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Stoichiometric gene-to-reaction
associations enhance model-driven analysis
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chronic exposure to Aldrin in prostate
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Abstract

Background: Genome-scale metabolic models (GSMM) integrating transcriptomics have been widely used to study
cancer metabolism. This integration is achieved through logical rules that describe the association between genes,
proteins, and reactions (GPRs). However, current gene-to-reaction formulation lacks the stoichiometry describing the
transcript copies necessary to generate an active catalytic unit, which limits our understanding of how genes
modulate metabolism. The present work introduces a new state-of-the-art GPR formulation that considers the
stoichiometry of the transcripts (S-GPR). As case of concept, this novel gene-to-reaction formulation was applied to
investigate the metabolic effects of the chronic exposure to Aldrin, an endocrine disruptor, on DU145 prostate
cancer cells. To this aim we integrated the transcriptomic data from Aldrin-exposed and non-exposed DU145 cells
through S-GPR or GPR into a human GSMM by applying different constraint-based-methods.

Results: Our study revealed a significant improvement of metabolite consumption/production predictions when S-
GPRs are implemented. Furthermore, our computational analysis unveiled important alterations in carnitine shuttle
and prostaglandine biosynthesis in Aldrin-exposed DU145 cells that is supported by bibliographic evidences of
enhanced malignant phenotype.

Conclusions: The method developed in this work enables a more accurate integration of gene expression data
into model-driven methods. Thus, the presented approach is conceptually new and paves the way for more in-
depth studies of aberrant cancer metabolism and other diseases with strong metabolic component with important
environmental and clinical implications.
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Background
Cancer is influenced by genetic and environmental factors
and is one of the leading causes of death worldwide [1].
The multi-factorial nature of this disease represents a
challenge for diagnostic approaches and imposes a high
burden on health care systems [2].
Genome-scale metabolic models (GSMM) have emerged

as a potential tool to decipher the molecular mechanisms
underlying cancer metabolism associated with tumor pro-
gression and malignancy acquisition [3]. GSMMs are built in
a bottom-up manner gathering all known biochemical reac-
tions encoded by a given organism’s genome [4]. Addition-
ally, these models describe the associations between genes,
proteins and reactions (the so-called GPRs) [5]. GPRs are
generated using Boolean formulations describing gene(s) en-
coding the protein(s) required to catalyze a given reaction.
GPRs enable the integration of gene or protein expres-

sion data from different high-throughput techniques which
enhances the predictive capabilities of GSMM-based ana-
lysis. A large number of computational approaches have
been developed to integrate expression data through GPRs
into constraint-based methods [6]. However, current GPR
formulations do not take into account the number of pro-
tomers required to generate a fully functional catalytic unit.
Thus, the lack of stoichiometry represents an important
limitation in transcriptomics-based model-driven methods
to study the metabolism. This drawback reduces the scope
of these approaches to study multi-factorial diseases in
complex scenarios. Hence, in order to overcome these limi-
tations, we present a new state-of-the-art GPR: Stoichio-
metric GPR (S-GPR). Here, we include information about
the transcript copy number required to produce all the
subunits of a fully functional catalytic unit capable to carry
metabolic flux through a given reaction/s.
As a case of concept, we delved into the effect of chronic

exposure to Aldrin, an endocrine disruptor (ED), in
DU145 prostate cancer (PC) cells. This endocrine dis-
ruptor can be found at low concentrations in the environ-
ment [7]. While many pieces of evidence suggest a dose-
effect relation between EDs and enhanced tumor malig-
nancy, our understanding of the effects of chronic expos-
ure to non-lethal concentrations of EDs in cancer
metabolism remains limited. However, it has been re-
ported that long-term exposure to Aldrin produces im-
portant alterations in the metabolic and lipidomic profile
of PC cells, which are associated with an increased tumor
malignancy [8]. Apart of the biological and environmental
interest, this case presents important technical challenges
from the modeling and data integration point of view due
to the high similarity of the transcriptomic profile between
Aldrin exposed and non-exposed cells. Here, only 0,37%
of the genes are significantly different between conditions
(p < 0,01), among which only 1,6% are metabolic genes
(Additional file 3). Thus, inferring metabolic alterations

