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Abstract

Background: The comparison of expression QTL (eQTL) maps obtained in different tissues is an essential step to
understand how gene expression is genetically regulated in a context-dependent manner. In the current work, we
have compared the transcriptomic and eQTL profiles of two porcine tissues (skeletal muscle and liver) which
typically show highly divergent expression profiles, in 103 Duroc pigs genotyped with the Porcine SNP60 BeadChip
(Illumina) and with available microarray-based measurements of hepatic and muscle mRNA levels. Since structural
variation could have effects on gene expression, we have also investigated the co-localization of cis-eQTLs with
copy number variant regions (CNVR) segregating in this Duroc population.

Results: The analysis of differential expresssion revealed the existence of 1204 and 1490 probes that were
overexpressed and underexpressed in the gluteus medius muscle when compared to liver, respectively (|fold-
change| > 1.5, q-value < 0.05). By performing genome scans in 103 Duroc pigs with available expression and
genotypic data, we identified 76 and 28 genome-wide significant cis-eQTLs regulating gene expression in the
gluteus medius muscle and liver, respectively. Twelve of these cis-eQTLs were shared by both tissues (i.e. 42.8% of
the cis-eQTLs identified in the liver were replicated in the gluteus medius muscle). These results are consistent with
previous studies performed in humans, where 50% of eQTLs were shared across tissues. Moreover, we have
identified 41 CNVRs in a set of 350 pigs from the same Duroc population, which had been genotyped with the
Porcine SNP60 BeadChip by using the PennCNV and GADA softwares, but only a small proportion of these CNVRs
co-localized with the cis-eQTL signals.

Conclusion: Despite the fact that there are considerable differences in the gene expression patterns of the porcine
liver and skeletal muscle, we have identified a substantial proportion of common cis-eQTLs regulating gene
expression in both tissues. Several of these cis-eQTLs influence the mRNA levels of genes with important roles in
meat (CTSF) and carcass quality (TAPT1), lipid metabolism (TMEM97) and obesity (MARC2), thus evidencing the
practical importance of dissecting the genetic mechanisms involved in their expression.
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Background
The performance of GWAS in humans has revealed that
most of the regions that display significant associations
with complex traits are not exonic, meaning that regula-
tory polymorphisms might have important effects on
phenotypic variation [1]. This realization has prompted
the mapping of expression QTL (eQTL), i.e. single nu-
cleotide polymorphisms (SNP), indels or copy number
variants (CNV) that explain part of the variance of gene
expression phenotypes [1]. Such studies have revealed
that the majority of eQTL exert their effects in cis- (i.e.
on neighboring genes) [2]. There are also evidences that
CNV-tagging SNPs are enriched in cis-eQTLs and that
they often modulate multiple expression traits [3]. By
examining the patterns of expression of 22,286 genes in
9 human tissues, the GTEx Consortium has shown that
approximately 50% of eQTL are shared by the nine tis-
sues and that most of them display consistent effects
across tissues [4].
In pigs, hundreds of eQTLs with effects on muscle [5–

9], liver [10, 11] and backfat [12] gene expression have
been mapped. Often, these pig eQTL studies have targeted
subsets of genes either mapping to QTL [12, 13] or dis-
playing significant expression-phenotype correlations [5,
6, 10, 11]. The broad majority of porcine eQTL studies

have targeted single anatomic locations and, in conse-
quence, they do not provide clues about the differential
genetic regulation of distinct tissues and organs. More-
over, these genome scans have explored the association of
gene expression with the allelic variation of SNPs or
microsatellites, neglecting the potential effect of CNVs on
expression phenotypes. The goals of the current work
were to compare the gene expression patterns and cis-
eQTL landscapes of the pig gluteus medius (GM) skeletal
muscle and liver, two tissues with highly differentiated
patterns of expression [13], as well as to investigate the
co-localization of cis-eQTLs and CNVRs.

Results
Differential expression analysis
A total of 1204 probes were found to be overexpressed
in the GM muscle (|FC| > 1.5; q-value < 0.05), whereas
1490 showed overexpression in the liver (Fig. 1 and
Additional file 1). The list of genes showing the highest
levels of differential expression between muscle and
liver, included the bridging integrator 1 (BIN1, log2FC =
5.34, q-value = 2.21E-198), the sorbitol dehydrogenase
(SORD, log2FC = − 5.82, q-value = 3.47E-185), the pro-
tein phosphatase 1 regulatory inhibitor subunit 1A
(PPP1R1A, log2FC = 5.67, q-value = 5.62E-184), the zinc

Fig. 1 Volcano plot depicting porcine genes that are differentially expressed in the porcine gluteus medius muscle and the liver
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finger protein 106 (ZNF106, log2FC = 4.94, q-value =
1.60E-183), the hydroxysteroid 17-beta dehydrogenase
13 (HSD17B13, log2FC = − 5.54, q-value = 3.04E-180)
and apolipoprotein A1 (APOA1, log2FC = − 5.88, q-
value = 1.25E-179). Noteworthy, the log2FC values are
very high and the q-values highly significant, thereby
evidencing that the expression profiles of the porcine
liver and the skeletal muscle are strongly divergent.

