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Abstract

Background: Splicing is a genetic process that has important implications in several diseases including cancer.
Deciphering the complex rules of splicing regulation is crucial to understand and treat splicing-related diseases. Splicing
factors and other RNA-binding proteins (RBPs) play a key role in the regulation of splicing. The specific binding sites of an
RBP can be measured using CLIP experiments. However, to unveil which RBPs regulate a condition, it is necessary to have
a priori hypotheses, as a single CLIP experiment targets a single protein.

Results: In this work, we present a novel methodology to predict context-specific splicing factors from transcriptomic
data. For this, we systematically collect, integrate and analyze more than 900 CLIP experiments stored in four CLIP
databases: POSTAR2, CLIPdb, DoRiNA and StarBase. The analysis of these experiments shows the strong coherence
between the binding sites of RBPs of similar families. Augmenting this information with expression changes, we are
able to correctly predict the splicing factors that regulate splicing in two gold-standard experiments in which specific
splicing factors are knocked-down.

Conclusions: The methodology presented in this study allows the prediction of active splicing factors in either cancer
or any other condition by only using the information of transcript expression. This approach opens a wide range of
possible studies to understand the splicing regulation of different conditions. A tutorial with the source code and
databases is available at https://gitlab.com/fcarazo.m/sfprediction.
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Background
The expansive diversity of the transcriptome – induced by
pre-mRNA splicing-plays a key role in the development of
a broad spectrum of human diseases [1–3]. Specifically, all
the hallmarks of cancer (such as angiogenesis, cell immor-
tality, avoiding immune system response, etc.) have a
counterpart in aberrant splicing of key genes [4, 5].
RNA-binding proteins (RBPs) bind to single-or

double-stranded RNA and conduct post-transcriptional
modifications of pre-mRNA (alternative splicing, mRNA
stabilization, mRNA location, polyadenylation, transla-
tion, etc.) [6]. RBPs that regulate mRNA splicing are

called splicing factors. Changes in splicing factors–such
as mutations or expression changes– directly affect spli-
cing and may result in the expression of less standard
isoforms that, in turn, results in an anomalous gain or
loss of protein function [7].
The link between RBPs and splicing has been studied

“in-silico” by analyzing RNA binding motifs of RBPs, as
reviewed in [8]. RBPs’ binding motifs are usually repre-
sented by position weighted matrices (PWMs) that pro-
vide the probability of having a specific nucleotide in
each motif ’s position. PWMs are gathered from different
databases [9–13] and scanned into the genome to find
putative binding sites. The weakest step of this pipeline
is the identification of the specific binding sites for the
RBPs. PWMs are usually short (>40% PWMs are shorter
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than 7nt) and provide low specificity [8]. This precludes
hits that are statistically significant. Implying that bind-
ing rules are diffuse (at least, on the PWM level), bind-
ing is probably co-defined by contextual information.
RBP–RNA interactions can be also experimentally

identified [14] by employing cross-linking and immuno-
precipitation (CLIP) coupled with high-throughput se-
quencing. CLIP experiments are more suitable to
uncover the binding sites of a specific RBP than scan-
ning its binding motifs, since they return the real bind-
ing sites of a protein rather than the predictions of a
motif-scanning algorithm [8]. A CLIP experiment targets
a specific protein. In many cases this protein is not
known beforehand and the researcher, based on his/her
expertise, must decide which are the “suspects” to run
the CLIP experiments against. A methodology for pre-
dicting active splicing factors would be desirable to help
the researcher select specific RBPs candidates before
conducting any CLIP experiment.
Previous works to predict active splicing factors have

used PWMs instead of CLIP experiments [1, 7, 15–20].
In addition, most of these references are implemented
on a case-by-case basis, which implies that these pipe-
lines are only capable of predicting a few splicing factors,
instead of a large group of them. To our knowledge,
there is no methodology for predicting splicing factors
using the information of CLIP experiments.
In this work, we systematically collect, integrate and

analyze 937 CLIP experiments stored in four well-
known CLIP databases: POSTAR2 [21], CLIPdb [22],
DoRiNA [23] and StarBase [24]. Using this information,
we present a methodology for predicting context-specific
splicing factors based on CLIP experiments and RNA-
seq. This pipeline relates splicing factor binding sites –
obtained from the CLIP databases- with the splicing
events that show differential usage across the conditions.
Using a GSEA-like enrichment analysis, we estimate the
potential splicing factors that conduct splicing in the
studied condition. Combining this information with ex-
pression changes, we were able to correctly predict the
knocked-down splicing factors in several gold-standard
experiments. Comparing this methodology with previous
approaches, we found that the ranks of splicing factors
that affect each condition were systematically higher and
more significant using CLIP experiments than using
PWMs. The whole pipeline is ready to use with any
RNA-seq experiment.

