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Abstract

Background: With the continuing decrease in cost of whole genome sequencing (WGS), we have already
approached the point of inflection where WGS testing has become economically feasible, facilitating broader access
to the benefits that are helping to define WGS as the new diagnostic standard. WGS provides unique opportunities
for detection of structural variants; however, such analyses, despite being recognized by the research community,
have not previously made their way into routine clinical practice.

Results: We have developed a clinically validated pipeline for highly specific and sensitive detection of structural
variants basing on 30X PCR-free WGS. Using a combination of breakpoint analysis of split and discordant reads, and
read depth analysis, the pipeline identifies structural variants down to single base pair resolution. False positives are
minimized using calculations for loss of heterozygosity and bi-modal heterozygous variant allele frequencies to
enhance heterozygous deletion and duplication detection respectively. Compound and potential compound
combinations of structural variants and small sequence changes are automatically detected. To facilitate clinical
interpretation, identified variants are annotated with phenotype information derived from HGMD Professional and
population allele frequencies derived from public and Variantyx allele frequency databases. Single base pair
resolution enables easy visual inspection of potentially causal variants using the IGV genome browser as well as
easy biochemical validation via PCR. Analytical and clinical sensitivity and specificity of the pipeline has been
validated using analysis of Genome in a Bottle reference genomes and known positive samples confirmed by
orthogonal sequencing technologies.

Conclusion: Consistent read depth of PCR-free WGS enables reliable detection of structural variants of any size.
Annotation both on gene and variant level allows clinicians to match reported patient phenotype with detected
variants and confidently report causative finding in all clinical cases used for validation.

Keywords: Whole genome sequencing, Structural variants, Clinical validation, Pipeline, Diagnostic console, WGS,
CNV, Deletion, Duplication, Break point
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Background
Short read based Whole Genome Sequencing (WGS) is
slowly but surely becoming an integral part of the land-
scape of clinical diagnostic testing for rare genetic disor-
ders. However, in current clinical practice WGS is
mainly still used as ‘enhanced’ Whole Exome (WES). In-
deed, due to its uniformity and lack of pull down or
amplification artifacts, WGS typically provides better
than WES coverage of coding and adjacent regulatory
regions. This approach, however, ignores many of the
advantages of WGS which provides unique opportunities
for detection of structural variants (SVs), pathologic
short tandem repeats and mitochondrial variants, which
otherwise require separate assays. In particular, disease
causing SVs in medical genetics are detected by karyo-
typing [1] and chromosomal microarrays (CMAs) [2].
However, these methods are limited in resolution and
cannot identify all types of SVs.
SVs are a diverse group of variants which consists of

copy number variants (CNVs), namely duplications or
deletions of human genetic sequences resulting in an
abnormal number of alleles; insertions of foreign gen-
etic sequences, such as transposons; balanced translo-
cations and inversions. A typical genome includes
many thousands of such genetic aberrations [3, 4],
and it is challenging not only to identify them but
also to determine which, if any, are causative to the
patient’s phenotype.
While detection of small sequence changes has become

fairly standardized using “gold standard” tools such as
BWA [5] and GATK [6] which are almost universally used
for sequence alignment and variant calling, the situation
for SV detection is quite different. There are multiple tools
and pipelines designed for detection and reporting of SVs
basing on short read WGS data ([7–10] among others),
however there has been no coalescence around a single

consensus calling pipeline, and none of them have been
utilized in clinical diagnostic testing.
Here we report a structural variant component of a

comprehensive WGS-based clinical test for diagnostics
of rare genetic disorders caused by germline genetic var-
iants, developed by Variantyx. The test as a whole, in-
cluding the structural variant part, underwent analytical
and clinical validation, College of American Pathologists
accreditation and proficiency testing, and is certified by
CLIA. The SV component of Variantyx Genomic
Intelligence pipeline uses a combination of breakpoint
analysis (using split and discordant reads) and read
depth analysis to identify structural variants, often down
to single base pair resolution. False positives are mini-
mized using ancillary calculations such as loss of hetero-
zygosity and bi-modal heterozygous variant allele
frequencies. Identified variants are annotated with
phenotype information derived from HGMD Profes-
sional and population allele frequencies derived from
DGV and Variantyx PAF database facilitating clinical in-
terpretation. Single base pair resolution enables easy vis-
ual inspection of potentially causal variants using the
IGV genome browser. U.S. board certified clinical genet-
icists use online Diagnostic Console to reviews results,
select appropriate variants and generate clinical report.