Detection of expression QTL in the porcine skeletal
muscle and liver
A total of 76 and 28 genome-wide significant cis-eQTLs
were identified in the GM muscle and liver, respectively
(Tables 1 and 2). Several genes that are cis-regulated in
the muscle participate in lipid or carbohydrate metabol-
ism, e.g. HIV-1 Tat Interactive Protein 2 (HTATIP2)
[14], exocyst complex component 7 (EXOC7) [15] acyl-
CoA dehydrogenase short chain (ACADS) [16], insulin
degrading enzyme (IDE) [17], solute carrier family 38
member 9 (SLC38A9) [18], and family with sequence
similarity 3 member C (FAM3C) [19]. With regard to
the liver, hydroxysteroid dehydrogenase like 2 (HSDL2)
[20] and lipase A (LIPA) [21] genes have also important
roles in lipid metabolism. The level of overlap between
the muscle and the liver cis-eQTL data sets was consid-
erable, with 12 cis-eQTLs shared by both tissues (42.8%
of the cis-eQTLs detected in the liver were also detected
in the GM muscle). Four examples of shared cis-eQTLs
are shown in Fig. 2. There was a strong consistency in
the direction of the effects of the shared cis-eQTLs in
both tissues. For instance, the cis-eQTL regulating
ARL2BP and TMEM97 showed positive allelic effects in
both tissues, whilst consistent negative allelic effects
were estimated for the cis-eQTL modulating the hepatic
and muscular expression of BSDC1, POLR3D and TAP1
(Tables 1 and 2). We also detected a number of cis-
eQTLs that had effects on gene expression either in the
muscle or in the liver (Figs. 3 and 4). RNA-Seq data
from the GM muscle from 52 of the 103 pigs with GM
muscle microarray was also available. Comparison of the
genotypic means obtained with both platforms and
corresponding to genes that are cis-regulated in the GM
muscle provided highly consistent results, i.e. the direc-
tion of the difference between the two homozygous
genotypes was concordant in 82% of the comparisons
and the same ordering of genotypes (from highest to
lowest expression) was obtained in 70% of the compari-
sons (Additional file 2). However, both methods did not
always yield significant results (about 50% of coincidence
with regard to statistical significance). The most
probable reason for this is that the sample size of the
RNA-Seq data set is half the size when compared to the
microarray data set, which leads to larger standard
deviations for the RNA-Seq datasets. This would

consequently reduce the power to detect significant dif-
ferences between the genotypic means.

Co-localization of copy number variants and eQTLs
The analysis of structural variation was performed with
two softwares: PennCNV and GADA. We detected 93
and 103 CNVRs with PennCNV and GADA, respect-
ively, and 44.08% of the CNVRs detected with PennCNV
were also called by GADA. These 41 common CNVRs
were distributed along 13 pig chromosomes (Add-
itional file 3). The proportions of copy gain, loss and
loss/gain CNVRs were ~ 48.78%, ~ 39.02% and ~ 12.19%
respectively. The size of the CNVRs ranged between
31.4 kb and 5.2Mb, with a mean of 457.4 kb. We com-
pared our CNVR dataset with other CNVRs previously
reported in pigs [22–29], and found that 60.97% of our
CNVRs had been previously reported (Additional file 4).
Real time quantitative assays were designed and used to
validate 4 CNVRs (CNVR 9, 15, 32 and 38) in 39 por-
cine samples. According to D’haene [30], estimates of
copy number between 1.414 and 2.449 most likely cor-
respond to a normal copy number of 2, whilst anything
below or above these thresholds might represent a dele-
tion (CN = 1) or a duplication (CN = 3), respectively. Fol-
lowing these criteria, the four regions under analysis
showed evidence of structural variation (Fig. 5). The co-
localization of CNVRs and eQTLs was also analyzed
(Additional file 5). In the GM muscle, 2 CNVRs co-
localized with 3 cis-eQTLs, while 2 CNVRs co-localized
with 2 hepatic cis-eQTLs. This low concordance
between CNVRs and cis-eQTLs was not surprising as
only 10 CNVRs co-localized with the genomic coordi-
nates of the gene data set analyzed in our experiment.

Discussion
The profiles of mRNA expression of the porcine liver and
skeletal muscle are highly divergent
Skeletal muscle and liver have been selected as target
tissues to perform a comparative eQTL analysis because
they have a key role in body energy homeostasis, a par-
ameter that has a strong impact on growth and fat de-
position in pigs. The analysis of differential expression
revealed that the patterns of expression of these two
tissues are highly differentiated in pigs (Fig. 1), probably
as a consequence of their distinct embryonic origins
and physiological functions [13]. Skeletal muscle and
liver also show different patterns of gene expression in
mouse [31] and humans [4]. The strongly up-regulated
genes in muscle included BIN1, which mediates
calcium signaling and excitation–contraction coupling
[32], tropomyosin (TPM2), which is fundamental for
muscle contraction [33], and ZNF106, which is required
for the postnatal maintenance of myofiber innervation
by motor neurons [34]. In the liver, we detected a
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Table 1 List of the genome-wide significant cis-eQTLs detected in the gluteus medius (GM) muscle (those that have been
consistently detected in the liver are shown in bold)1

Muscle cis-eQTL Gene

SSC N SNP Region (Mb) P-value q-value B δ ± SE A1 MAF Acronym Region (Mb)