Results
A unified database of human and mouse CLIP
experiments
We downloaded and integrated the CLIP experiments
contained in POSTAR2, CLIPdb, DoRiNA and StarBase
databases as described in the Methods section. Five of

these experiments were discarded from the analysis be-
cause the RBPs under study were mutated. The informa-
tion of the CLIP experiments can be found in the
Additional file 1 Supplementary material S1.
CLIPdb, DoRiNA and StarBase include CLIP experi-

ments from different species (e.g. human, mouse, fly, worm,
etc.). In contrast, POSTAR2 only contains human CLIP ex-
periments. We included both human and mouse CLIP data.
Overall in this work 937 CLIP experiments have been inte-
grated (70% human and 30% mouse) (Fig. 1).
In total, 87% CLIP experiments (816 out of 937) be-

long to the three main CLIP technologies: HITS-CLIP
(38%), PAR-CLIP (36%) and iCLIP (13%) (Fig. 1b). Inter-
estingly, POSTAR2 incorporates 115 eCLIP experiments,
while the other databases lack this technology. An im-
portant proportion of these CLIP experiments (17%) tar-
geted AGO2. POSTAR2 is the biggest database with 43%
of the total CLIP experiments. CLIPdb includes 34% ex-
periments and DoRiNA and StarBase around 18% each
one. CLIP experiments arise from different species and
reference genomes (Fig. 1c). POSTAR2’s CLIP experi-
ments were lifted over to hg38 by POSTAR2’s authors
[21]. Regarding CLIPdb, DoRiNA and StarBase, almost
50% of the reference genomes belong to hg19. The rest
of them correspond to mm9 (25%), hg18 (22%), mm8
(5%) and mm10 (1%).
The 937 downloaded CLIP experiments cover 195 dif-

ferent RBPs (Additional file 1 Supplementary material
S2). The most complete database is POSTAR2 which
collects 171 RBPs, followed by CLIPdb with 72.
POSTAR2 and CLIPdb share a large number of RBPs
(n = 30), since POSTAR2 integrated the human CLIP ex-
periments of CLIPdb. All these CLIP experiments were
converted to human hg38 genome’s version, so that they
can be compared.

RBPs binding sites are coherent with protein families
RBPs regulate splicing events by binding to regions near to
the alternative exons -typically 300–400nt upstream and
downstream the alternative exons [26]. We identified 118,
830 possible splicing events in Gencode v24 (hg38) [27]
using EventPointer [28]. We extracted the adjacent splicing
regions of these events by selecting 400 nt upstream and
downstream the alternative exons (Fig. 4, Panel 1).
The CLIP files, previously converted to hg38, were

mapped against adjacent splicing regions. For each
RBP, we summarized its CLIP experiments into a
single dataset following an inclusive criterion: if a
binding site is annotated to any CLIP experiment, it
is considered as a putative regulation. As a result of
this mapping, we got a binary matrix (named ExS,
Events x Splicing factors) relating splicing events
with RBPs (Fig. 4, Panel 2). This matrix –as an
RData file- is available in the GitLab repository.
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Using the columns of the ExS matrix, it is possible to
evaluate how similar the binding sites of different RBPs are.
We computed the Pearson correlation between every pair
of RBPs and assigned a statistical significance to such rela-
tionship with a Fisher’s exact test (Additional file 2: Figure
S3). Pairs of RBPs with high correlation bind to similar spli-
cing events. Using this information, we also built a similar-
ity network of RBPs by setting two thresholds in the
Pearson correlation rs ≥ 0.46 and FDR < 0.1 (Fig. 2). Re-
markably, it shows that RBPs that belong to similar families
tend to cluster together (Fig. 2; e.g. IGF2BP-X (yellow clus-
ter), METTL-X (dark-green cluster), SF3-X (green cluster),
TRNC-X (purple cluster), YTHD-X (orange cluster)). Inter-
estingly, some clusters of RBPs connect different families of
proteins (e.g. the SF3-X cluster contains EFTUD2 and
BUD13). This means that those RBPs could be interacting
within the spliceosome. For instance, SF3B4 and SF3A3 are
constituents of the U2 snRNP [29]. In turn, PRPF8 and
EFTUD2 form the U5 snRNP, which interacts with U2
snRNP within the spliceosome [30].