Results and discussion
The SV component of Variantyx Genomic Intelligence
Whole Genome Sequencing analysis workflow is com-
prised of three major parts: variant detection, annotation
and filtering (Fig. 1).

Variant detection
The SV detection pipeline is generally organized as has
been previously published [11, 12]. While some of the
tools are used as published, others are significantly

Fig. 1 SV component of Variantyx Genomic Intelligence WGS analysis pipeline
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redesigned and improved, and still others entirely new.
In addition, the results of the raw variant calls have been
augmented and filtered using in-house developed anno-
tations, techniques, and data sources.
In general, structural variants can be divided into two

categories: those resulting in unbalanced changes in
number of copies of human DNA, and those resulting in
balanced changes so the total number of copies remains
the same. Copy number variants (CNVs), which include
deletions, duplications and unbalanced translocations of
different sizes, can be detected by two approaches:
depth-based analysis and break point analysis [13]. The
first is to identify regions in which read depth is signifi-
cantly different from typical depth in same region in
samples which are known not to have copy number vari-
ation in this region. The other is to look at variant edges
and detect split reads (where two portions of a single
read map to two distinct locations in the reference) and
discordant reads (where paired reads map in positions
or direction inconsistent with expected basing on insert
size used). Only break point analysis can be used to
identify balanced SVs, including inversions, transloca-
tions, as well as insertions of foreign DNA such as trans-
posable elements.
Both read depth and break point signals are utilized by

Variantyx Genomic Intelligence algorithms, while results
on larger break point derived variants must be con-
firmed by depth signal to be considered a true positive.
Structural variants are called with the use of Samblaster
[11] for read extraction, LUMPY [14] for read-based SV
calling and SVtyper [11] for genotyping, using default
parameters. These calls are then combined with Varian-
tyx depth caller CNVs to form a union of calls. The
depth calling algorithm utilizes a proprietary model built
with known true negative WGS samples sequenced and
aligned under the same conditions. The rolling average
read depth-based model rolls up 100 bp segments into
buckets of 10,000 and 2500 bp. We found these sizes op-
timal while 10,000 bp bucket allows to detect uninter-
rupted stretches of read depth deviation in larger CNVs
and 2500 bp bucket allows to detect smaller CNVs and
improve exact position of larger ones. Break point ana-
lysis allows detection of smaller SVs and all types of bal-
anced variants.
The most common SVs, deletions and tandem duplica-

tions, have a single break point which exhibits in the
sample reads the unexpected juxtaposition of two non-
contiguous reference coordinates marking the start and
end of the structural event. These have a readily identi-
fied signature and are easy to classify. Other events such
as insertion of DNA naturally have two break points,
one at the start and the end of the inserted fragment.
However, in such cases, one of the breakpoints may not
be detected, because the number of split or discordant

reads supporting the second breakpoint does not reach
calling threshold, or the second breakpoint is located in
a difficult to map region containing, for example, highly
repeated sequences. This is especially true if the inserted
element is a transposon. Translocation of chromosome
arms also have one break point but are hard to distin-
guish from an insertion with an undetected second
break point. Thus, even an unclassified single breakpoint
could indicate a potentially disruptive SV and such vari-
ants are annotated and subsequently uploaded to the
Diagnostic Console together with the pre-classified SVs.
While exact quantitate benchmarking of the variant

calling results by Variantyx pipeline relative to other SV
calling tools and algorithms has not been performed,
some comparison could be made. Most available tools
use either read-based or depth-based calling, while our
approach is to merge calls from both read-based and
depth-based callers to increase sensitivity. For example,
SOAPsv [15] and LUMPY are breakpoint detection
based. We use machine learning algorithm to detect
CNVs based on large number of human genomes se-
quenced under same standard operating procedures,
resulting in highly repeatable normalized read depth.
This approach provides significantly better results than
CNVnator or Control-FREEC [16] which run only one
sample at a time and have no prior knowledge of ex-
pected coverages.
Raw output of the SV calling pipeline includes signifi-

cant number of false positives that must be removed
prior to introduction to the Diagnostic Console. Many
of these false positive calls can be filtered out based on a
number of criteria specific to variant type. In particular,
all variants called based on break point analysis must be
supported by at least 20 observations (combined split
and discordant reads), out of which 5 must be split
reads. In addition, CNVs over 5000 bp long called using
break point analysis must have at least 30% overlap with
those called using read depth analysis.
For further removal of false positive calls, we examine

the detected Single Nucleotide Variants (SNVs) within
the SV region, and apply the following thresholds for
three types of SVs:

1. Homozygous deletion must overlap no more than 1
SNV per 1000 bp length, with minimum of 5 SNVs
to apply the rule. This rule is based on the fact that
in most regions of the genome (with notable
exceptions such as sex chromosomes) the frequency
of SNVs is higher, and if at least one allele is
present the threshold will be exceeded. Ideally, true
Alternative deletion should have no SNVs called
within its range. Unfortunately, typically it is not
the case (particularly in large deletions) since some
of the reads are still getting aligned within such

Neerman et al. BMC Genomics 2019, 20(Suppl 8):545 Page 3 of 8



deletion, and some SNVs could be called. Thus,
Alternative deletions are not filtered out if they
intersect some SNVs with frequency no exceeding
1/1000 bp.

2. The fraction of heterozygous SNVs overlapping
heterozygous deletion must not exceed 20% of total
SNVs called. When two alleles of DNA are present,
typically number of heterozygous SNVs significantly
exceeds number of alternative SNVs. According to
gnomAD data, globally het/alt SNVs ratio is 1.6.
Thus, this parameter provides very reliable
indication that there is loss of heterozygosity and
the heterozygous deletion is indeed present. In
typical true Heterozygous deletions long enough to
include statistically significant number of SNVs the
observed ratio does not exceed 10%.

3. Balanced heterozygous SNVs overlapping
duplications must represent no more than 20% of
total number of duplications. Balanced
heterozygous SNV is defined as one having fraction
of reads supporting each of the two alleles between
40 and 60% (See Fig. 2). Since natural 50% balance
between alleles is shifted in case of duplication this
parameter represents yet another reliable threshold.

Typically, 6 to 8 thousand SVs are called by Variantyx
pipeline per genome, while approximately 70% of these
SVs pass the default filtration settings. We have analyzed
calling and filtration results using the best available to
date true SV data set based on Genome in a Bottle sam-
ple NA24385 (See Tables 1, 2 and 3). The application of
filtration allows to remove most of false positive calls,
while leads to loss of relatively small number of true
positive variants (removes 38 TP, 297 FP in the analyzed
buckets). The most significant impact is on largest
bucket, removing all 84 false positive and keeping all 5
true positive SVs. We have also analyzed the effect of

individual filters (data not shown). The most impactful
filter was the fraction of heterozygous SNVs overlapping
heterozygous deletion. Its application removed 47 false
positives from the 100,000+ bucket and 40 false positives
from the 10,000–100,000 bucket. This filter also re-
moved 4 true positive variants from the 10,000–100,000
bucket. It is important to note that truth data set has its
limitations and some “true positives” and “true nega-
tives” are not necessarily such.

Annotation
All the SVs are annotated with information on the vari-
ant and gene level. Variant level annotation is comprised
of population frequency and pathogenicity data. PAF
data is derived from DGV [17] and from Variantyx in-
ternal database. HGMD Professional [18] is used for an-
notation with overlapping pathogenic SVs. HGMD
Professional database includes records of over 220,000
pathogenic genetic variants collected by manual curation
of peer-reviewed literature. It is very well known and
represents industry standard in clinical genetics of small
sequence changes, however despite the fact it includes
over 20,000 curated pathogenic SV currently it is not
widely used in SV annotation. The reason for that is lack

Balanced

Not balanced

Fig. 2 Ratio of balanced (between 40 and 60%) out of total overlapping SNVs is shifted in case of heterozygous duplications

Table 1 aVariant calling results: before filtering

bucket TP FP FN sensitivity

100–1000 2233 202 965 0.69825

1000-10,000 613 139 61 0.90950

10,000–100,000 48 97 3 0.94118

100,000+ 5 84 0 1
a The analysis has been performed using Genome in a Bottle truth dataset
NA24385 (http://tinyurl.com/GIABSV06). Since the truth set was built on top of
hg19, we had to lift over results from hg19 to hg38 which dropped some
variants. In addition, in order to not be biased we have only compared SVs
that were liftable from hg38 to hg19 (to make sure we don’t have any false,
false positives). We also removed calls made in non-unique areas and
calls < 100 bp
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of genomic coordinates of the SVs included in HGMD Pro-
fessional, making the data not readily available for annota-
tion. We have revisited all SV records in HGMD
Professional and have supplemented them with genomic
coordinates where possible, which allowed utilization of this
data in annotation. It the process of annotation SVs over-
lapping over 70% of known pathologic SVs are considered
having variant level pathogenicity annotation. Same strategy
is applied for pathogenic SVs reported in ClinVar [19].
It often happens that no SVs similar to one detected