1 51 ASGA0000817 0.2–9.9 6.69E-08 2.12E-04 1.91E-03 −0.37 ± 0.06 A 0.388 ARID1B 9.7–10.2

1 15 ALGA0002427 32.2–36.6 2.74E-11 5.90E-07 7.80E-07 0.58 ± 0.06 A 0.365 AKAP7 32.2–32.3

1 10 INRA0003613 101.9–108.9 3.29E-12 2.00E-08 9.00E-08 −0.29 ± 0.03 C 0.433 WDR7 106.0–106.4

1 2 MARC0039560 125.9–128.7 5.67E-06 3.24E-02 1.62E-01 −0.16 ± 0.03 G 0.481 HYPK 127.7–127.7

1 5 DIAS0000210 183.3–183.9 5.36E-07 7.63E-03 1.53E-02 0.28 ± 0.05 C 0.466 CNIH1 183.8–183.8

1 9 ASGA0006202 231.0–239.7 3.49E-11 8.10E-07 9.90E-07 0.50 ± 0.07 A 0.115 GRHPR 238.1–238.1

1 18 M1GA0001375 240.2–249.6 1.92E-13 1.00E-08 1.00E-08 0.27 ± 0.03 A 0.399 ALG2 240.9–240.9

1 1 H3GA0004649 260.9–260.9 2.36E-06 3.24E-02 6.73E-02 −0.36 ± 0.07 A 0.17 PSMD5 260.8–260.8

2 1 ALGA0011482 5.8–5.8 1.47E-06 4.20E-02 4.20E-02 0.28 ± 0.06 A 0.144 CTSF 5.8–5.8

2 22 MARC0095742 32.5–39.3 4.52E-10 4.30E-06 1.29E-05 −0.53 ± 0.08 A 0.354 HTATIP2 39.0–39.0

2 24 ALGA0013197 33.0–39.3 1.24E-14 0.00E+ 00 0.00E+ 00 −0.52 ± 0.06 A 0.25 PRMT3 38.8–39.0

2 4 ALGA0115180 115.1–116.1 9.98E-09 2.36E-04 2.84E-04 0.37 ± 0.06 A 0.141 WDR36 115.8–115.9

2 8 DIAS0000550 140.2–145.0 1.54E-06 1.97E-02 4.40E-02 −0.31 ± 0.05 G 0.466 ETF1 140.4–140.5

2 15 H3GA0055810 147.1–148.7 2.30E-08 6.56E-04 6.56E-04 −0.30 ± 0.05 G 0.16 LARS 147.4–147.5

3 1 MARC0045458 3.6–3.6 3.41E-08 9.72E-04 9.72E-04 0.26 ± 0.04 G 0.223 AP5Z1 3.6–3.6

3 2 MARC0020406 4.1–4.2 4.17E-08 7.28E-04 1.19E-03 −0.68 ± 0.12 A 0.121 ZNF12 4.4–4.4

3 14 ALGA0017913 18.6–19.8 1.33E-09 1.78E-05 3.78E-05 0.30 ± 0.05 G 0.125 NSMCE1 19.6–19.6

3 2 DRGA0003838 29.6–29.6 5.05E-07 7.81E-03 1.44E-02 −0.37 ± 0.06 A 0.37 MKL2 28.9–29.2

3 26 MARC0101576 30.0–34.4 5.74E-09 1.64E-04 1.64E-04 −0.22 ± 0.04 G 0.345 RSL1D1 31.2–31.2

3 17 MARC0000159 48.6–54.6 2.77E-06 9.87E-03 7.89E-02 −0.27 ± 0.06 G 0.194 MRPS9 49.6–49.6

3 18 MARC0049447 93.7–97.2 3.90E-07 2.78E-03 1.11E-02 0.29 ± 0.05 A 0.272 THADA 96.8–97.1

3 7 M1GA0026608 126.9–127.8 4.55E-09 6.48E-05 1.30E-04 0.58 ± 0.10 A 0.178 CYS1 126.3–126.4

4 6 ASGA0018519 14.3–15.8 3.76E-06 3.03E-02 1.07E-01 −0.21 ± 0.04 C 0.393 NDUFB9 15.1–15.1

4 2 ASGA0018539 14.6–14.6 9.98E-09 2.84E-04 2.84E-04 0.19 ± 0.03 G 0.322 WASHC5 14.5–14.6

4 6 ALGA0024302 30.2–31.5 2.51E-06 9.62E-03 7.15E-02 −0.40 ± 0.07 G 0.433 OXR1 30.7–31.2

4 11 DIAS0000176 95.2–99.8 2.07E-07 1.97E-03 5.91E-03 0.33 ± 0.06 A 0.252 APH1A 98.8–98.8

4 4 M1GA0006152 95.3–96.1 3.55E-07 1.01E-02 1.01E-02 −0.23 ± 0.04 G 0.341 S100A13 96.0–96.0

5 4 ASGA0104541 20.3–23.5 1.61E-06 1.57E-02 4.59E-02 0.17 ± 0.03 A 0.325 TSPAN31 23.0–23.0

5 12 SIRI0000318 25.6–29.4 2.96E-07 2.11E-03 8.43E-03 −0.53 ± 0.10 A 0.306 TMEM5 28.2–28.2

5 24 MARC0113779 80.3–84.7 2.66E-10 7.10E-07 7.58E-06 −0.39 ± 0.06 A 0.136 C12orf73 80.5–80.5

6 25 ASGA0098408 17.0–21.7 1.11E-08 1.40E-04 3.16E-04 0.49 ± 0.08 G 0.24 ARL2BP 19.2–19.2

6 28 DIAS0004785 45.5–55.4 4.23E-06 1.72E-02 1.21E-01 −0.15 ± 0.03 A 0.471 RABAC1 49.9–49.9

6 13 ASGA0094600 70.1–71.6 8.61E-07 7.64E-03 2.45E-02 −0.33 ± 0.06 G 0.296 LZIC 70.2–70.2

6 17 MARC0031169 70.1–71.6 3.65E-06 1.16E-02 1.04E-01 −0.19 ± 0.03 G 0.279 DFFA 70.7–70.7

6 36 ASGA0028827 81.9–89.9 5.30E-12 1.00E-08 1.50E-07 −0.39 ± 0.05 G 0.238 BSDC1 88.8–88.8

6 52 MARC0015713 90.6–99.9 2.96E-08 4.21E-04 8.43E-04 −0.20 ± 0.03 A 0.379 AFG3L2 97.2–97.2

6 2 ALGA0122704 95.9–99.4 3.18E-06 6.66E-03 9.05E-02 0.37 ± 0.08 A 0.327 RAB12 99.2–99.2

6 6 ALGA0037549 157.5–158.8 2.07E-08 5.89E-04 5.89E-04 0.29 ± 0.05 A 0.262 MRPL37 158.0–158.1

6 1 ASGA0030033 158.6–158.6 5.27E-06 2.15E-02 1.50E-01 −0.22 ± 0.05 G 0.359 YIPF1 158.4–158.4

7 19 ASGA0035147 86.3–89.1 1.55E-12 4.00E-08 4.00E-08 0.41 ± 0.05 A 0.5 MTHFD1 88.4–88.5

7 21 ALGA0043682 92.1–99.8 7.12E-09 2.03E-04 2.03E-04 −0.26 ± 0.04 G 0.333 DCAF5 92.7–92.8

8 11 ALGA0112294 10.6–17.6 1.63E-09 6.63E-06 4.64E-05 −0.25 ± 0.04 C 0.399 TAPT1 11.3–11.4
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strong overexpression of SORD, an enzyme that con-
verts sorbitol into fructose [35], HSD17B13, whose
inactivation leads to chronic liver disease [36], and
APOA1, the major structural component of high-
density lipoproteins [37].