based on the gene expression by applying transcriptome-
based model-driven approaches is especially challenging
in this case. On the other hand, test the S-GPR formula-
tion on a more coarse-graining case, with more significant
differences between condition may disguise the effect of
incorporating the stoichiometry to the gene to reaction
formulation. For example, in case of having a complex
with multiples sub-units encoded by the same gene, in-
corporating the stoichiometry into the gene-to-reaction
formulation may not provide further improvements. Due
to the difference between conditions is too high, the gene
will unlikely become the limiting factor at generating a
functional catalytic unit regardless stoichiometry is con-
sidered or not.
In the current study, we evaluated the improvements

in transcriptomics-based model-driven analysis, when
the stoichiometry is incorporated to the classical GPR
formulation (S-GPR), to study the metabolism of Al-
drin-exposed and non-exposed DU145 PC cells. It was
achieved by integrating the transcriptomic data through
GPR and S-GPR rules into one of the latest human
GSMM: HMR2 [9]. It was performed in different steps:
i) build both GPR and S-GPR rules based on different
data bases [10–12], ii) next, enrich the GSMM to ac-
count for all the experimentally measured lipids and
metabolites, iii) predict metabolic consumption/pro-
duction by integrating transcriptomic data from Aldrin-
exposed and non-exposed cells via GPR and S-GPR into
a GSMM reconstruction analysis using some of the
most widely used constraint-based methods and iv) com-
pare the predicted consumption/production of metabo-
lites and lipids with experimental measurements.
Significant improvements in the predictive capabilities

of the GSMM have been observed when S-GPRs were
implemented, correcting some wrong predictions pro-
vided by GPR-based approaches.
Furthermore, all the analyses performed in this

study revealed important alterations in key metabolic
pathways associated to the chronic exposure to Al-
drin. Thus, prostaglandin biosynthesis was predicted
to be over-activated in Aldrin-exposed cells, which is
associated with malignancy acquisition [13, 14]. Creat-
ine shuttle was also predicted to be over-activated in
Aldrin-exposed cells. Long-chain fatty acids are ac-
tively transported through this shuttle and its over-ac-
tivation is associated with tumor progression and
malignancy acquisition [15, 16].
The approach presented here represents an important

step forward in the state-of-the-art of the current tran-
scriptomic-based model-driven methods and opens new
avenues in the study of the molecular mechanisms
underlying multi-factorial diseases in complex scenarios
such as the case study presented here, with potential
clinical and environmental applications.
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Results
Refinement of the generic GSMM to fit specific context
features
The computational analysis performed in this work was
based in one of the latest reconstruction of human me-
tabolism (HMR2) [17], with 136 metabolic pathways,
3160 unique metabolites, 3765 metabolic genes and
8181 reactions. The model was modified to fit with our
case study. Specifically, the model was expanded to in-
clude all the exchange reactions of the experimentally
analyzed metabolites and lipids that were already anno-
tated in the model. These reactions can be interpreted as
the way the model can uptake or release a given metab-
olite if the respective exchange reaction carries non-zero
flux in either forward or backward direction, which can
be compared with the experimental measurements to
determine the reliability of model predictions. Addition-
ally, the model was reduced by removing blocked reac-
tions and dead-end metabolites (Methods section).
Gene-to-reaction associations were also included in the
GSMM, so the transcriptomic data could be integrated
in the model. The resultant GSMM had 134 metabolic
pathways, 2339 unique metabolites, 3096 metabolic
genes and 6941 reactions. This process is shown in more
detail in the Additional file 4.

Reliability of the gene-to-reaction building
The gene-to-reaction associations included in the HMR2
were automatically build by using an in-house developed
algorithm that gathers information retrieved from a
number of databases to generate both GPRs and S-GPRs
(Additional file 5) [10–12].
Here, we evaluate the reliability of the automatically-

built gene-to-reaction associations with the ones from a
published model. The evaluation was done by comparing
experimental measurements with the metabolic exchange
rates predicted by HMR2 model with automatically-built
GPRs (hereinafter HMR2 +GPR) and by Recon 2 (which
incorporates GPRs) [18]. To this aim transcriptomic data
from Aldrin-exposed and non-exposed cells were inte-
grated into both GSMMs by applying the iMat algorithm
[19]. This approach is based on transcriptomic data to de-
fine an objective function that maximizes the similarity
between gene expression and the activity state of the
metabolic reactions. Since the iMat algorithm only uses
transcriptomic data to impose additive constraint to FBA
solutions, this approach is well suited to test the reliability
of our automatically-built GPRs at integrating transcrip-
tomic data into GSMMs. Since HMR2 accounts for more
metabolite exchange reactions than Recon 2, the evalu-
ation was based in the proportion of right predictions
(right predictions/(right predictions + wrong predictions))
rather than in the absolute number of right prediction.
Our computational analyses show that the 60.6% of the

prediction provided by Recon2 were in accordance with
experimental observations, while in HMR2 incorporating
conventional GPRs built by our algorithm reached the
79.3%. These results indicate that the automatically-built
gene-to-reaction associations enable a proper integration
of transcriptomic data into genome-scale metabolic model
reconstructions analyses. The process and results are
shown in more detail in the Additional files 9 and 7
respectively.

