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Abstract

Background: Membrane proteins constitute up to 30% of the human proteome. These proteins have special
properties because the transmembrane segments are embedded into lipid bilayer while extramembranous
parts are in different environments. Membrane proteins have several functions and are involved in numerous
diseases. A large number of prediction methods have been introduced to predict protein subcellular
localization as well as the tolerance or pathogenicity of amino acid substitutions.

Results: We tested the performance of 22 tolerance predictors by collecting information on membrane
proteins and variants in them. The analysis indicated that the best tools had similar prediction performance
on transmembrane, inside and outside regions of transmembrane proteins and comparable to overall
prediction performances for all types of proteins. PON-P2 had the highest performance followed by REVEL,
MetaSVM and VEST3. Further, we tested with the high quality dataset also the performance of seven
subcellular localization predictors on membrane proteins. We assessed separately the performance for single
pass and multi pass membrane proteins. Predictions for multi pass proteins were more reliable than those for
single pass proteins.

Conclusions: The predictors for variant effects had better performance than subcellular localization tools. The
best tolerance predictors are highly reliable. As there are large differences in the performances of tools,
end-users have to be cautious in method selection.

Keywords: Membrane protein, Benchmark, Benchmarking, Variation interpretation, Method performance,
Disease-causing variant, Mutation

Background
Cells and compartments within them are surrounded by
membranes composed of lipids having two opposed layers
of amphipathic molecules. The bilayers contain in addition
to lipids many other molecules, among them proteins that
have numerous functions. Membrane proteins (MPs) are
crucial for membrane stability and cellular functions due to
their ability to communicate with the environment outside
and inside of membranes. 25–30% of human proteins have

been estimated to be transmembrane proteins (TMPs) [1].
These proteins are important in many ways, for ex-
ample 60% of current pharmaceutical drug targets are MPs
[2, 3]. Organelles within cells, such as mitochondria, endo-
plasmic reticulum (ER), and Golgi apparatus, are main-
tained by their membranes that carry specific MPs.
MPs can be classified in many ways. Structure based clas-

sification is widely used [4]. It discriminates the MPs de-
pending on how they interact with the lipid membrane.
Type I membrane proteins, also known as single pass
TMPs have extracellular (or luminal) N-terminus and cyto-
plasmic C-terminus, while type II TMPs have the opposite:
extracellular (or luminal) C-terminus and cytoplasmic N-
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terminus. These two types of MPs represent about half of
the human membrane proteome [5]. Multi pass TMPs tres-
pass through the membrane several times. Lipid chain-
anchored membrane proteins are located on the surface of
the cell membrane and are covalently attached to lipids and
can be located on both sides of the membrane. Lipid at-
taches at or near the C-terminus of the protein and plays a
crucial role in the protein function. GPI-anchored MPs are
attached via glycosylphosphatidylinositol (GPI) group. Per-
ipheral membrane proteins are bound to the membrane in-
directly by non-covalent interaction with other membrane
proteins. Therefore they are not considered as proper MPs.
We concentrated on TMPs of types I and II and multi

pass proteins as they are permanently attached to and
span through the membrane.
Besides the topology, MPs can be classified as α-helix

and β-barrel proteins. α-Helical MPs are organized as
anti-parallel bundles, which are typically tilted with re-
spect to the membrane by 25° [6]. We focused on α-
helical MPs, since in human, β-barrel MPs appear only
in the outer membranes of mitochondria.
MPs are involved in numerous functions. Information

has been collected to databases such as Orientations of
Proteins in Membranes (OPM [7]), Topology Database
of Transmembrane Proteins (TOPDB [8]) and Human
Transmembrane Proteome (HTP [1]), in addition to
more general databases including Protein Data Bank
(PDB [9]) and UniProtKB [10].
In an effort to classify human membrane proteome,

6684 non-redundant genes were clustered to 234 protein
families or groups, and four major functional categories
[5]. Receptors mediate cellular response upon binding to
a ligand. The most representative groups are G-protein
coupled receptors, receptor-type kinases, receptors of
immunoglobulin superfamily and scavenger receptors.
Transporters move ions and molecules from the extra-
cellular environment into cells, and vice versa, by utiliz-
ing electrochemical gradients or through chemical reac-
tions. They are grouped as channels, solute carriers and
active transporters. Enzymes catalyze different reactions.
Miscellaneous group contains MPs that have other func-
tions such as ligands, or structural or adhesion proteins.
The Transporter Classification Database (TCDB) is an

International Union of Biochemistry and Molecular Biol-
ogy (IUBMB)-approved classification system groups
membrane transport proteins to seven classes: channels
and pores, electrochemical potential-driven transporters,
primary active transporters, group translocators, trans-
port electron carriers, accessory factors involved in
transport, and incompletely characterized transport sys-
tems [11]. According to the Enzyme Commission num-
ber classification (EC number) there are seven main
classes: oxidoreductases, transferases, hydrolases, lyases,
isomerases, ligases and translocases [12].

We retrieved high-quality datasets of TMPs and used
them to benchmark how good protein localization predic-
tors are since the existing benchmark studies are based on
smaller and less reliable data. We collected also a dataset
of disease-related variants in these TMPs and tested the
performance of protein pathogenicity/tolerance predictors
including the three regions in these proteins: inside and
outside as well as within the membranes. This is to our
knowledge the first study on the membrane protein vari-
ant prediction performance.

Results and discussion
Our aim was to evaluate the performance of variant pre-
dictors on TMPs. For that purpose we collected datasets
of both MPs and variants in them. The datasets were then
used to benchmark predictors on two major characteris-
tics of membrane proteins, namely subcellular localization
and variant tolerance. The exact number of TMPs is not
known, but various estimates have been presented. Ac-
cording to the data in HTP, the human proteome contains
25–30% of MPs. We collected information for both ex-
perimentally defined and predicted MPs.
Human Protein Atlas is a long term project for ana-

lysis of human proteins. Until now, they provide detailed
experimental information for the subcellular localiza-
tions of 12,073 proteins. The data contain reliability
scores. We obtained two datasets from HPA. MP1289
contains 1289 proteins reliability of which were vali-
dated, supported or approved.
The test sets are summarized in Table 1. In order to

calculate performance indices, the negative sets were
normalized to have the same number of proteins as the
positive set.
Additional file 1 Table S1 shows that 42% of the pro-

teins are found in one location (542 out of 1289), the
majority are multi location proteins (MLPs). Out of the
747 MLPs, 83.0% (620) were found in two locations,
16.7% (125) in three locations and 0.3% (2) in four loca-
tions. We retrieved data for 124 validated (9.6%), 439
supported (34.1%) and 726 approved (56.3%) proteins.