Identification of cis-eQTLs with consistent effects on the
mRNA levels of genes expressed in the liver and skeletal
muscle
In pigs, hundreds of eQTLs with effects on the muscle
transcriptome have been detected, but the majority of

Table 1 List of the genome-wide significant cis-eQTLs detected in the gluteus medius (GM) muscle (those that have been
consistently detected in the liver are shown in bold)1 (Continued)

Muscle cis-eQTL Gene

SSC N SNP Region (Mb) P-value q-value B δ ± SE A1 MAF Acronym Region (Mb)

8 6 ALGA0049334 117.4–118.2 9.95E-09 8.85E-05 2.84E-04 −0.29 ± 0.05 A 0.335 BDH2 117.9–117.9

9 37 ASGA0042057 20.2–24.2 2.61E-10 7.44E-06 7.44E-06 0.56 ± 0.08 G 0.49 CTSC 21.7–21.7

9 9 ASGA0043022 40.3–47.6 8.95E-11 2.55E-06 2.55E-06 −0.28 ± 0.03 A 0.165 ARHGEF12 47.4–47.6

10 4 ASGA0046443 10.0–14.1 1.10E-16 0.00E+ 00 0.00E+ 00 −0.92 ± 0.09 G 0.228 MARC2 10.1–10.1

10 11 ASGA0048312 51.7–58.7 5.83E-08 1.66E-03 1.66E-03 −0.33 ± 0.04 A 0.409 COMMD3 52.5–52.6

10 2 ALGA0059373 54.1–54.4 4.39E-08 6.26E-04 1.25E-03 0.33 ± 0.06 G 0.298 PLXDC2 54.2–54.6

11 3 DIAS0002284 20.7–21.0 3.50E-08 9.98E-04 9.98E-04 −0.21 ± 0.04 A 0.296 ESD 20.6–20.6

12 4 ALGA0115312 4.2–4.8 4.24E-07 1.21E-02 1.21E-02 −0.20 ± 0.04 G 0.296 ST6GALNAC2 4.9–4.9

12 3 DRGA0011563 4.2–4.8 3.95E-06 3.75E-02 1.13E-01 −0.42 ± 0.07 A 0.17 EXOC7 5.3–5.3

12 3 ALGA0064915 10.9–11.6 1.19E-06 1.70E-02 3.39E-02 −0.40 ± 0.08 G 0.291 ABCA5 11.0–11.1

12 16 MARC0016809 20.3–24.8 3.26E-12 9.00E-08 9.00E-08 0.49 ± 0.06 G 0.272 PNPO 24.1–24.2

12 2 DIAS0000973 23.5–23.6 1.52E-06 2.34E-02 4.33E-02 0.24 ± 0.04 C 0.257 MRPL10 24.0–24.0

12 8 DIAS0000242 40.0–48.8 3.14E-06 2.01E-02 8.96E-02 0.25 ± 0.05 G 0.433 TMEM98 42.0–42.1

12 6 ASGA0054801 44.3–46.5 1.28E-06 2.18E-02 3.66E-02 0.20 ± 0.04 G 0.481 TMEM97 44.6–44.6

12 7 ALGA0066917 50.5–59.3 4.57E-11 4.50E-07 1.30E-06 0.37 ± 0.05 G 0.335 RABEP1 51.6–51.8

12 1 ALGA0120796 51.9–51.9 2.27E-07 6.46E-03 6.46E-03 −0.13 ± 0.02 C 0.412 PSMB6 52.0–52.0

12 7 MARC0002558 59.0–59.9 3.63E-10 1.03E-05 1.03E-05 0.41 ± 0.05 A 0.35 ALDH3A2 59.9–59.9

13 2 ALGA0067450 2.5–2.7 7.69E-07 2.19E-02 2.19E-02 0.34 ± 0.06 A 0.306 SH3BP5 2.5–2.5

13 9 ASGA0086643 12.4–14.4 1.64E-12 1.00E-08 5.00E-08 0.52 ± 0.06 A 0.422 NGLY1 12.6–12.6

13 5 ALGA0068741 19.4–23.1 1.67E-06 2.38E-02 4.77E-02 −0.16 ± 0.03 G 0.269 PDCD6IP 19.5–19.6

13 5 MARC0000523 31.1–32.5 3.32E-11 9.50E-07 9.50E-07 −0.35 ± 0.05 A 0.155 MAPKAPK3 33.0–33.1

14 12 H3GA0038597 6.1–7.2 6.65E-13 2.00E-08 2.00E-08 −0.23 ± 0.03 A 0.383 POLR3D 6.5–6.5

14 1 SIRI0001291 22.7–22.7 4.88E-08 1.39E-03 1.39E-03 −0.20 ± 0.03 G 0.291 PGAM5 22.7–22.7

14 8 MARC0094155 40.6–43.2 4.74E-10 5.71E-06 1.35E-05 −0.44 ± 0.06 G 0.212 ACADS 40.6–40.6

14 5 ASGA0065742 102.7–106.9 3.84E-08 5.48E-04 1.10E-03 −0.34 ± 0.06 A 0.147 IDE 103.9–104.1

14 4 MARC0043866 110.5–111.0 2.01E-06 2.86E-02 5.72E-02 0.30 ± 0.05 A 0.49 COX15 110.8–110.8

14 11 ALGA0081813 124.1–125.1 1.19E-08 1.70E-04 3.39E-04 0.44 ± 0.07 G 0.277 CASP7 124.0–124.0

15 11 ASGA0069526 42.2–49.0 7.12E-13 0.00E+ 00 2.00E-08 1.33 ± 0.16 G 0.067 SORBS2 46.5–46.9

15 54 ALGA0085678 54.5–69.7 4.49E-08 1.28E-03 1.28E-03 −0.36 ± 0.06 G 0.112 UGGT1 59.1–59.2

15 9 ASGA0070490 116.4–118.5 1.07E-10 3.05E-06 3.05E-06 0.35 ± 0.05 A 0.471 XRCC5 118.3–118.4

16 1 ALGA0090252 34.2–34.2 1.21E-06 3.45E-02 3.45E-02 −0.24 ± 0.04 C 0.485 SLC38A9 34.7–34.8

16 6 MARC0049616 72.0–73.1 7.13E-08 1.46E-03 2.03E-03 −0.32 ± 0.05 A 0.288 CCT5 72.2–72.2

17 2 ALGA0096195 57.0–57.1 9.93E-08 1.42E-03 2.83E-03 −0.36 ± 0.05 A 0.223 FAM210B 56.9–56.9

18 5 ALGA0097540 24.4–25.8 1.38E-07 3.94E-03 3.94E-03 0.44 ± 0.08 A 0.142 FAM3C 25.5–25.6
1SSC: porcine chromosome, N: Number of SNPs significantly associated with the trait under study, SNP: SNP displaying the most significant association with the
trait under study, Region (Mb): region containing SNPs significantly associated with the trait under study, P-value: nominal P-value, q-value: q-value calculated with
a false discovery rate approach, B: Bonferroni corrected P-values, δ: allelic effect and its standard error (SE), A1: minority allele, MAF: frequency of the
minority allele
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these studies focused on target subsets of genes either
mapping to QTLs [12] or displaying significant
expression-phenotype correlations [5, 6, 10, 11]. Here-
with, we have detected 76 muscle cis-eQTLs and 28 liver
cis-eQTLs which attained genome-wide significance.
These numbers are consistent with previous reports.
Liaubet et al. [38] made a genome scan based on micro-
array measurements of longissimus lumborum gene
expression in 57 pigs and identified 335 eQTLs. Of
these, only 18 had cis-regulatory effects. Similarly, Cáno-
vas et al. [8] identified 478 skeletal muscle genome-wide
significant eQTLs but only 13% acted in cis-. Although
modest sample size (N = 103) limits our ability to