Accurate prediction of context-specific splicing factors
We have developed a methodology to suggest the splicing
factors that are the major conductors of splicing in a condi-
tion, by using the relationships between CLIP datasets (i.e.
the real binding sites of RBPs) and transcript expression.
To test this approach, we selected two datasets that knock-
down different RBPs, so that we have gold-standard RBPs.
In the first dataset, the splicing factor SRSF1 was knocked-
down using siRNA on the A549 lung adenocarcinoma cell
line [31]. The second dataset individually depleted three
RBPs implicated in amyotrophic lateral sclerosis: FUS,
TAF15 and TARDBP [32]. The experiment was performed
in human iPSCs derived from dermal fibroblast cells of a
healthy individual. The four knock-down RBPs of both
datasets will be referred to as: KD-SRSF1, KD-FUS, KD-
TAF15 and KD-TARDBP. In these experiments, we a priori
know which are the splicing factors that ultimately change
the splicing patterns (i.e. the depleted ones).
For each dataset, we estimated the Percent Spliced-In

(PSI) of the 118,830 putative events and calculated

A B

C D

Fig. 1 Overview of the four databases integrated in this work. a Number of experiments per organism in each database. b Number of
experiments grouped by technology. c Different genome versions available in the databases. All the experiments in POSTAR2 correspond to
human hg38. d Proportional Venn diagram - built using [25] - of the RBPs covered by each database. The four databases cover 195 different RNA-
binding proteins (RBPs). The basis of CLIP database is POSTAR2 (171 RBPs), comprising all but 24 other RBPs. However, other databases add up a
significant part of experiments (Additional file 1 Supplementary material S1)
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which events show differential splicing in each knock-
down by using Event Pointer (See Methods section for
more details). Then -with the aid of the ExS matrix- we
compared the RBPs that bind against differentially
spliced with non-differentially spliced events using a
Fisher’s exact test. We ranked the RBPs according to the
resulting p-value (which will be referred to as CLIP p-
value). For the final ranking, we imposed the candidate
RBPs to be differentially expressed in the conditions
under study. Since there is no general-purpose method-
ology for predicting RBPs, we cannot compare our re-
sults with previous algorithms. Nevertheless, we have
implemented the approach based on RBPs’ binding mo-
tifs (PWMs) - using the ATtRACT database [9] - and
compared our results with it.
The KD-SRSF1 experiment consists of three condi-

tions: cells treated only with the vehicle of the transfec-
tion (Lipofectamine 2000, Invitrogen), cells treated with
scramble siRNA (i.e. a sequence that will not lead to the
specific degradation of any cellular mRNA) and cells
transfected with a siRNA that targets SRSF1. These
three groups are referred to as Control, SCR and KD-
SRSF1 respectively. Each condition has three biological
replicates that, in turn, are hybridized three times.
In [31] it was shown that SRSF1 was properly depleted

in the samples. Before calculating the splicing events, we
set a filter based on gene expression (i.e., if a gene is not
expressed, there is no point in discussing its splicing). All

genes whose expression was under quantile 0.25 in all the
samples were discarded. Out of the theoretical 97,482
events interrogated by the array, 35,963 passed the expres-
sion threshold and 3686 showed a p-value < 0.001 accord-
ing to the Event Pointer test (approx. 4% of the events).
Seven RBPs passed the following filters: CLIP p-value <

0.05; limma p-value < 0.05 and |log2 FC| > 0.58 (Table 1,
Additional file 2: Figure S3). SRSF1 -the knock-down
gene- ranked 1st out of them with strong significance
(CLIP p-value = 5,16E-24). Interestingly, 4 out of the other
6 RBPs of the ranking (UCHL5, SF3A3, HNRNPD and
EFTUD2) have strong relationships with SRSF1 according
to the STRING database [33] (PPI enrichment p-value:
2.57e-05). These results show the relationships and the
tight coupling among RBPs in the experiments, as the de-
pletion of SRSF1 provokes significant changes in the ex-
pression of other RBPs. In [8] we showed that using
PWMs it was possible to predict SRSF1 as a key splicing
regulator. In that study, SRSF1 ranked 13th with smaller
statistical significance (PWM p-value = 8.32E-4).
The second experiment inhibited three RBPs: KD-FUS,

KD-TAF15 and KD-TARDBP [32]. This dataset contains
RNA-seq data of five conditions: scramble siRNA, cells
transfected with siRNAs that individually target FUS,
TAF15 and TARDBP and a double depletion of FUS and
TAF15. In our analysis, we consider the three individual
knock-down samples and the scramble, which will be re-
ferred to as KD-FUS, KD-TAF15, KD-TARDBP and SCR.