have been previously reported in peer-reviewed litera-
ture, however the SV intersects gene(s) or region with
known pathogenic small sequence changes. Data on
such changes is derived from HGMD Professional and
from ClinVar and complemented with information on
known pathogenic genes from OMIM [20] and Orpha-
net [21]. Annotation with this data is considered gene
level and is noted as such. Gene level annotation play an
important role in SV pathogenicity classification, par-
ticularly in cases of unclassified SVs. Example of patho-
logic SV with variant and gene level annotation as seen
in Variantyx Diagnostic Console is shown in Fig. 3.
Recessive structural variants can be compound to

small sequence changes, and detection of such combin-
atory compound heterozygous pairs is often challenging.
To facilitate this process, we have included information
on existing complementary SV in annotation of small se-
quence variants. Such compound (in case of family ana-
lysis when paternal and maternal alleles are identifiable)
and potential compound (when one of the variants is de
novo or patient is tested as a singleton) pairs are pre-
sented in a dedicated section of Diagnostic Console,
along with compound pairs of small sequence variants.

Filtration
The annotated SVs are uploaded into Diagnostic Con-
sole where they can be filtered by the interpreting

geneticist. Many parameters are available, but the most
important and frequently used for the diagnostic process
are variant and gene level phenotype association, popu-
lation frequency and function location (see Fig. 4). De-
fault parameters are below 2% population frequency
(maximum between DGV and Variantyx internal data-
base) and only include variants with associated pheno-
type on variant level. On second stage variants
intersecting OMIM/Orphanet genes and Overlapping
HGMD/ClinVar SNVs are analyzed. No changes in tech-
nical parameters such as number of split reads or depth
call overlap are recommended as part of Unity test
structural variants Diagnostic Process (Additional file 1:
Method S1).

Validation
Typically, clinical genetic assay validation would include
two phases, analytical and clinical validation. Analytical
validation includes comparison of variants called by the
assay with known true positive set of variants to deter-
mine sensitivity, specificity and positive predicted value.
In NGS based genetic test development the industry
standard is to use Genome in a Bottle samples, such as
GM12878 [22, 23]. Indeed, in case of small sequence
changes available true positive variant sets can be used
for accurate benchmarking. See Additional file 1: Figure
S2 for analytical validation statistics of small sequence
changes component of Variantyx Unity test.
Unfortunately, no true positive variant set of accept-

able quality is available for analytical validation of SVs.
Different sequencing and variant calling methods applied
by different research groups produce sets of “true posi-
tive” variants which vary between each other by nearly
an order of magnitude in terms of quantity and overlap
of detected variants [23, 24]. Close examination of a rep-
resentative group of “true positive” SVs called by differ-
ent approaches revealed large number of false positives
and false negatives, making use of this data unacceptable
in analytical validation of clinical test. Thus, we have de-
cided to directly pursue clinical validation of Unity test.
To perform clinical validation, we have gathered a statis-
tically significant number of true positive (those having
causative pathogenic SV confirmed by orthogonal detec-
tion techniques) and true negative clinical samples
(those of healthy individuals or affected but having
causative genetic variants of different than SV types).
Majority of the true positive samples were obtained from
public collections, while some originated from different
sources [25].
A total of 60 clinical validation cases underwent

complete Unity test cycle, starting from de novo WGS
sequencing all the way to clinical interpretation by board
certified clinical geneticists and generation of patient re-
port. No identifying details were disclosed beside