identify eQTLs, this sample size ought to allow detecting
eQTLs with moderate to large effects on gene expres-
sion. As a valid reference, the Genotype-Tissue Expres-
sion project detected thousands of eQTLs in 44 tissues
characterized by RNA-Seq, and 18 of these tissues were
represented by sample sizes equal or below the one used
in the current experiment [2]. However, it is also true
that sample size largely affects the statistical power of
eQTL mapping [4] and thus, the analysis of a larger
number of pigs would most likely uncover additional
eQTLs that remained undetected in our study.
Our results indicate that almost 42.8% of the cis-

eQTLs regulating gene expression in the liver also

Table 2 List of the genome-wide significant cis-eQTLs detected in the liver tissue (those that have been consistently detected in the
muscle are shown in bold)1

liver cis-eQTL Gene

SSC N SNP Region (Mb) P-value q-value B δ ± SE A1 MAF Acronym Region (Mb)

1 15 H3GA0004318 251.1–254.7 8.56E-10 2.43E-05 2.43E-05 0.49 ± 0.07 A 0.281 HSDL2 253.1–253.1

1 1 ASGA0006805 253.4–253.4 9.61E-07 2.73E-02 2.73E-02 0.22 ± 0.04 C 0.411 CDC26 253.8–253.9

2 7 MARC0045154 4.6–8.8 2.63E-06 3.22E-02 7.47E-02 0.27 ± 0.06 A 0.146 CTSF 5.8–5.8

2 17 DIAS0003663 82.9–89.7 8.30E-09 1.18E-04 2.36E-04 0.30 ± 0.05 A 0.411 SERINC5 88.8–88.9

4 8 DIAS0000176 96.7–99.8 2.13E-07 2.27E-03 6.04E-03 0.30 ± 0.05 A 0.255 APH1A 98.8–98.8

5 1 H3GA0016032 19.8–19.8 8.25E-07 1.17E-02 2.35E-02 −0.38 ± 0.07 G 0.24 PPP1R1A 19.7–19.7

6 23 ALGA0116876 17.0–21.7 9.05E-16 0.00E+ 00 0.00E+ 00 0.86 ± 0.08 A 0.255 ARL2BP 19.2–19.2

6 13 MARC0031169 70.1–71.6 9.29E-07 3.30E-03 2.64E-02 −0.34 ± 0.04 G 0.276 LZIC 70.2–70.2

6 1 ASGA0104284 80.6–80.6 1.70E-06 4.82E-02 4.82E-02 −0.20 ± 0.04 C 0.141 ZNF436 81.2–81.2

6 14 ALGA0114962 82.1–89.0 6.79E-06 1.76E-02 1.93E-01 −0.32 ± 0.06 A 0.24 BSDC1 88.8–88.8

6 2 ASGA0030033 158.1–158.6 9.06E-07 2.57E-02 2.57E-02 −0.24 ± 0.04 G 0.328 YIPF1 158.4–158.4

7 2 DRGA0007123 9.9–10.4 5.49E-10 1.56E-05 1.56E-05 −0.40 ± 0.05 G 0.24 NOL7 9.9–9.9

8 13 ALGA0112294 10.6–11.3 3.37E-08 1.37E-04 9.58E-04 −0.36 ± 0.06 C 0.406 TAPT1 11.3–11.4

9 2 ASGA0094801 46.6–46.7 3.33E-06 4.73E-02 9.46E-02 −0.54 ± 0.10 G 0.266 THY1 46.6–46.6

10 1 ASGA0046443 10.2–10.2 4.07E-06 1.27E-02 1.16E-01 −0.25 ± 0.05 G 0.229 MARC2 10.1–10.1

10 10 ALGA0106385 48.1–54.6 1.22E-07 2.04E-03 3.46E-03 0.24 ± 0.04 G 0.396 KIAA1217 50.7–51.2

12 2 MARC0042683 24.1–24.7 5.74E-07 1.63E-02 1.63E-02 −0.30 ± 0.06 G 0.297 PNPO 24.1–24.2

12 3 M1GA0016795 42.8–43.1 1.61E-06 2.29E-02 4.58E-02 −0.32 ± 0.06 A 0.464 CRLF3 42.9–42.9

12 9 ALGA0066653 44.0–46.4 6.21E-12 9.00E-08 1.80E-07 0.31 ± 0.04 G 0.5 TMEM97 44.6–44.6

12 3 ALGA0066917 51.0–59.3 3.85E-06 3.65E-02 1.09E-01 0.19 ± 0.04 G 0.333 RABEP1 51.6–51.8

13 1 ALGA0070572 61.1–61.1 1.97E-06 2.80E-02 5.60E-02 −0.40 ± 0.07 A 0.474 ITPR1 61.0–61.3

13 6 ALGA0103755 141.3–148.9 1.73E-07 1.52E-03 4.92E-03 0.44 ± 0.06 A 0.286 GTPBP8 146.9–146.9

14 11 H3GA0038597 6.5–7.2 1.86E-09 4.94E-05 5.28E-05 −0.39 ± 0.06 A 0.401 POLR3D 6.5–6.5

14 22 H3GA0039048 10.1–14.0 8.60E-11 4.10E-07 2.44E-06 0.35 ± 0.05 G 0.469 HMBOX1 12.6–12.8

14 2 DRGA0013801 42.7–43.4 2.70E-07 7.66E-03 7.66E-03 −0.33 ± 0.06 A 0.406 GRK3 43.3–43.4

14 2 ASGA0065623 100.9–100.9 1.21E-06 1.24E-02 3.43E-02 0.37 ± 0.07 A 0.234 LIPA 101.1–101.2

16 5 ALGA0088786 5.7–5.8 1.04E-07 9.88E-04 2.96E-03 0.61 ± 0.10 G 0.406 RETREG1 5.7–5.8

18 8 ASGA0100292 0.2–2.3 4.33E-06 3.08E-02 1.23E-01 −0.15 ± 0.03 A 0.234 ESYT2 0.5–0.6
1SSC: porcine chromosome, N: Number of SNPs significantly associated with the trait under study, SNP: SNP displaying the most significant association with the
trait under study, Region (Mb): region containing SNPs significantly associated with the trait under study, P-value: nominal P-value, q-value: q-value calculated with
a false discovery rate approach, B: Bonferroni corrected P-values, δ: allelic effect and its standard error (SE), A1: minority allele, MAF: frequency of the
minority allele
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display significant associations with the muscle mRNA
levels of the very same genes (Tables 1 and 2, Fig. 2).
The liver and muscle common cis-eQTLs encompass
genes previously related to the function of these two or-
gans, such as the cathepsin F (CTSF) gene, that harbors
a polymorphism that has been associated with longissi-
mus dorsi tenderness, ham weight and fatness in Italian
crossbred pigs [39], the transmembrane anterior poster-
ior transformation 1 (TAPT1) gene, which was linked to
carcass and eviscerated weight in a GWAS in chicken
[40], the mitochondrial amidoxime reducing component
2 (MARC2) gene, that appears to be involved in porcine
fatness [41], and the transmembrane protein 97
(TMEM97) gene, which contributes to the regulation of
cholesterol levels [42].
There is also a relevant fraction of porcine cis-eQTLs

that display significant effects only in one of the two tis-
sues (Figs. 3 and 4). In the Genotype-Tissue Expression
(GTEx) pilot experiment [4], approximately 50% of