Fig. 2 CLIP similarities of RNA-binding proteins (RBPs). A line connecting two RBPs represents a Pearson correlation > = 0.46. The width of the
line is proportional to the correlation value. RBPs are grouped in clusters. Links corresponding to RBPs in different clusters are represented as
red lines
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Transcripts and genes expression were estimated from
RNA-seq data using the standard pipeline of Kallisto
[34]. Gencode v24 (hg38) was chosen as the reference
transcriptome [27]. This transcriptome contains 199,169
transcripts and 58,684 genes. As a preliminary step, we
compared gene expression changes between conditions
SCR, KD-FUS, KD-TAF15 and KD-TARDBP in order to
confirm the knock-down effect of the inhibitions. As ex-
pected, FUS, TAF15 and TARDBP were under-expressed
in the knock-down samples. Interestingly, as it happened
in the KD-SRSF1 experiment, other RBPs also signifi-
cantly changed their expression, which underlines the
strong interactions between RBPs.
We then compared the splicing events of each condition

against SCR. For this task, we modified Event Pointer to
identify splicing events using transcript expression. We set
an expression filter to remove lowly expressed splicing
events (see methods for more information). Out of the
theoretical 118,830 events of GenCode v24, 80,747 passed
the expression threshold and 1791 (KD-TARDBP), 1004
(KD-FUS) and 945 (KD-TAF15) showed a p-value < 0.001
according to the Event Pointer test.
In the experiments KD-FUS and KD-TARDBP, 5

and 6 RBPs were predicted to be putative splicing

regulators respectively (CLIP p-value < 0.05; limma
p-value < 0.05; |log2 FC| > 0.58). In both experi-
ments, the knock-down RBP -FUS and TARDBP-
had the best CLIP p-value (CLIP p-value 2.35E-09
and 2.10E-05 respectively), which stresses the ability
of using CLIP experiments to decipher the regula-
tion rules of alternative splicing (Table 1).
In the KD-TAF15 condition, no RBP was predicted to

be a splicing regulator (CLIP p-value < 0.05; limma p-
value < 0.05; |log2 FC| > 0.58). These findings agree with
the original paper as it highlights the low influence of
TAF15 in alternative splicing [32].
If the RBPs expression is not used as complementary

information to build the ranking (i.e. only the CLIP in-
formation is used to make the prediction), the ranking
of the knock-down RBPs drops some positions (SRSF1 =
10th; FUS = 11th; TARDBP = 20th). The reason for this
is that some RBPs, which usually belong to similar fam-
ilies, share similar binding patterns and, in turn, they
have similar, or even smaller, CLIP p-values (Additional
file 2: Figure S3).
One of the experiments under study selected FUS,

TAF15 and TARDBP (referred to as TDP43 in the refer-
ence), since they are known to be related to amyotrophic

Table 1 Ranking of RNA-binding proteins (RBPs) for the experiments: KD-SRSF1, KD-FUS and KD-TARDBP (CLIP p-value < 0.05; limma
p-value < 0.05; |log2 FC| > 0.58). Four groups of columns are separated by thick vertical black lines are shown: i) knock down (KD)
genes and RBP of the ranking; ii) the prediction using the pipeline presented in this work (CLIP experiments); iii) differential
expression (knock-down vs normal) and iv) the same prediction using previous algorithms based on RBPs’ consensus binding motifs
–represented as Position Weighted Matrices (PWMs). NA: the PWM is not available for this RBP. N.S.: non-significant

Experiment RBP Ranking by CLIP
p-value (out of
195)

Differentially
spliced hits
(Expected)

Differentially
spliced hits
(Found)

CLIP p-value (Fisher) Expression
Fold change
(log2)

limma
adjusted
p-value

Ranking by
PWM p-value
(out of 123)

PWM p-value

KD-SRSF1 SRSF1 10 396 620 5 .16E-24 −1 .54 9 .18E-29 13 8.32E-04

LIN28B 20 561 747 3 .75E−15 0 .96 7 .76E-14 NA NA

UCHL5 27 261 384 1 .03E-13 -1 .52 7 .61E-21 NA NA

SF3A3 37 266 324 7 .03E-11 −0 .83 2 .77E-22 NA NA

HNRNPD 46 69 164 2 .94E− 08 −0 .63 1 .49E-16 15 1 .11E−03

EFTUD2 62 454 520 1 .29E-05 -0 .66 2 .69E−19 NA NA

TAF15 115 83 149 4 .75E− 02 −0 .78 5 .05E-17 NA NA

KD-FUS FUS 11 375 465 2 .35E−09 -1 .09 9 .77E− 02 112 N.S.