Table 1 Numbers of proteins in test sets

MP1289 MP508 mpHTP

Positive Negative Positive Negative Positive Negative

BUSCA 1040 986 393 361 4550 4362

CELLO 1223 1180 474 449 5045 5194

DeepLoc1.0 1285 931 505 337 4669 4629

LocTree3 1286 1270 507 497 5358 5289

MultiLoc2 1106 1193 408 464 4654 4999

SubCons 852 744 309 292 4055 3882

Wolf PSORT 1289 1288 508 507 5414 5362
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For a subset of even more reliable data we excluded
those with annotation approved and obtained 508 pro-
teins called MP508. The percentage of MLPs is smaller
in this set, 50.6% (Additional file 1: Table S1). Out of
257 MLPs, 83.7% (215) were found in two different loca-
tions and 16.3% (42) in three different locations. The
dataset contains 124 validated (24.4%) and 384 sup-
ported (75.6%) plasma membrane and nuclear MPs. The
third dataset, called mpHTP, is the largest one and con-
tains localizations of 5422 human proteins.

Performance of subcellular localization predictors
We searched from literature and internet for protein
subcellular localization predictors and found several
ones. We included to our analysis seven methods that
were available as web service or downloadable standa-
lone version and allowed submission of large number of
sequences. The methods are listed in Table 2. We could
not test some other tools, because they did not support
multiple sequence submission, including MemPype [20],
HSLPred [21] and Iloc-Hum [22], or because problems
with availability of the server, i.e. SherLoc2 [23]. We
compared the predicted localizations to experimentally
verified results and calculated six performance measures.
Proteins used for training the methods were excluded
when these details were available. We were not able to
retrieve the training set of Wolf PSORT. Protein se-
quences were matched based on UniProt ID match and
by similarity obtained with BLASTP [24].
Results in Table 1 indicate the numbers of predicted

proteins for the 7 tested tools. None of the tools was able
to predict all the cases in the three positive and negative
test sets, however, Wolf PSORT comes very close.
Tables 3, 4 and 5 contain performance assessments for

MP1289, MP508 and mpHTP, respectively. The first two
datasets contain plasma membrane and nuclear mem-
brane proteins, whereas the mpHTP contains TMPs
from all sub compartments. DeepLoc1.0 and LocTree3
predict whether a protein is a MP or a cytoplasmic pro-
tein, besides the subcellular localization. Some predictors
return a single result (BUSCA, DeepLoc1.0, LocTree3,

SubCons) with a probability, whereas CELLO, MultiLoc2
and Wolf PSORT return the probability distribution asso-
ciated to each location. In the latter case, we considered
the possibility of having a double localization when there
was not one with a predominant probability (i.e. > 0.50).
The performance of all methods is very low on both

MP1289 and MP508 (Tables 3 and 4). The MCC values
range from 0.11 (MultiLoc2) to 0.35 (SubCons) in the
MP1289 and from 0.20 (MultiLoc2) to 0.47 (SubCons) for
MP508. In addition to having low overall performance,
the tools are very biased, especially sensitivity is very low
while specificity has the highest score among the tested
ones for all the methods and on both the datasets.
All the measures are somewhat better for MP508. The

tools are largely under predicting MPs. When just about
one out of three or four of the real MPs are predicted cor-
rect, the overall performance remains low (Tables 3 and 4)
. Consequently, the number of false negatives is very high.
Specificity is higher, but that is because the number of
false negatives is two times higher than that for the true
positives. It can be concluded that if these tools predict a
protein to be an MP it is highly likely true, the problem is
that they miss 60% or more of the cases.
The performance scores are better for the mpHTP set.

The MCC ranges from 0.85 for DeepLoc1.0 to 0.34 for
MutliLoc2. In this case also the sensitivity is clearly bet-
ter, from 0.60 to 0.93, except for MultiLoc2, which has a
value of 0.24. DeepLoc1.0 has the best and MultiLoc2
the lowest OPM on all the datasets. The performances
are contradictory for the other methods, each of
BUSCA, LocTree, SubCons and Wolf PSORT showing
good performance on some datasets. BUSCA, DeepLoc
and LocTree3 can predict either the subcellular
localization or whether a protein is a MP. On the
mpHTP data, DeepLoc1.0 is clearly the best balanced
method, since values for sensitivity, specificity, PPV and
NPV span from 0.91 to 0.94.
As seen above, the results are very sensitive for the

composition of the dataset. The majority of the proteins
in MP1289 and MP508 are MLPs, 57.7 and 50.6% re-
spectively. When we filtered out all the MLPs from the

Table 2 Subcellular localization predictors

Method Description URL Reference

BUSCA Metapredictor for localization-related protein features http://busca.biocomp.unibo.it/ [13]

CELLO Two-layer SVM http://cello.life.nctu.edu.tw/ [14]

DeepLoc Deep neural network http://www.cbs.dtu.dk/services/DeepLoc/ [15]

LOCTREE3 SVM https://rostlab.org/services/loctree2/ [16]

MultiLoc2 SVM https://github.com/KohlbacherLab/
MultiLoc2/tree/master/MultiLoc2

[17]

SubCons RF http://subcons.bioinfo.se/ [18]

Wolf
PSORT

Converts amino acid sequences into numerical vectors that are grouped with
a weighted k-nearest neighbor classifier

https://wolfpsort.hgc.jp/ [19]
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MP1289 and reassessed the performance, the perfor-
mances increased, but still the best performing tools
(DeepLoc1.0 and Wolf PSORT) had MCC of 0.51 and
OPM of 0.43 and 0.42 (Additional file 1: Table S2).
Next, we evaluated the performance of the predictors

by dividing the mpHTP dataset into two subsets, those
containing one TM region i.e. single pass proteins and
those containing > 1 TM region (multi pass). The results
indicate that all the predictors are performing better for
multi pass proteins (Additional file 1: Table S3). Now, in
addition to BUSCA and DeepLoc1.0, CELLO excels with
second highest MCC of 0.88. One explanation for the
better detection of multi pass proteins may be that since
there are several TM regions the predictors have more
chances in detecting them.