eQTLs were shared by the nine human tissues under
analysis. Moreover, two main types of eQTLs were espe-
cially prevalent, i.e. those that regulate gene expression
in a single tissue and those that are ubiquitously de-
tected in all tissues. Interestingly, the GTEx pilot ana-
lysis also showed that eQTLs affecting gene expression
in the skeletal muscle show a limited replicability in
other tissues [4]. In other studies, also performed in
humans, the eQTL tissue-specificity ranged between
50% [43] and 60–80% [44], which implies that the effects
of many regulatory mutations are modulated by tissue-
associated factors.
Several of the cis-eQTLs detected in our experiment

affected the expression of genes involved in lipid or
carbohydrate metabolism. For instance, the down-
regulation of HTATIP2 leads to elevated fatty acid syn-
thesis and enhanced levels of lipogenic enzymes [14].
The EXOC7 gene regulates the uptake of fatty acids by
adipocytes and ACADS is involved in the ß-oxidation of
fatty acids [16], while FAM3C can suppress hepatic glu-
coneogenesis [45]. It would be interesting to investigate
whether polymorphisms associated with the expression
of lipid genes also display associations with fatness traits.
Two of the muscle cis-eQTLs detected in our study have
been previously reported by other authors. An eQTL for
the BSDC1 gene was detected by Ponsuksili et al. [46]
and the expression of this gene was also correlated with
the percentage of weight loss of the longissimus dorsi
muscle. Moreover, a local eQTL that regulates the ex-
pression of PNPO and which co-localizes with several

meat quality retail traits (such as the percentage of fat
and moisture in meat) was described by Steibel et al. [7].
A remarkable level of heterogeneity has been observed
in the genetic determinism of production traits in differ-
ent porcine breeds [47]. In consequence, we anticipated
a limited positional concordance amongst eQTLs de-
tected in different breeds. Indeed, a joint analysis of
eQTLs across five human populations revealed that
varying linkage disequilibrium patterns across popula-
tions results in the detection of large numbers of eQTLs
with heterogeneous effects [48].

Limited positional concordance between cis-eQTLs and
copy number variation regions
Another goal of our study was to investigate the co-
localization of cis-eQTLs and CNVRs in order to make
an initial assessment of the potential impact of structural
variation on gene expression in pigs. With PennCNV
and GADA, we consistently detected 41 CNVRs with a
mean size of 457.4 kb. When we compared our CNVR
dataset with CNVRs previously reported in pigs [22–29],
we found that 60.97% of the CNVRs detected by us had
been previously reported in the literature (Add-
itional file 4). A moderate agreement of CNVR locations
amongst studies and populations has been evidenced in
several reports [27, 49–52]. Discrepancies could be due
to differences in the genetic background of the popula-
tions under analysis, filtering criteria (correction factors,
criteria to define CNV and CNVRs, etc.), genotyping
methods, CNV calling algorithms and the use of family
information [27, 53]. In the GM muscle, 2 CNVRs (14
and 38) co-localized with 2 cis-eQTLs (SSC2, 32.6–39.4
Mb and SSC14, 102.7–106.9 Mb), whilst the co-
localizations between CNVRs and cis-eQTLs in the liver
tissue were somewhat similar, i.e. 2 cis-eQTLs (SSC2,
5.83–5.90Mb and SSC13, 148.90–149.17Mb) co-
localized with CNVR 11 and 36. This limited positional
concordance is probably due to the fact that only 10
CNVRs co-localized with the set of probes analyzed in
the current experiment. The low positional concordance
between CNVRs and eQTLs could be also due to tech-
nical reasons related to the difficulties of detecting CNVs
with SNP arrays and the limited sensitivity and poor an-
notation of porcine microarrays. Besides, the search of
CNVs was performed in a population of 350 individuals,
while only 103 pigs had available gene-expression
data. On the other hand, variations in copy number
do not necessarily involve changes in gene expres-
sion, e.g. in heterozygous individuals, the loss of one

(See figure on previous page.)
Fig. 2 Examples of genes that are regulated by the same cis-eQTL in the gluteus medius muscle (a) and liver (b). In the Manhattan plots, the
horizontal line indicates the threshold of significance after correction for multiple testing, whilst the vertical line depicts the genomic location of
the four genes (ARL2BP, TAPT1, POLR3D and PNPO) under consideration
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allele can be compensated by an increase in the ex-
pression of the other allele, and duplication can gen-
erate additional copies which expression is silenced
[53]. A future objective would be to investigate the
association between the number of copies of genes
and their expression levels, but a high throughput
method allowing the accurate determination of CNV
genotypes will be needed to achieve this goal (geno-
type determination based on 60 K SNP array data is
too imprecise to carry out such analyses).