LIN28A 25 163 219 1 .78E− 06 0 .69 1 .43E-01 1 9 .54E-02

FBL 56 49 73 3 .12E-04 -0 .81 3 .10E-01 NA NA

YBX3 64 145 182 4 .94E-04 -0 .79 2 .08E-01 NA NA

CPSF2 109 40 52 2 .58E-02 -0 .70 9 .91E-02 NA NA

KD-
TARDBP

TARDBP 20 688 746 2 .10E-05 -0 .87 2 .16E-02 13 1 .30E-02

RBM22 26 160 205 6 .69E-05 0 .64 1 .93E-02 NA NA

PTBP2 58 144 174 3 .74E-03 -0 .60 4 .57E-02 NA NA

SF3A3 68 223 255 7 .86E-03 0 .64 7 .83E-02 NA NA

FBL 81 49 63 1 .81E-02 0 .89 1 .14E-01 NA NA

RBP 83 37 49 1 .92E-02 0 .68 1 .69E-02 NA NA
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lateral sclerosis (ALS) [32]. DDX3, which ranks 1st and
7th in the KD-TARDBP and KD-FUS conditions respect-
ively, is also known to play an important role in ALS by
affecting neurite outgrowth [35].
We finally implemented the PWM-based pipeline to

deal with RNA-seq data and tested the prediction for
KD-FUS and KD-TARDBP (TAF15’s binding motifs are
not available in the ATtRACT database). FUS was non-
significant using PWMs, so it was not able to be pre-
dicted. TARDBP ranked 13th (out of 123 RBPs, see
Methods) with a smaller p-value than using CLIP (PWM
p-value = 1,30E-02). When using exclusively the binding
sites information, TARDBP ranked better using PWM
than using CLIP (13th versus 20th). After filtering by ex-
pression (limma p-value < 0.05; |log2 FC| > 0.58),
TARDBP ranked 3rd using PWMs.

Discussion
In this work, we have systematically collected CLIP ex-
periments of RBPs stored in the POSTAR2, CLIPdb,
DoRiNA and StarBase databases. We have integrated
them into a single genome reference (hg38). We also
studied the relationships between RBPs and splicing
events and shown the high coherence between the bind-
ing sites of splicing factors of similar families. In
addition, we have developed a methodology for predict-
ing context-specific splicing factors based on genome-
wide CLIP experiments and RNA-seq or splicing micro-
arrays. We have tested this methodology in four con-
trolled experiments in which a splicing factor was
depleted using siRNAs. In these experiments we were
able to correctly predict the knock-down splicing
factors.
We explored the relationships between the binding

sites of different splicing factors by mapping CLIP bind-
ing sites against splicing regions. We highlighted the
strong coherence between CLIP experiments of similar
families. This fact is a consequence of the collaboration
of splicing factors: several splicing factors cooperate to
control the splicing of a gene [36].
Considering the prediction of RBPs, we proposed a

method based on CLIP enrichment analysis of the RBP
binding sites for alternatively spliced events. This
method is able to narrow down the search to a few spli-
cing factors candidates that potentially regulate splicing
of an experiment. In three -KD-SRSF1, KD-FUS and
KD-TARDBP- out of four cases, the depleted splicing
factor was included in the list of candidates and had the
best CLIP p-value among differentially expressed RBPs.
In the fourth case -KD-TAF15 experiment- no RBP was
predicted to be a splicing regulator. Interestingly, TAF15
was previously found to play a minimal role in the regu-
lation of alternative splicing [32].