Performance of tolerance predictors on variants in MPs
Tolerance predictors are widely used to investigate out-
comes of identified variants. Tens of such methods have
been developed. Performances of these methods have been
previously tested [25–28], but not specifically for MPs. As
the training datasets of machine learning methods (ML) do

not contain that many MPs, it was of interest to find how
the tools work on membrane proteins. We collected a set
of 2058 variants, 747 of which were disease-related and
1311 which had high (> 1% but < 25%) minor allele fre-
quency in ExAC and which can be considered as benign.
We tested altogether 22 methods, principles of which

are widely different, for a summary see [29]. The methods
were run on default parameters. Variants used to train
PON-P2 (7016 in TMPs, 3990 deleterious and 3026 neu-
tral) were excluded from tests.
The general performances of all the predictors are

summarized in Table 6 and in Fig. 1. Similar to previous
assessments on proteins in general, the performances
vary widely. The MCC values range from 0.13 for fit-
Cons to 0.87 for PON-P2 and the OPM from 0.18 (fit-
Cons) to 0.82 (PON-P2). Altogether, six methods have
the MCC equal or higher than 0.80, namely PON-P2
(0.87), REVEL (0.83), MetaSVM (0.81), MutPred (0.80),
PolyPhen HVAR (0.80) and VEST3 (0.80).
Out of 2058 variants in the dataset, 1934 (94%) were

correctly predicted by the best performing tool (PON-
P2): 338 out of 367 (92.1%) in transmembrane region

Table 3 Performance of subcellular localization predictors on MP1289

BUSCA CELLO DeepLoc 1.0 LocTree3 MultiLoc2 SubCons WolfPSORT

TP 316 348 447 344 108 242 516

FP 112 158 102 75 50 42 218

TN 763 1073 987 1203 1144 1152 1071

FN 724 875 838 942 998 610 773

Sensitivity 0.36 0.28 0.41 0.27 0.09 0.2 0.4

Specificity 0.87 0.87 0.91 0.94 0.96 0.96 0.83

PPV 0.74 0.69 0.81 0.82 0.68 0.85 0.7

NPV 0.51 0.55 0.54 0.56 0.53 0.65 0.58

ACC 0.56 0.58 0.6 0.6 0.54 0.68 0.62

MCC 0.21 0.19 0.3 0.28 0.11 0.35 0.26

OPM 0.23 0.21 0.28 0.26 0.18 0.3 0.25

Table 4 Performance of subcellular localization predictors on MP508

BUSCA CELLO DeepLoc1.0 LocTree3 MultiLoc2 SubCons Wolf PSORT

TP 126 136 218 166 49 110 227

FP 18 28 20 10 9 6 40

TN 282 438 350 493 437 440 468

FN 267 338 287 341 359 199 281

Sensitivity 0.42 0.29 0.59 0.33 0.11 0.25 0.45

Specificity 0.94 0.94 0.95 0.98 0.98 0.99 0.92

PPV 0.88 0.83 0.92 0.94 0.84 0.95 0.85

NPV 0.51 0.56 0.55 0.59 0.55 0.69 0.62

ACC 0.59 0.61 0.65 0.65 0.57 0.73 0.68

MCC 0.32 0.30 0.42 0.41 0.20 0.47 0.42

OPM 0.29 0.27 0.38 0.34 0.22 0.37 0.35
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and 1559 out of 1691 (92.2%) in non-transmembrane re-
gion. Of 747 pathogenic and 1311 neutral variants, 699
(93.6%) and 1235 (94.2%) were correctly predicted,
respectively.
There are no major differences for the three regions in

the TMPs, i.e. transmembrane, the inner region and the
outer region (Table 7), except for Eigen, Eigen-PC, fit-
Cons, and MutationAssessor when looking at accuracy,
MCC and OPM. Twelve of the methods have the best

performance for inner membrane variants, 5 methods for
outer membrane and 5 methods for transmembrane re-
gions, however the differences are typically very small. Of
the 10 best methods, seven perform somewhat better for
outer membrane and 3 for transmembrane variants than
on the other parts in the MPs. The best methods, in par-
ticular PON-P2 and REVEL, are also the most balanced
when all the assessment measures are considered.
Methods with lower performances, such as CADD,