Conclusions
Despite the fact that there are considerable differences
in the gene expression patterns of the porcine liver and
skeletal muscle, we have identified a substantial propor-
tion of common cis-eQTLs regulating gene expression in
both tissues.

Materials and methods
Phenotyping and genotyping of a commercial Duroc
population
We have used a commercial Duroc line of 350 Duroc
barrows that were slaughtered at the age of ~ 190 days,
with an approximate live weight of 122 kg. This popula-
tion was generated by crossing 5 boars with ~ 400 sows
and selecting one offspring/sow (50 piglets did not
complete their productive cycle so we ended up with
350 barrows with valid records). The 350 barrows were
bred in the experimental farm of the Pig Control Center
of the Institut de Recerca i Tecnologia Agroalimentàries

(IRTA). The specific conditions of management and
feeding have been previously reported [54, 55]. Pigs were
slaughtered in a commercial abattoir following the
guidelines of the Spanish Royal Decree 54/1995 (January
20, 1995) to preserve animal welfare. In this way, swine
were stunned with carbon dioxide (70% or higher) until
they lost consciousness and they were subsequently bled
by making an incision in, at least, one carotid artery. At
slaughter, GM muscle and liver biopsies were obtained
for 103 pigs. Total RNA purification procedures have
been previously reported [8, 56]. All experimental proce-
dures were approved by the Ethical Committee of IRTA.
Genomic DNA was extracted from blood samples by

following a standard phenol-chloroform protocol. Each
pig was genotyped for 62,163 SNPs with the Porcine
SNP60 BeadChip (Illumina, SanDiego, CA). The quality
of the genotyping results was evaluated with the Geno-
meStudio software (Illumina). The PLINK software [57]
was used to filter out the SNP markers with minor allele
frequency below 5%, missing genotype rate above 10%,
and displaying significant departures (P-value < 0.001)
from the Hardy-Weinberg equilibrium. Markers which
could not be mapped to the Sscrofa11.1 assembly or that
mapped to either the X or Y chromosomes were also
eliminated from the data set. Markers in complete link-
age disequilibrium (r2 > 0.98) were also purged. The final
data set used for performing eQTL analyses contained
28,493 SNPs. The filtering criteria used for the CNV
analysis was different and only SNPs that did not map to
the Sscrofa11.1 assembly or that were located in sex

(See figure on previous page.)
Fig. 3 Examples of cis-eQTLs that are found in the muscle but not in the liver (a) and vice versa (b). In the Manhattan plots, the horizontal line
indicates the threshold of significance after correction for multiple testing, whilst the vertical line depicts the genomic location of the CTSC,
ACADS, HSDL2 and HMBOX1 genes

Fig. 4 Genomic position of cis-regulated probes vs genomic positions of SNPs significantly associated with the expression of such probes in the
muscle (a) and in the liver (b). Diagonal dots represents cis-eQTLs (dots from different chromosomes have different colors)
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chromosomes were removed, leading to a final number
of 46,537 used SNPs.

Differential expression analysis between muscle and liver
tissue
Gluteus medius muscle and liver samples were collected
from 103 Duroc pigs (Lipgen population) after slaughter-
ing, and immediately frozen in liquid nitrogen. These
103 pigs were selected on the basis of a principal com-
ponent analysis focused on 13 lipid and growth related
traits [58]. We chose individuals representing two differ-
ent metabolic types, i.e. (i) fat pigs with high intramus-
cular fat (high saturated and monounsaturated fatty acid
content) and also high serum lipid levels, and (ii) pigs
that were lean and displayed a low level of intramuscular
fat (high polyunsaturated fatty acid content) and circu-
lating lipids [58]. Total RNA was extracted from both
GM and liver samples, and mRNA expression profiles
were characterized by hybridization to the GeneChip
Porcine arrays (Affymetrix Inc., Santa Clara, CA), as pre-
viously reported by Cánovas et al. [58]. Hepatic and
muscular microarray expression data were deposited in
the Gene Expression Omnibus (GEO) public repository,
and are accessible through GEO Series accession num-
ber GSE115484. The Robust Multi-array Average (RMA)
algorithm [59] was employed for carrying out data pre-
processing, background correction, normalization and

log-transformation of expression values. Gene Intensity
level of significance for detecting expressed probes was
calculated with the MAS 5.0 algorithm [60]. Control
probes and those probes that did not show expression
levels above the detection threshold in all samples were
filtered out. Differential expression analysis between the
GM muscle and liver followed the guidelines of the
limma-trend pipeline [61, 62]. The limma’s empirical
Bayes method incorporated a mean-variance trend, thus
making possible to adequately model the relationship
between variance and gene signal intensity. In our study,
fold-change (FC) values reflect the mean expression
levels in the GM muscle vs liver. The correspondence
between differentially expressed probes (|FC| > 1.5; q-
value < 0.05) and genes was based on the Affymetrix
porcine annotation data assembled database [63] and the
Biomart database (https://www.ensembl.org/biomart/
martview).

Genome scan for expression QTLs
The genome scan for eQTLs targeted a total of 3326
probes that are simultaneously expressed in both tissues.
These genes were selected using the following criteria:
The MAS 5.0 [60] algorithm was used to detect the
probes with expression levels above the Gene Intensity
level of significance. Probes were retained when expressed
in all the samples analyzed in both tissues. Expressed

Fig. 5 Relative expression values of four copy number variation regions validated by quantitative real-time PCR analysis. Each analysed individual
is represented in the x-axis, while the y-axis shows the corresponding relative quantification (RQ) value. We have assigned a value of 2 to the
arithmetic mean of the samples used as calibrators
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probes where then annotated according to Biomart data-
base available at Ensembl repositories (https://www.
ensembl.org/biomart/martview) and those with no gene
correspondence were removed from further analyses. We
used the GEMMA software [64] and followed the
methods described by González-Prendes et al. [56] to
carry out the association analyses. The fixed effects and
parameters assumed in the statistical model were:

y ¼ Wαþ xβþ uþ ε

where y is the vector that defines the expression of each
gene in the GM muscle and liver of the ith individual; W
is the matrix with a column of 1 s and the fixed effects,
i.e.“batch of fattening” (with 4 categories) and “labora-
tory” (microarray data were generated in two different
laboratories); α is a c-vector of the corresponding coeffi-
cients including the intercept; x is an n-vector of marker
genotypes; β is the SNP allelic effect estimated as a
regression coefficient on the corresponding x genotype
(values − 1, 0, 1); u is a n-vector of random effects with
a n-dimensional multivariate normal distribution MVNn

