19935 kb)

Additional file 5: A text file with information of FST windows using
INDEL dataset. Information comprises chromosome (CHR), start (START)
and end (END) positions, number of variants (NVAR), and weighted FST
values (FST) for each window. (TXT 2830 kb)

Additional file 6: List of the 5681 genes annotated in the 1941
consensus regions of runs of homozygosity (cROH). (TXT 2578 kb)

Additional file 7: List of the 56 genes annotated in the 178 FST
windows (≥0.3) using SNP dataset. (XLS 5840 kb)

Additional file 8: List of the 60 genes annotated in the 154 FST
windows (≥0.3) using INDEL dataset. (XLS 79 kb)

Additional file 9: Table S1: Genes annotated commonly between
selection signatures of two or more datasets. The datasets were the 1941

Table 6 QTLs associated with fat traits in TT Reference Population overlapping with consensus runs of homozygosity (cROH)

Trait (QTL ID)a Chr QTL position (start-end)b cROH position (start - end)

ABFW (160520) 5 38,000,437 – 38,996–916 38,015,470 – 38,234,917

38,425,606 – 38,473,340

ABFW (160521) 10 7,000,336 – 7,998,549 6,978,426 – 7,049,244

7,474,909 – 7,543,996

7,931,784 – 7,932,642

ABFW (160522) 13 3,002,617 – 3,998,616 3,572,237 – 3,641,314

ABFP (160525) 5 38,000,437 – 38,996–916 38,015,470 – 38,234,917

38,425,606 – 38,473,340

ABFP (160526) 10 7,000,336 – 7,998,549 6,978,426 – 7,049,244

7,474,909 – 7,543,996

7,931,784 – 7,932,642

ABFP (160527) 13 3,002,617 – 3,998,616 3,572,237 – 3,641,314

SKINW (160529) 15 6,000,311 – 6,999,944 6,175,697 – 6,362,475

6,473,966 – 6,475,580

SKINW (160531) 24 5,000,105 – 5,999,010 4,720,727 – 5,060,139

5,187,457 – 5,646,905

5,899,715 – 5,962,715

SKINP (160534) 9 4,000,836 – 4,999,336 4,664,760 – 4,860,555

SKINP (160530) 15 6,000,311 – 6,999,944 6,175,697 – 6,362,475

6,473,966 – 6,475,580

ABFW abdominal fat weight, ABFP abdominal fat percentage, SKINW skin weight, SKINP skin percentage
aQTLID from QTL chicken database
bPositions in the Gallus_gallus-5.0 version of the chicken genome
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consensus regions of ROH (cROH), the FST SNP windows (> 0.3), and the
FST INDEL windows (> 0.3). (XLS 83 kb)

Additional file 10: Table S2: Genes previously associated with traits of
interest located in candidate selection signatures. Those located in
consensus regions of ROH presents the number of animals sharing the
common region, and those located in FST windows present the
respective weighted FST values. (XLSX 394 kb)

Additional file 11: positional information of overlaps between QTL
from the QTL database with candidate selection signatures of ROH and
FST windows (SNP and INDEL datasets). (DOCX 20 kb)

Additional file 12: positional information of overlaps between cROH of
animals of the 7th and 16th generations with ROH of animals of the TT
Reference Population. (XLSX 1198 kb)
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