Table 5 Performance of subcellular localization predictors on mpHTP

BUSCA CELLO DeepLoc1.0 LocTree3 MultiLoc2 SubCons Wolf PSORT

TP 3766 3101 4242 3877 1187 2776 4016

FP 206 153 257 179 104 103 280

TN 4156 5041 4372 5110 4895 3779 5082

FN 784 1944 427 1481 3467 1279 1398

Sensitivity 0.86 0.60 0.93 0.73 0.24 0.71 0.75

Specificity 0.95 0.97 0.94 0.97 0.98 0.97 0.95

PPV 0.95 0.95 0.94 0.96 0.92 0.96 0.93

NPV 0.84 0.72 0.91 0.78 0.58 0.75 0.78

ACC 0.89 0.79 0.93 0.84 0.63 0.83 0.84

MCC 0.78 0.63 0.85 0.71 0.34 0.68 0.70

OPM 0.72 0.53 0.80 0.62 0.30 0.60 0.62

Table 6 Overall performance of tolerance predictors on MP variants

TP FP TN FN Sensitivity Specificity PPV NPV ACC MCC OPM

CADD 725 670 641 18 0.98 0.49 0.66 0.95 0.73 0.53 0.44

DANN 737 1006 305 6 0.99 0.23 0.56 0.97 0.61 0.35 0.30

Eigen 582 253 1058 161 0.78 0.81 0.80 0.79 0.80 0.59 0.50

Eigen-PC 580 266 1045 163 0.78 0.80 0.79 0.78 0.79 0.58 0.49

FATHMM 556 230 1053 183 0.75 0.82 0.81 0.77 0.79 0.57 0.49

FATHMM-MKL 705 434 877 38 0.95 0.67 0.74 0.93 0.81 0.64 0.55

FitCons 423 571 740 320 0.57 0.56 0.57 0.57 0.57 0.13 0.18

GenoCanyon 605 313 998 138 0.81 0.76 0.77 0.80 0.79 0.58 0.49

LRT 625 205 904 91 0.87 0.82 0.83 0.87 0.84 0.69 0.60

M-CAP 707 104 152 13 0.98 0.59 0.71 0.97 0.79 0.62 0.53

MetaLR 615 76 1235 128 0.83 0.94 0.93 0.85 0.88 0.77 0.70

MetaSVM 629 59 1252 114 0.85 0.95 0.95 0.86 0.90 0.81 0.74

MutationAssessor 278 36 999 96 0.74 0.97 0.96 0.79 0.85 0.73 0.64

MutationTaster2 694 251 1060 49 0.93 0.81 0.83 0.92 0.87 0.75 0.67

MutPred 624 62 1240 117 0.84 0.95 0.95 0.86 0.90 0.80 0.73

PolyPhen HDIV 668 213 925 37 0.95 0.81 0.84 0.94 0.88 0.77 0.69

PolyPhen HVAR 633 151 1046 53 0.92 0.87 0.88 0.92 0.90 0.80 0.73

PON-P2 699 76 1235 48 0.94 0.94 0.90 0.96 0.94 0.87 0.82

PROVEAN 646 263 1040 92 0.88 0.80 0.71 0.92 0.83 0.65 0.56

REVEL 650 56 1255 93 0.87 0.96 0.95 0.88 0.92 0.83 0.77

SIFT 659 330 979 84 0.89 0.75 0.78 0.87 0.82 0.64 0.55

VEST3 641 79 1232 102 0.86 0.94 0.93 0.87 0.90 0.80 0.73
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DANN and fitCons are the most unbalanced (Fig. 2).
Venn diagram in Fig. 3 shows the numbers of correct pre-
dictions by the five best performing tools. The superior
performance of PON-P2 originates from its capability
alone or together with MetaSVM or MutPred to predict
correct cases beyond what all the methods agree on.
The observed performance scores for the tools are close

to the measures obtained when benchmarking with all
kinds of proteins [25–28, 30]. Although the ratio of mem-
brane protein variants has been small during the training
of many of the predictors, it does not show in the perfor-
mances. This could be because despite MPs are embedded
into lipid bilayers, only the surface of the transmembrane
regions in MPs is in contact with lipids, for the other resi-
dues the environment is similar to internal positions in
proteins or in protein complexes in general.

Estimation of the sensitivity of MPs for variations
Recently we estimated the sensitivity of nine groups of pro-
teins for harmful variants based on PON-P2 predictions
[31]. PON-P2 was found to have the best performance also
for all the three regions in MPs (Table 6). As the results for

all possible variants for this method were not available, we
used a script to submit all 19 variants in every position in
the MPs to the program in batches.
We created all the variants of the entire mpHTP (5422

proteins), a total of 56,686,557 variants in 2,983,503
amino acids. The results are summarized in Table 8. In
addition to overall sensitivity, we investigated whether
the different regions of the TMPs had different sensitiv-
ities for variations. The variants were classified in three
classes: neutral, pathogenic and those of unknown sig-
nificance. 48.0% of the predicted positions in MPs were
outside the membrane, 15.3% transmembrane, and
36.7% inside the membrane.
We obtained results for 5070 proteins (93.5% of mpHTP

entries) with high prediction coverage (95.5%). There are
several reasons for not reaching full coverage. Some pro-
teins are unique for human, thus the required evolution-
ary information is missing and the predictor cannot work.
Some sequences contained special characters, possibly for
residue ambiguity. Those were not included to the ana-
lysis. Variations inside the membranes are predicted with
slightly higher rate than transmembrane or outside the

Fig. 1 Visualisation of six performance measures for tolerance predictors. The methods are organized according to their increasing performance
for each of the measures
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Table 7 Performance of tolerance predictors divided to membrane protein parts

Sensitivity Specificity PPV NPV ACC MCC OPM

TMa Ia Oa TM I O TM I O TM I O TM I O TM I O TM I O

CADD 0.99 0.96 0.98 0.46 0.50 0.49 0.65 0.66 0.66 0.99 0.93 0.96 0.73 0.73 0.73 0.54 0.52 0.54 0.45 0.43 0.45

DANN 1.00 0.99 0.99 0.20 0.24 0.24 0.56 0.57 0.56 1.00 0.97 0.95 0.60 0.62 0.61 0.33 0.35 0.34 0.30 0.31 0.30

Eigen 0.78 0.89 0.70 0.73 0.83 0.82 0.74 0.84 0.79 0.77 0.88 0.73 0.76 0.86 0.76 0.51 0.71 0.52 0.43 0.63 0.44

Eigen-PC 0.78 0.88 0.70 0.74 0.80 0.81 0.75 0.82 0.79 0.77 0.87 0.73 0.76 0.84 0.76 0.52 0.69 0.51 0.44 0.60 0.43

FATHMM 0.63 0.76 0.81 0.86 0.78 0.84 0.82 0.77 0.84 0.70 0.76 0.82 0.75 0.77 0.83 0.51 0.54 0.66 0.43 0.45 0.57

FATHMM-MKL 0.97 0.93 0.96 0.63 0.67 0.68 0.73 0.74 0.75 0.95 0.90 0.94 0.80 0.80 0.82 0.64 0.62 0.66 0.54 0.53 0.57

FitCons 0.44 0.69 0.55 0.72 0.55 0.53 0.61 0.60 0.54 0.56 0.64 0.54 0.58 0.62 0.54 0.17 0.24 0.08 0.20 0.24 0.16

GenoCanyon 0.78 0.84 0.81 0.72 0.77 0.77 0.74 0.78 0.78 0.76 0.83 0.80 0.75 0.81 0.79 0.50 0.61 0.58 0.42 0.52 0.49

LRT 0.94 0.85 0.85 0.75 0.82 0.83 0.79 0.83 0.83 0.93 0.85 0.85 0.85 0.84 0.84 0.70 0.67 0.68 0.62 0.59 0.59

M-CAP 0.99 0.98 0.98 0.55 0.57 0.64 0.69 0.69 0.73 0.98 0.96 0.97 0.77 0.77 0.81 0.60 0.60 0.66 0.50 0.50 0.56

MetaLR 0.81 0.81 0.85 0.92 0.93 0.96 0.91 0.92 0.95 0.83 0.83 0.87 0.86 0.87 0.91 0.73 0.74 0.82 0.65 0.66 0.75

MetaSVM 0.85 0.83 0.86 0.93 0.95 0.97 0.92 0.94 0.97 0.86 0.85 0.87 0.89 0.89 0.91 0.78 0.78 0.83 0.70 0.71 0.77

MutationAssessor 0.89 0.60 0.78 0.92 0.98 0.97 0.91 0.97 0.96 0.89 0.71 0.82 0.90 0.79 0.88 0.80 0.63 0.77 0.73 0.53 0.69