(0, λ τ − 1 K) where τ− 1 is the variance of the residual
errors; λ is the ratio between the two variance compo-
nents; K is a known relatedness matrix derived from
SNPs and ε is the vector of errors with an MVNn (0, τ −

1 I n) being In the identity matrix. The false discovery
rate approach reported by Benjamini and Hochberg [65]
was used to correct for multiple testing at the genome-
wide level. In this study, cis-eQTLs were defined as these
genomic regions with SNPs significantly associated with
a probe located at a maximum distance of ±1Mb of the
associated SNPs. Co-localization was defined as an over-
lap of at least 1 base pair between the genomic locations
of two eQTLs. The GM muscle cis-eQTLs detected with
microarrays were validated by considering an RNA-seq
data set corresponding to the same tissue and compris-
ing 52 Duroc pigs [66]. These 52 pigs were a subset of
the 103 pigs investigated in the current work and the
methods to generate GM muscle RNA-seq data are fully
described in [66].

Detection of copy number variation
The PennCNV software [67] was employed to detect
copy number variants (CNVs) on the basis of the infor-
mation provided by 46,537 autosomal SNPs. The
PennCNV software implements a hidden Markov model
(HMM) to infer CNV calls for each genotyped sample
using as input the intensity signal Log R Ratio (LRR)
and the B Allele Frequency (BAF) information generated
with the BeadStudio software (Illumina). Samples with a
standard deviation of LRR > 0.30 and BAF drift > 0.01
were discarded. Besides, a wave adjustment procedure
for genomic waves was carried out [67]. With these

filtering steps, 20 samples were eliminated from the data
set. Only CNVs spanning three or more consecutive SNPs
were taken into account. The CNV calling was performed
using the default parameters of the HMM model by as-
suming a UF factor of 0.01. Copy number variant regions
(CNVRs) were created by merging CNVs with an overlap
of 80% or more. Additionally we used the Genome Alter-
ation Detection Analysis (GADA) package [68] to further
validate the CNVR detected with PennCNV and minimize
the rate of false positives. The GADA software uses a
sparse Bayesian algorithm, based on LRR and BAF values
obtained along the genome with the BeadStudio software
(Illumina), to identify genomic locations where copy num-
ber changes occur. Briefly, a LRR average of markers in a
chromosome segment is computed and compared to the
median of the respective chromosome. Finally, the copy
number class is classified as gain, loss or gain/loss. In our
study, copy number variations spanning three or more
consecutive SNPs were taken into account and the mul-
tiple array analysis option was employed. The parameters
defined for the Bayesian learning model and the backward
elimination were: 0.8 for the sparseness hyperparameter
and 8 for the critical value of the backward elimination.

Validation of copy number variant regions by
quantitative PCR
Quantitative real time PCR (qPCR) assays were used to val-
idate four CNVRs in 39 porcine samples randomly selected
from the Lipgen population. The relative quantification
(RQ) of the CNVRs was done as previously described [24].
Primers (Additional file 6) were designed with the Primer
Express Software (Applied Biosystems). Copy number vari-
ant regions were quantified in 384-well plates using SYBR
Select Master Mix in a QuantStudio 12 K Flex Real-Time
PCR System platform (Applied Biosystems, Inc., Foster
City, CA). Reactions were performed in triplicate, and they
contained 7.5 ng of genomic DNA and primers at 300 nM
in a final volume of 15 μl. The thermocycling profile was:
one cycle at 95 °C for 10min plus 40 cycles of 15 s at 95 °C
and 1min at 60 °C. Moreover, a melting curve profile
(95 °C for 15 s, 60 °C for 15 s and a gradual increase in
temperature with a ramp rate of 1% up to 95 °C) was im-
plemented to maximize the specificity of the amplification
reactions. Relative expression values were calculated with
the Qbase+ software (Biogazelle, Ghent, Belgium) by ap-
plying the 2-ΔΔCt method (after verifying that its assump-
tions were adequately fulfilled) [69]. Relative expression
values were calibrated using the arithmetic mean of 3–5
samples showing the lowest number of copies for each spe-
cific assay. In the specific case of CNVR32, which encom-
passes a deletion, the five samples chosen for calibration
were those with RQ values around 2. Normalization of the
expression data was done by using a previously reported
assay based on the glucagon gene [70].
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Additional file 1: Table S1. List of genes that are differentially
expressed (DE) in the gluteus medius muscle and the liver (q-value < 0.05).
(XLSX 353 kb)

Additional file 2: Figure S1. Boxplots depicting the mRNA expression
levels of cis-eQTL regulated genes measured with RNA-Seq and microarrays
in the gluteus medius muscle of 52 and 103 Duroc pigs, respectively. Means
were compared with a Student’s t- test: P-value > 0.05 (ns); P-value ≤ 0.05
(*); P-value ≤ 0.01 (**); P-value ≤ 0.001 (***) and P-value ≤ 0.0001 (****).
(DOCX 807 kb)

Additional file 3: Table S2. Locations, absolute frequencies, lengths
and status of CNVRs detected in 350 Duroc pigs with the PennCNV and
GADA softwares. (XLSX 12 kb)

Additional file 4. Table S3. Positional coincidence of the copy number
variant regions (CNVR) detected in the current work with CNVRs reported
in other pig populations. (XLSX 10 kb)

Additional file 5: Table S4. Co-localization of CNVRs and cis-eQTLs in
the gluteus medius muscle (eQTL and gene positions are expressed in
Mb). Table S5. Co-localization of CNVRs and cis-eQTLs in liver tissue
(eQTL and gene positions are expressed in Mb). (XLSX 13 kb)

Additional file 6: Table S6. Sequences of the primers used to validate
CNVRs by qPCR. (XLSX 9 kb)
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