The three SRSF1, FUS and TARDBP splicing factors
had strongly significant CLIP p-values in their corre-
sponding experiments although other splicing factors
had even lower CLIP p-values. The CLIP p-value alone
is not able to distinguish between direct and indirect ef-
fects of RBPs due to the strong correlations between the
binding sites of RBPs. However, the combination of
CLIP enrichment analysis with differential expression of
RBPs helps to reduce the list of potential splicing factors
–including the true positives.
Previous approaches to predict RBPs scan the pre-

ferred binding motifs of RBPs (PWMs) in the tran-
scriptome to find potential binding sites. The
limitation of these methodologies mainly relies on
scanning the binding sites, since PWMs are usually
short and non-informative. Consequently, scanning
them is prone to have too many potential hits in the
transcriptome.
According to the ATtRACT database, more than a half

of all PWMs have 7nt or less and, as we showed in [8],
only motifs >7nt achieve statistical significance. In the
two knock-down experiments used in this work, CLIP
experiment data provide better sensitivity and specificity
to predict RBPs than PWMs. Besides, 195 RBPs have
CLIP experiments available, as opposed to 123 RBPs that
have PWMs with significant hits in the transcriptome.
The results were encouraging: although the cell

lines in the CLIP database did not match the cell
lines of the experiments, it was possible to recover
the depleted splicing factors. Previously, we found
that this improvement also occurs combining CLIP
experiments from different species [8].
With CRISPR-Cas9 being more accessible, this pipe-

line could also be validated knocking out a splicing
factor using this technique. In this case, the statistical
approach should be changed accordingly. Using
CRISPR, the knocked out gene -in this case a splicing
factor- does not necessarily change its expression.
Therefore, the statistical part related with changes in
the expression should not be included and only the
statistical part related with CLIP experiments should
be applied.
The standard use of this pipeline is to provide a

sound hypothesis on the origin of the splicing
changes in an experiment. Somehow, it is similar to
studies that, by studying the transcription factors
related to differentially expressed genes, provide a
transcription factor that could be the potential cause
of the changes. Here, instead of differential expres-
sion, we use differential alternative splicing and, in-
stead of providing transcription factor candidates, we
provide splicing factor candidates. For example, a user
can compare the splicing status of normal tissue
against its tumoral counterpart. This pipeline provides
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potential candidates of the splicing factors causing
these changes.
Another potential use is to check the mediated effect

of a gene in alternative splicing. In order to do that, a
specific gene can be knocked down using CRISPR-Cas9.
In the case the gene is not a splicing factor, the pipeline
can be used to infer which are the splicing factors that
are affecting the splicing patterns of the sample.
As high-throughput CLIP technologies are applied to

more cells and tissue types in the near future, a larger
set of splicing factors may be studied following this
methodology broadening the scope of this work.

Conclusions
In this work, we have developed a methodology to
predict context-specific splicing factors based on the
combination of CLIP experiments with transcriptomic
data. For this task, we systematically collect, integrate
and analyze 937 genome-wide CLIP experiments
stored in four CLIP databases: POSTAR2, CLIPdb,
DoRiNA and StarBase. This integrated database is
publicly available.
Augmenting this information with expression changes,

we predict the splicing factors that regulate splicing in
two gold-standard experiments in which some specific
splicing factors are knocked-down. The source code, da-
tabases and a tutorial to perform an equivalent analysis
with other data are available in the GitLab repository,
https://gitlab.com/fcarazo.m/sfprediction.
This methodology can be used to predict the active

splicing factors in either cancer or in any other condi-
tion with the only information of transcript expression.

Methods
We have developed and integrated two main pipelines
(Fig. 3): integrating and mapping CLIP experiments to
splicing regions and predicting context-specific splicing
factors using CLIP experiments.
The output of the first pipeline is twofold. It consists

of an integrated database of splicing factors binding sites
mapped to the hg38 version of the human genome and
the correspondence of these sites with annotated spli-
cing events of the GenCode 24 version of the human
transcriptome. We represented this correspondence as
an indicial matrix, which will be referred as ExS (Events
x Splicing factors).
The second pipeline takes as input the ExS matrix and

the expression of splicing events calculated using either
RNA-seq or splicing microarray data. The output is a
ranking of splicing factors that putatively regulate a con-
dition. This ranking can be augmented with RBPs’ differ-
ential expression.