MutationTaster2 0.99 0.92 0.91 0.78 0.81 0.82 0.82 0.83 0.83 0.99 0.91 0.90 0.89 0.87 0.86 0.79 0.74 0.73 0.71 0.65 0.65

MutPred 0.87 0.78 0.88 0.91 0.97 0.95 0.91 0.96 0.95 0.87 0.81 0.89 0.89 0.87 0.92 0.78 0.76 0.83 0.70 0.68 0.77

PolyPhen HDIV 0.96 0.94 0.94 0.70 0.83 0.83 0.76 0.85 0.85 0.95 0.93 0.94 0.83 0.89 0.89 0.69 0.78 0.78 0.59 0.70 0.70

PolyPhen HVAR 0.95 0.90 0.92 0.75 0.90 0.89 0.80 0.90 0.89 0.94 0.90 0.92 0.85 0.90 0.91 0.72 0.80 0.81 0.63 0.73 0.74

PON-P2 0.94 0.93 0.94 0.90 0.94 0.96 0.90 0.88 0.92 0.94 0.96 0.97 0.92 0.93 0.95 0.85 0.85 0.89 0.78 0.80 0.85

PROVEAN 0.91 0.83 0.89 0.70 0.81 0.81 0.75 0.82 0.83 0.89 0.83 0.88 0.81 0.82 0.85 0.63 0.65 0.71 0.54 0.56 0.62

REVEL 0.90 0.85 0.88 0.93 0.96 0.97 0.93 0.95 0.96 0.91 0.86 0.89 0.92 0.90 0.92 0.84 0.81 0.85 0.77 0.74 0.79

SIFT 0.94 0.86 0.88 0.65 0.74 0.78 0.73 0.77 0.80 0.91 0.84 0.87 0.80 0.80 0.83 0.62 0.60 0.67 0.52 0.52 0.58

VEST3 0.95 0.86 0.82 0.90 0.94 0.95 0.90 0.94 0.94 0.95 0.87 0.84 0.92 0.90 0.88 0.85 0.81 0.77 0.79 0.74 0.70
aI, inside the membrane; O, outside the membrane; TM transmembrane

Fig. 2 Visualization of the performance of tolerance predictors for MP variants. The graphs indicate the performance of each measure as well as
how balanced the methods are. Good predictors are balanced and predict both positive and negative cases equally well
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membrane regions. The rate of unknown classifications is
41.66% and it is almost invariant for the three regions.
This category contains many types of variants. The ratio is
similar to many other proteins [31]. This category reflects
also heterogeneity and continuum nature of pathogenicity
[32]. The results are rather even for all the three regions
in MPs. Transmembrane regions contain somewhat more
likely pathogenic variants than the extramembranous re-
gions: the ratio is 0.54 vs 0.41 and 0.48. The share of neu-
tral variants varies between 38.45 to 41.20%. Totally close
to 10 million variations were predicted to be pathogenic.

Conclusion
We tested the performance of two types of predictors
on membrane proteins, their subcellular localization
and variation interpretation in these proteins. We
tested 22 variant tolerance predictors and 7 subcellu-
lar localization tools. The best variation prediction
methods had similar prediction performance on trans-
membrane, inside and outside regions of transmem-
brane proteins and comparable to overall prediction
performances for all types of proteins. The highest
performing method was PON-P2, followed by REVEL,
MetaSVM and VEST3. In the case of subcellular

Fig. 3 Venn diagram for the congruence of the five best performing
tools. The results are shown for 2002 variants that all the tools
predicted. All the five methods predicted correct 1508
(75.3%) variants

Table 8 Statistics for predicted variants in human membrane proteome

Total Outer Transmembrane Inner

Number of proteins 5422 – – –

Number of predicted proteins 5070 – – –

Predicted proteins (%) 93.51 – – –

Number of amino acids 2,983,503 1,458,196 456,186 1,069,121

Number of predicted amino acids 2,850,519 1,367,843 434,745 1,047,931

Predicted amino acids (%) 95.54 93.80 95.30 98.02

Number of possible variants in all proteins/region 56,686,557 27,705,724 8,667,534 20,313,299

Number of possible variants in predicted proteins/region 54,159,861 25,989,017 8,260,155 19,910,689

Number of predicted variants 53,310,412 25,558,804 8,169,606 19,581,983

Predicted variants (% of possible) 98.43 98.34 98.90 98.35

Number of variants predicted as neutral 21,343,305 10,529,555 3,141,354 7,672,377

Neutral variants (%) 40.04 41.20 38.45 39.18

Average number of neutral variants per protein 4197.31 2070.71 617.77 1508.83

Median number of neutral variants per protein 2471 727 234 781

Number of variants predicted as pathogenic 9,760,571 4367,037 1,702,467 3,691,067

Pathogenic variants (%) 18.31 17.09 20.84 18.8

Average number of pathogenic variants per protein 1919.48 858.81 334.80 725.87

Median number of pathogenic variants per protein 173 19 2 20

Number of variants predicted as unknown 22,206,536 10,662,212 3,325,785 8,218,539

Unknown variants (%) 41.66 41.72 40.71 41.97

Average number of unknown variants per protein 4367.07 2096.80 654.04 1616.23

Median number of unknown variants per protein 3013 714 290 616

Ratio of pathogenic and neutral variants 0.46 0.41 0.54 0.48
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localization predictors we assessed separately the per-
formance for single pass and multi pass membrane
proteins. Predictions for multi pass proteins were
more reliable than those for single pass proteins. Fi-
nally, we predicted the effects of all possible 19 substitu-
tions in 5422 membrane proteins, a total of 56,686,557
variants in 2,983,503 residues. Transmembrane regions
seem to be somewhat more vulnerable for variations that
regions inside and outside the membranes.