Table 2 Variant calling results: after default filtering

bucket TP FP FN sensitivity

100–1000 2209 142 989 0.69074

1000-10,000 603 60 71 0.89466

10,000–100,000 45 23 6 0.88235

100,000+ 5 0 0 1

Table 3 Variant calling results: Breakpoint based (LUMPY) only:
after default filtering

bucket TP FP FN sensitivity

100–1000 2209 142 989 0.69074

1000-10,000 570 16 104 0.84570

10,000–100,000 35 5 15 0.7

100,000+ 4 0 1 0.8
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patients’ phenotypes, and for healthy controls realistic
phenotypes and anamneses were added. In addition to
these 60 patient samples, a synthetic sample with a var-
iety of hard to detect pathogenic variants (including two
SVs) has been analyzed. Due to large number of detected
pathologic genetic variants it was impossible to pass the
synthetic sample for real patient data; thus, it is not in-
cluded in total statistics despite the fact that both patho-
logic SVs were successfully identified and reported as
such. Additionally, three trisomy samples were included.
However, since ploidy analysis is performed by Variantyx
Genomic Intelligence pipeline on early stage of data ana-
lysis and data of patients positive for ploidy aberrations
are not uploaded to Diagnostic Console, these samples

are also not included in the total while all three were
successfully identified by our system.
Out of 60 clinical validation patients, 17 were true

positive for pathogenic SV, in some cases with multiple
SVs present, and in others the SV was a compound het-
erozygote with recessive small sequence changes. All but
one SV were successfully identified and reported as such.
The one missed has been identified by the Diagnostic
Console but was not included in the report due to detec-
tion of two known pathogenic SNVs that could explain
patient phenotype without involvement of SV. In gen-
eral, significant number of true positive samples found
in public repositories belong to cases diagnosed nearly
two decades ago by rather narrow, by today’s standards,

Fig. 3 Structural variant annotation on variant and gene level as presented in Diagnostic Console
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techniques and might thus include significant patho-
genic variants overlooked by original submitters.
Between all patient and synthetic samples which

underwent clinical interpretation there were a total of 25
SVs, all of which were detected by Variantyx Genomic
Intelligence platform and 24 were clinically reported,
resulting in 96% clinical sensitivity for detection of
pathogenic SV. It is important to note that true positive
samples that include SVs beyond the scope of Variantyx
Unity test, such as balanced translocations, were not in-
cluded in clinical validation.

Conclusions
The uniformity and consistent read depth of PCR free
WGS allows reliable detection of SVs and clinical
utilization of SV workflow as part of comprehensive
WGS based genetic testing that could be used as the
first line diagnostic test. Unity test developed by Varian-
tyx, CLIA certified and CAP accredited for High Com-
plexity Testing, has been clinically validated to serve as
clinical use medical genetics assay. The test successively
detects SV variants of multiple types, with examples of
reported pathologic variants range from 45 bp deletion
(see Additional file 1: Figure S1) to complex rearrange-
ment involving millions base pairs on three different
chromosomes [26]. While some types of SVs, such as
balanced translocations occurring in non-uniquely map-
pable areas, are still represent a challenge for short read-
based test, better resolution and absence of variant size
limitation, together with declining sequencing costs,
allow WGS based test to be viable alternative to trad-
itional array-based assays.

Methods
Patient blood or saliva is collected using Variantyx
Unity collection kits. DNA is purified and NGS li-
brary is prepared using Illumina PCR-Free Truseq
nano DNA WGS (550 bp insert size protocol) kit ac-
cording to manufacturer’s instructions. Sequencing is
performed using CLIA approved protocols using Illu-
mina HiSeq X and Novaseq Sequencing machines.
FASTQ files are downloaded and processed with Var-
iantyx Genomic Intelligence pipeline. Only tests pass-
ing quality threshold parameters for data integrity,
contamination, mapping quality etc., (see Additional
file 1: Table S2 for complete list of threshold parame-
ters) undergo bioinformatic analysis and clinical inter-
pretation. The interpretation is performed by US
board certified clinical geneticists according to clinical
diagnostics protocol approved by CAP (see Additional
file 1: Method S1 for SV portion of the protocol).
Causative variants fitting reporting criteria are in-
cluded in clinical report, which is submitted to the
ordering clinician. A synthetic DNA sample for Unity
test validation was purchased from SeraCare (Seraseq
Inherited Cancer DNA Mix v1).

Additional files

Additional file 1: Table S1 Samples for clinical validation of Variantyx
Unity test. Table S2 Variantyx Unity test thresholds. Figure S1 Causative
heterozygous deletion of 45 bp detected and reported by Variantyx Unity
test. Figure S2 Analytical validation statistics of small sequence changes
by Variantyx Unity test basing on combination of 3 different Genome in
a Bottle samples. Method S1 Variantyx diagnostic procedure for
reporting pathogenic structural variants. (DOCX 152 kb)

Fig. 4 Structural variant filtration in Diagnostic Console
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