Integrating and mapping CLIP experiments to splicing
regions
There are four main variants for genome-wide CLIP ex-
periments: (i) HITS-CLIP (high-throughput sequencing
of RNA isolated by crosslinking immunoprecipitation
[37], (ii) PAR-CLIP (photoactivatable ribonucleoside-
enhanced cross-linking immunoprecipitation) [38], (iii)
iCLIP (individual-nucleotide resolution CLIP) [39] and
(iv) eCLIP (enhanced CLIP) [40]. In this manuscript, we
will use CLIP experiments as a common name for
HITS-CLIP, PAR-CLIP, iCLIP and eCLIP. Either of
these techniques is valid to uncover RBPs’ binding
sites.
To relate CLIP experiments and splicing regions,

we first identified all the potential splicing events for
transcriptome GenCode v24 (Fig. 4, Panel 1). For
each splicing event, Event Pointer returns the event
type and the sub regions of the transcriptome that
build up the splicing event. These sub regions are the
alternative paths (p1 and p2) that form the event and
a common region to both paths (pref ). For example,
in a cassette event, the paths are: (p1) the cassette
exon with their flanking junctions, (p2) the junction
that skips the cassette exon and (pref ) the constitutive
exons flanking the cassette. A more formal descrip-
tion is shown in [31].
Clip-seq experiments were downloaded from POSTAR2

(version SEPT 2018), CLIPdb (version 1.0), DoRiNA (ver-
sion 2.0) and StarBase (version 2.0). The information
about CLIP processing, genome reference and other char-
acteristics was manually curated and gathered together
(Additional file 1 Supplementary material S1).
In POSTAR2, after normalizing the data, they con-

verted the HITS-CLIP, PAR-CLIP and iCLIP files to
hg38. eCLIP files were directly downloaded in hg38
format from the ENCODE data portal (https://www.
encodeproject.org/). CLIP experiments of CLIPdb,
DoRiNA and StarBase include different genome ver-
sions and different species. We focused specifically on
human and mouse. We converted all the different
genome versions (hg18, hg19, mm8, mm9 and mm10)
to hg38 with the aid of the liftOver tool and the Bio-
conductor packages: rtracklayer [41] and Genomic
Ranges [42].
All the CLIP files, previously converted to hg38,

were mapped against adjacent splicing regions. For
each RBP, we summarized its CLIP experiments into
a single dataset following an inclusive criterion: if a
binding site is annotated to any CLIP experiment, it
is considered as a putative regulation. We took
POSTAR2 as the reference database, since it includes
the largest number of RBPs (Fig. 1a). For each RBP
not included in POSTAR2, we consider the binding
sites in the other three databases. As a result of this
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mapping, we got a binary matrix (named ExS, Events
x Splicing factors) relating splicing events with RBPs
(Fig. 4, Panel 2).
We then identified the genomic regions where RBPs

bind to regulate splicing. These regions will be named as
splicing regions. Splicing regions are located in the
neighborhood of the splicing events (300–400 nt) [26].
We selected a window of 400 nt before and after the loci
of the alternative paths to be the splicing regions (Fig. 4,
Panel 2). We mapped the splicing regions against the
CLIP peaks of RBPs and stored it in an indicial
sparse matrix ExS (Events x Splicing factors). Each
element denotes whether the splicing factor j binds
to the event i as follows:

exs�ij ¼ 1; any of the splicing factor j peaks match to loci in the event i
0;NONE of splicing factor j peaks match to loci in the event i

�

ExS matrix provides a convenient and efficient way to
compute the overrepresentation of RBPs in the differen-
tially spliced loci for a given experiment.

Predicting context-specific splicing factors
The second pipeline is the analysis of RNA-seq experi-
ments to decipher which are the splicing factors that
regulate splicing (Fig. 4, Panel 3). This approach assumes
that the driving splicing factors must bind to differen-
tially spliced events. Changes in splicing events are usu-
ally measured by the Percent Spliced-In (PSI). PSI is
defined as the relative expression of one path of the
event against the expression of the reference, as follows:

PSI ¼ p1
p1 þ p2

¼ p1
pref

where p1 and p2 are the expression of the two alternative
paths of a splicing event and pref is the expression of the
nearest common region of the alternative paths. An ex-
pression filter is set to remove lowly expressed events
and events that only express one path –in which there is
not alternative splicing. In this filter, the three paths are
required to express at least quantile 0.1 in 75% samples.
The RNA-seq data are processed to get the transcript

expression using Kallisto with the same reference

Fig. 3 Overview of the two main pipelines in this work: 1) Integration and mapping CLIP experiments to splicing regions and 2) predicting
context-specific splicing factors. The tasks done in both pipelines are represented by colors: identifying the transcriptome binding sites of RBPs
using previous CLIP experiments (orange); construction of a matrix containing information of specific events for each splicing factor (blue);
calculating alternative splicing events from RNA-seq data or microarray data (green); and combining both results with a statistical pipeline to
obtain a ranking of splicing factors (black)