Methods
Data for transmembrane proteins
TMPs were obtained from two resources - Human Protein
Atlas (HPA) and Human Transmembrane Proteome.
HPA [33–35] is a human proteome database based on

quantitative transcriptomic analyses on tissue and organ
levels. All major tissues and organs (n = 44) were ana-
lyzed by using 20,456 proprietary and 3572 externally
obtained antibodies, totally providing more than 13 mil-
lion immunochemistry images.
HPA database is organized in three main sections to

tissue, cell and pathology atlases. Protein localization in-
formation was retrieved from the Cell Atlas section,
where there are data for the subcellular localization of
12,073 proteins. The proteins are classified into 13 major
organelles: actin filaments, centrosome, microtubules,
intermediate filaments, cytosol, mitochondria, plasma
membrane, vesicles, ER, Golgi apparatus, nuclear mem-
brane, nucleoli, or nucleus. When using data from HPA,
we considered as MPs proteins located to plasma mem-
brane (including cell junctions) or nuclear membrane.
The reliability of data in HPA is indicated with four

labels [34]. Location is validated, when it is according
to one of the validation “pillars” proposed by an inter-
national working group [36]. Location is supported,
when there is an agreement with the external experi-
mental data from UniProtKB database. Location is ap-
proved, when external experimental information about
the protein location is lacking, and location is uncer-
tain, when there is contradictory information, such as
with literature or transcriptomics data. HPA contains
subcellular location data for 12,073 proteins [34].
HTP [1] is a database that combines experimental

topology data together with predictions of the human
transmembrane proteome. HTP is based on UniProt
(UniRef 90) Human Proteome of 19,584 proteins. The
proteins were filtered by using the Constrained Con-
sensus Topology prediction method (CCTOP) [37] by
using a consensus of ten major topology prediction
methods. The current number of experimental and
predicted MPs is 5423 (last updated August 7, 1917).
The database contains topology information for each
of the proteins.

MP datasets
Three datasets of TMPs were built to test predictors.
They are available in VariBench [38] at [39].

MP1289
TMPs were filtered from the HPA location data as fol-
lows: the main location had to be one of the following:
plasma membrane, cell junctions or nuclear membrane;
the annotation for reliability score was validated, sup-
ported or approved; and the immunofluorescence (IF) lo-
cation score of the three selected locations (plasma
membrane, cell junction, nuclear membrane) was vali-
dated, supported or approved. Note that many proteins
are localized to several compartments. The filtering
yielded 1289 MPs. The sequences of these proteins were
retrieved in fasta format from UniProt [10].
A negative set with the same number of proteins was

obtained by picking randomly 1289 non-MP proteins by
filtering out plasma membrane, cell-junction and nuclear
membrane proteins from Cell Atlas. Since many MPs
reside in several cellular organelles, we filtered out also
proteins labelled to mitochondrion, ER, Golgi apparatus
or vesicles. Further, we retrieved the “Subcellular loca-
tion” information from UniProt for the proteins and fil-
tered out proteins with membrane locations such as
“cell membrane”, “single-pass type II membrane protein”
or “multi-pass membrane protein”.

MP508
To obtain even more reliable experimentally validated
dataset we excluded proteins annotated as approved
from the MP1289 dataset and obtained 508 validated or
supported proteins. As for the MP1289, a negative set
was obtained by randomly choosing 508 non-MP pro-
teins from Cell Atlas, excluding organelle proteins.

mpHTP
Since HPA database does not contain protein topology
information, we obtained proteins with these details
from HTP database. It contained topology information,
experimental or predicted by very reliable CCTOP algo-
rithm [37]. The topology is defined as I, M, O, L, S, T
and U labels corresponding to cytoplasmic loops, mem-
brane spanning segments, non-cytoplasmic loops, mem-
brane re-entrant loops, signal peptides, transit peptides,
and unknown regions, respectively [1]. In the entire
mpHTP dataset of 5423 proteins, we found that two en-
tries (HTP_152398 and HTP_010883) referred to the
same protein with UniProt code P0DM63. Thus, the
final number of entries in the mpHTP was 5422. By
comparing the UniProt codes with DS1289 and DS508,
we found that 450 and 205 proteins, respectively, were
annotated in mpHTP.
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We retrieved a negative dataset by downloading non-
TMPs from HTP and randomly selecting the same num-
ber as in the positive set (5422).

Dataset for variants in MPs
We could not find dedicated datasets for variants in
MPs. Data from MutHTP [40] could not be used as
many of the included cases are from cancers and with-
out any evidence for disease. Therefore we collected a
new dataset and mapped the locations of variants within
the proteins. We used several sources. Non-disease re-
lated variants were obtained from Exome Aggregation
Consortium (ExAC) dataset [41] among variants with a
frequency higher than 1% but lower than 25% at least in
one population [28]. Disease related membrane protein
variants used to train PON-P2 [30] were obtained from
VariBench. Additional cases were identified by searching
locus specific variation databases (LSDBs) from LOVD
for MPs identified in the first step. Additional databases
were identified from Mutation Update articles in Human
Mutation.
By combining and pruning the identified variants for

duplicates and e.g. in proteins with unknown reliability
score in HPA, we retrieved totally 2058 variants (MPvar)
. There were 747 disease-related and 1311 benign cases.

Subcellular localization prediction methods
Subcellular localization prediction methods that allowed
submission of large numbers of sequences were identi-
fied with literature and internet searches. The available
and tested methods are described below.

BUSCA
The Bologna Unified Subcellular Component Annotator
(BUSCA) [13] integrates prediction tools developed at
the Bologna Biocomputing Group. It contains two types
of predictors. There are methods for particular subse-
quence regions related to subcellular location, such as
signal and transit peptides, GPI anchors and transmem-
brane domains. These methods include DeepSig [42],
TPred3 [43], PredGPI [44], ENSEMBLE3.0 [45] and
BetAware [46]. The second category includes methods
predicting subcellular localization directly and includes
BaCelLo [47], SChloro [48] and MemLoci [49].
They used two training subsets, Critical Assessment of

Function Annotation 2 (CAFA2) data containing 2512
proteins from animals, 26 from fungi, 105 from plants,
87 from Gram-negative and 2 from Gram-positive bac-
teria; and CAFA3 data for 2559 proteins from animals,
535 from fungi, 489 from plants, 165 from Gram-
negative and 16 from Gram-positive bacteria. The web
server admits a maximum of 500 fasta sequences of up
to 400,000 residues.

Cello
The subCELlular LOcalization (CELLO) predictor [14] is a
multi-class support vector machine (SVM) classifier that
uses a two-level system. In the first layer, the protein se-
quence is decomposed to extract four types of sequence
coding schemes: amino acid composition, di-peptide com-
position, partitioned amino acid composition, and sequence
composition based on the physicochemical properties of
amino acids. Four independent SVM predictors were
trained independently to generate probability distributions
of the subcellular localizations. In the second layer the four
schemes are combined to generate the final probability dis-
tribution of subcellular compartments and the localization
with the highest probability.
For training, two datasets were used: 1444 proteins

from Gram-negative bacteria distributed in five different
subcellular compartments (extracellular, cytoplasmic,
cytoplasmic membrane, periplasmic, outer membrane),
and 7589 eukaryotic proteins distributed in 12 subcellu-
lar localizations (chloroplast, cytoplasmic, cytoskeleton,
ER, extracellular, Golgi apparatus, lysosomal, mitochon-
drial, nuclear, peroxisomal, plasma membrane, vacuolar).
Based on the input sequence and the cell type, CELLO
returns a probability distribution of the subcellular
localization and highlights the most probable one(s).

DeepLoc1.0
DeepLoc1.0 [15] is a deep learning predictor of recurrent
neural networks (RNNs) with long-short-term memory
(LSTM) cells, attention models and convolutional neural
networks (CNNs). The CNNs extract short motifs from
the sequence using 120 filters (20 for each of the sizes 1,
3, 5, 9, 15 and 21 residues). The RNN scans the se-
quence in both directions using 256 LSTM units and
has totally 1,000,512 dimensional output. The attention
decoding layer uses an LSTM with 512 units through 10
decoding steps while the attention mechanism feed-
forward neural network (FFN) has 256 units. The final
fully connected layer has one unit for membrane-bound
and 10 units for other subcellular localizations [15].
DeepLoc training data was from UniProt and con-

tained 13,858 proteins in 10 subcellular localizations
(nucleus, cytoplasm, extracellular, mitochondrion, cell
membrane, ER, plastid, Golgi apparatus, lysosome/vacu-
ole, peroxisome). The web-server allows two types of
predictions: accurate, for maximum of 50 sequences,
and fast, for a maximum of 500 sequences.

LocTree3
LocTree3 [16] is an SVM approach to predict 18
eukaryotic subcellular localizations, 6 for bacteria and in
3 for Archaea. The SVMs are combined with homology-
based inference by transferring localization annotations
by homology through PSI-BLAST [50].
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The training dataset contained three sub-datasets:
1682 eukaryotic proteins with 18 locations, 479 bacterial
proteins with 6 locations, and 53 archaeal proteins with
3 locations. For each training set a different SVM was
trained to build specific predictors. Web server and a
standalone version are both available. We used the web
server as it had no limitations for the number of submit-
ted sequences.

MultiLoc2
MultiLoc2 [17] utilizes SVM predictor MultiLoc (Höglund
et al. 2006), based on overall amino acids and the presence
of known sorting signals, combined with phylogenetic
profiles and Gene Ontology (GO) terms. MultiLoc2 inte-
grates six subclassifiers: SVMTarget predicts localization
categories based on N-terminal targeting sequences;
SVMaac predicts localization based on overall amino acids
composition; SVMSA predicts localization based on the
presence of signal anchors; MotifSearch prediction is
based on particular sequence motifs and structural do-
mains; PhyloLoc utilizes information from homologous
proteins in 78 fully sequenced genomes; and GOLoc takes
benefit of GO annotations.
HighRes mode predicts 11 subcellular localizations

(nuclear, cytoplasmic, mitochondrial, chloroplast, extra-
cellular, plasma membrane, peroxisomal, ER, Golgi ap-
paratus, lysosomal, vacuolar), whereas the LowRes is
specialized for globular proteins and predicts 4 subcellu-
lar localizations (nuclear, cytoplasmic, mitochondrial,
chloroplast). We used the HighRes mode.
MultiLoc2 training set contained 5959 sequences di-

vided into 11 subcellular localizations. As the MultiLoc2
web server allows only 20 sequences per submission, we
used a standalone version.

SubCons
SubCons [18] is based on ensemble approach, which
combines the prediction results of CELLO2.5, LocTree2,
MultiLoc2 and SherLoc2 using a Random Forest (RF)
classifier. It classifies proteins into nine compartments
(nucleus, cytoplasm/cytoskeleton, mitochondria, peroxi-
some, ER, Golgi apparatus, lysosome, plasma membrane,
extracellular/secreted). SubCons returns a single subcel-
lular localization result.
The training set contained 5484 proteins annotated in

at least one experimental study. The SubCons web ser-
ver has no sequence limit, so we used it. There is also a
standalone version available.

Wolf PSORT
Wolf PSORT [19] is an extension of PSORT II [51] and
uses PSORT [52] localization features to predict some
features from iPSORT [53] along with amino acid com-
position. The features are used to convert amino acid

sequences into numerical vectors, which are then classi-
fied with a weighted k-nearest neighbor classifier. Wolf
PSORT classifies proteins into more than 10 localiza-
tions, including dual ones.
The training set was divided into fungi, plant and ani-

mal data containing 2113, 2333 and 12,771 proteins, re-
spectively. The web server has no sequence input limits.
Wolf PSORT returns the most probable localization with
a number that roughly indicates the number of nearest
neighbors to the query which localize to each site ad-
justed to account the possibility of dual localization.

Variant tolerance predictors
Large numbers of tools have been released for the pre-
diction of pathogenicity or tolerance of amino acid sub-
stitutions. We tested the performance of 22 variant
predictors on MP variants.
The methods included Combined Annotation Dependent

Depletion (CADD) [54], Deleterious Annotation of genetic
variants using Neural Networks (DANN) [55], Eigen [56],
Eigen-PC [56], Functional Analysis through Hidden Mar-
kov Models (FATHMM) [57], FATHMM-MKL [58], fit-
Cons [59], GenoCanyon [60], Likelihood Ratio Test (LRT)
[61], Mendelian Clinically Applicable Pathogenicity (M-
CAP) [62], MetaLR [63], MetaSVM [63], MutationAssessor
[64], MutationTaster2 [65], MutPred [66], Polymorphism
Phenotyping v2 (PolyPhen) HDIV [67], PolyPhen HVAR
[67], PON-P2 [30], Protein Variation Effect Analyzer (PRO-
VEAN) [68], Rare Exome Variant Ensemble Learner
(REVEL) [69], Sorting Intolerant From Tolerant (SIFT) [70],
and Variant Effect Scoring Tool (VEST3) [71]. Variant effect
predictions were downloaded from dbNSFP [72] apart for
PON-P2, which were submitted via the program web site.
The tools can be classified based on how they have been