Carazo et al. BMC Genomics          (2019) 20:521 Page 8 of 11



transcriptome as used in the construction of the ExS
matrix. The PSI for all the events in the transcriptome
(118,830 in GenCode v24) is estimated using Event
Pointer. A statistical significance is assessed to each
event following the standard pipeline of Event Pointer
using the test based on the PSI (one of the paths must

decrease and the other increase). The process for micro-
arrays is described in [8].
Using a threshold on the p-value or on the false dis-

covery rate is possible to select a number of events dif-
ferentially spliced. In our case, the top 1000 events with
most significant Event Pointer p-value were selected.

Fig. 4 Overview of pipeline to predict splicing factors using CLIP and splicing. A toy example with a cassette exon is shown. 1) Selecting splicing
regions: The cassette exon has two isoforms which give rise to Path 1 (p1), Path 2 (p2) and reference (pref). Splicing regions (typically 300–400 nt
upstream and down- stream the AS events [26]) are represented in orange. 2) The ExS matrix (Events x Splicing factors) is built by mapping RBPs
against the splicing regions. 3) The Percent Spliced-In (PSI) of all the events is estimated from RNA-seq or microarrays and a Fisher’s exact test
enrichment is performed to get a ranking of RBPs according CLIP binding sites

Carazo et al. BMC Genomics          (2019) 20:521 Page 9 of 11



The group of differentially spliced events is used to per-
form a Fisher’s exact test for all the RBPs in the database
with the aid of the CLIP experiments stored in the ExS
matrix, as follows:

P X > kð Þ ¼
XK

x¼k

K
x

� �
M−K
m−x

� �

M
m

� � ;

where M is the total number of events, K is 1000 –the
number of selected events-, m is the number of events
regulated by RBPi and k is the number of events within
K regulated by RBPi (Fig. 4, Panel 3). RBPs are ranked
according p-value of the CLIP enrichment test.
RBPs’ gene expression can be used as an independent

source of information to augment the CLIP enrichment test.
The standard pipeline of limma [43] was used to get the dif-
ferentially expressed RBPs and the corresponding p-value.
These 2 p-values (CLIP enrichment and gene expression)

can be summarized in different ways: Fisher and Stouffer
methods [44, 45], summing up the p-values and correct the
sum by the Irvin-Hall distribution, etc. In this work, the p-
values have not been summarized since the proposed gold-
standard experiments directly knock-down a RBP. The ex-
pression changes of the knock-down genes are strongly sig-
nificant due to the efficiency of the siRNAs. Therefore,
summarizing the p-values in our experiments would return
an optimistic view of the pipeline, as it would benefit only
those RBPs that change their expression. We simply set a
loose filter on the RBPs that were differentially expressed
(limma p-value < 0.05; |log2 FC| > 0.58).

Additional files

Additional file 1: Supplementary material S1. CLIP information of files
used in the main paper. Supplementary material S2. CLIP experiments
of RNA-binding proteins (RBPs) integrated in this work (n = 937). CLIP ex-
periments were downloaded from three CLIP databases: POSTAR2 [P],
CLIPdb [C], DoRiNA [D] and StarBase [S]. For each RBP, the table includes:
number of experiments (#Ex), database(s) that include the RBP (DDBB)
and number of splicing events where the RBP binds after integrating all
CLIP experiments. (XLSX 9261 kb)

Additional file 2: Figure S3. (Right-hand side) Pearson correlation
coefficient heatmap representing the similarity of RNA-binding protein
binding sites in splicing events. Red and blue indicate higher and lower
correlation, respectively. (Left-hand side) Information of the four experi-
ments analyzed in this manuscript (Table 1). KD-SRSF1 (green), KD-
TARDBP (blue), KD-TAF15 (yellow), and KD-FUS (red). Each experiment
shows two color lines: Expression p-value <1e-3 (dark color) and CLIP
p-value <1e4 (light color). The CLIP p-value of KD-TAF15 (light yellow) is
empty because no RBP passed the CLIP p-value threshold (1e3).The
names of the four knock-down RBPs are highlighted with yellow squares.
Remarkably, RBPs that belong to similar families tend to cluster together
(e.g.IGF2BP-X-METTL-X,CPSF-X,SF3-X,TRNC-X,YTHD-X). (PDF 286 kb)
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