implemented. Sequence information is the only feature in
LRT, PROVEAN, and SIFT. These methods generate scor-
ing data for sequence positions based on multiple se-
quence alignments of related sequences. Machine learning
methods utilize various types of features for conservation,
sequence characteristics, information about protein func-
tions, propensities of the original and variant amino acids
etc. Machine learning methods include CADD, DANN,
Eigen, Eigen-PC, FATHMM, FATHHMM-MKL, Geno-
Canyon, M-CAP, MetaLR, MetaSVM, MutationAssessor,
MutationTaster2, MutPred, PolyPhen both with HDIV
and HVAR data, PON-P2, REVEL, and VEST. The ma-
chine learning-based methods are either unsupervised or
supervised. The supervised methods have been trained on
known disease-causing and benign variants. Algorithms in
these tools include Bayesian, Hidden Markov Model
(HMM), neural network (NN), RF, SVM and other ap-
proaches. fitCons is based on clustering of functional gen-
omic fingerprints and fitness calculations.
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CADD ranks single nucleotide variants (SNVs) and
short insertions and deletions. It assumes two types of
variants: the proxy-neutral variants, fixed by purifying
selection, and proxy-deleterious variants, from de novo
variations free of positive selection. DANN is a deep
neural network approach trained with about 30 millions
of variants. It is very close to CADD.
Eigen is an unsupervised spectral approach. Its main as-

sumption is that the variants can be partioned in two dis-
tinct groups: functional and non-functional. A weighted
linear combination of annotations is constructed, based
on these estimated accuracies. Eigen-PC is conceptually
simpler, based on eigen decomposition of the annotation
covariance matrix. It uses the lead eigenvector to weight
the individual annotations.
FATHMM is species-independent but with optional

species-specific weightings. It creates an Hidden Markov
Model based multiple sequence alignment and protein do-
main analysis. It derives weights from the relative frequen-
cies of disease-associated and functionally neutral amino
acid substitutions mapped onto conserved protein do-
mains. FATHMM-MKL is a SVM tool that in addition to
substitutions predicted effects of insertions and deletions.
fitCons estimates variation fitness consequences ac-

cording to functional genomic fingerprints by integrating
evolutionary and functional data.GenoCanyon is an un-
supervised statistical learning method. It provides a pos-
teriori probabilities for functional genomic positions and
are used as deleteriousness proxies.
LRT is a statistical method based on calculation of likeli-

hood ratio by using a comparative genomic data set for 32
vertebrates. Variants at conserved positions are considered
as likely deleterious. LRT compares the probability of the
data under a conserved model relative to a neutral model.
M-CAP is a pathogenicity likelihood score calculated

with gradient boosting trees based on a number of fea-
tures for sequences and their conservation in 99 primate,
mammalian, and vertebrate genomes.
MetaSVM and MetaLR are metapredictors, i.e. combine

predictions from other tools by using SVM and logistic re-
gression (LR) algorithms, respectively. MutationAssessor
uses evolutionary information coming from clustered
MSAs of homologous sequences in subfamilies to analyze
functional specificity on the background of conservation
of overall function. Entropy function of the residue distri-
bution is used as a measure of conservation and as an esti-
mate for the impact of variants.
MutationTaster analyses evolutionary conservation,

splice-site changes, loss of protein features and changes
that might affect the amount of mRNA. MutPred uti-
lizes SVM and RF methods for calculating the posterior
probability that a residue has a certain structural or
functional property and probability for the loss or gain
of the property.

PolyPhen-2 uses eight sequence-based and three
structure-based predictive features. The difference be-
tween HDIV and HVAR versions is the training sets.
The former has been trained with Mendelian disease-
causing variants annotated in the UniProt and affecting
protein stability or function. HVAR version is trained on
all the human disease-causing variants in UniProt, while
SNVs without annotated involvement in disease are con-
sidered as benign. HDIV version is more suited to evalu-
ate rare alleles at loci in complex phenotypes and HVAR
in Mendelian diseases.
PON-P2 utilizes RF algorithm. Feature selection of 622

characteristics indicated that only 8 are essential for the
predictor. PON-P2 utilizes information about evolution-
ary conservation, physical and biochemical properties of
amino acids and GO annotations. PROVEAN uses an
alignment score (delta score) as stability index. The lar-
ger the introduced difference to the score due to vari-
ation the more damaging is the variant. The tool collects
a set of homologous proteins of the query protein and
compute the delta score for each pairwise alignment.
REVEL is a RF-classifier based meta-predictor that

uses results from MutPred, FATHMM, VEST, PolyPhen,
SIFT, PROVEAN, MutationAssessor, MutationTaster,
LRT, GERP, SiPhy, phyloP, and phastCons. The concept
of SIFT is similar to REVEL. Evolutionary information is
revealed from MSA and used to predict how tolerated
the variant is. VEST is a RF-tool that prioritizes amino
acid substitutions that alter protein activity.

Scoring indices
In order to assess the performance of predictors we cal-
culated six measures according to published guidelines
[73, 74]. These measures are based on confusion/contin-
gency matrix in which the actual conditions are com-
pared with the prediction outcomes and data items are
grouped as true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN). Since the num-
bers of positive and negative cases in the datasets were
not equal, the numbers were normalized to calculate the
following measures.
The sensitivity or true positive rate (TPR) is the rate of

TP over the total of positive conditions

Sensitivity ¼ TP
TP þ FN

:

The specificity or true negative rate (TNR) is the rate
of TP over the total of negative conditions

Specificity ¼ TN
FP þ TN

:

The positive predictive value (PPV) or precision is the
rate of true positive results over the total positive prediction
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PPV ¼ TP
TP þ FP

:

The negative predictive value (NPV) is the rate of true
negative results over the total negative prediction:

NPV ¼ TN
TN þ FN

:

The accuracy (ACC) is the rate of correctly predicted
conditions over the total observations

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

:

The Matthews Correlation Coefficient (MCC) is a ro-
bust measure. It takes into account both over and under
prediction and it returns a value from − 1 to + 1. + 1
identifies a perfect prediction, 0 identifies random pre-
diction, and − 1 means a totally inverse prediction

MCC ¼ TP � TN−FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp :

The Overall Perfomance Measure (OPM) is a perform-
ance index used to visualize all the previous six indices
simultaneously. OPM is represented by normalized vol-
ume of the performance cuboid, which ranges from 0 to
1 [30], where nMCC is calculated by rescaling the MCC
value from 0 to 1:

OPM ¼
PPV þ NPVð Þ Sensitivity þ Specificityð Þ Accuracyþ 1þMCC

2

� �� �
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