Improving model predictions by implementing S-GPRs
Adding stoichiometry to the classical gene-to-reaction for-
mulation (S-GPR) enable us to consider the copy number
needed to generate the active catalytic unit of an enzyme.
In order to evaluate the improvement in GSMMs at pre-
dicting metabolism when S-GPRs are implemented, differ-
ent methods for integrating transcriptomic data were used
on HMR2 model incorporating either GPRs or S-GPRs:
Gimme, iMat, Gonçalves et al. 2012 and MADE [20, 22]
(see Methods and Fig. 1C). In both Gimme and iMat,
thresholds were used to classify reactions as associated to
highly-expressed or lowly-expressed genes. In our analysis
these thresholds were set at 40th and 60th percentiles as
lower and upper thresholds respectively in iMat and at the
mean + standard deviation in Gimme. The chosen thresh-
olds were those that provided the highest discrimination
between active and inactive reactions between conditions
(Additional files 8 and 9). The method described by Gon-
çalves et al. 2012 does not require a predefined set of pa-
rameters. Finally, the MADE algorithm differentiates the
active and inactive reactions based on the fold change be-
tween conditions and the associated p-value. The parame-
ters and the procedure used to evaluate the chosen
thresholds allowed us to determine which threshold was
better to discriminate between active and inactive reactions
taking into account the transcriptomic data sets. From
these analyses, a set of fluxes were obtained from which
the exchange of the different species could be inferred.
Specifically, we analyzed the activity state of the exchange
reactions for the species experimentally measured (active
reaction, if there is non-zero flux through either forward or
backward direction, otherwise inactive) and qualitatively
compared with the experimental measurements (consump-
tion or secretion active if a significant difference in metab-
olite concentration between t0 and t5h is observed,
otherwise inactive) to determine the reliability of the model
predictions. The exchanges predicted from each method
were qualitatively compared with experimental measure-
ments of metabolic and lipidomic data and its significance
was determined by Fisher’s Exact test using α = 0.05 (Add-
itional file 8). This analysis demonstrated an improvement
in terms of correct predictions when S-GPRs were imple-
mented compared with the classical GPRs. The improve-
ment in the number of correct predictions varied among
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the four methods from 1.34% using Gimme to 6.53% using
MADE (Fig. 2).
In all the tested methods, the S-GPR implementation

corrects some metabolic uptakes/secretions predicted by
classical GPR-based analyses that were not supported by
experimental measurements (Table 1). For instance, the
Gimme algorithm based on GPRs failed at predicting
glycocholate exchange in both Aldrin-exposed and non-
exposed cells. The MADE algorithm using GPRs also
failed at predicting pantethiene exchange in both cell
groups. In both cases the same algorithms correctly pre-
dicted the experimental observations when S-GPRs were
implemented. Interestingly, alterations in glycocholate
and pantethiene levels have been associated with malig-
nancy acquisition in different types of cancer [24, 25],
which supports the predictions provided by the S-GPR-
based analyses and highlights the importance of incorp-
orating stoichiometry into transcriptome-based model-

driven analyses. This is shown in Table 1 and in more
detail in Additional file 8.

Inferring alterations in metabolic pathways associated to
chronic exposure to Aldrin
From each of the four transcriptomics-based model-
driven analyses performed in this study, active and in-
active reactions were predicted. Based on these results
we determined which pathways were over-activated in
one condition compared to the other. Pathways showing
a significantly higher number of active reactions in Al-
drin-exposed analysis compared to non-exposed were
tracked down as indicated in the Methods section. Nine
overactive pathways were identified in at least three of
the four methods, including two predicted to be over-ac-
tivated in Aldrin-exposed cells by all four analyses: Pros-
taglandin Pathway and Carnitine Shuttle. In Fig. 3 all
nine pathways are indicated with the relative weight in

Fig. 1 Work-flow overview. a. Experimental data acquisition from Aldrin-exposed and non-exposed DU145 prostate cancer cells. Relevant peak
areas from non-targeted metabolomic an lipidomic experiments are set by applying MCR-ALS and ROI methods, next significant consumption/
productions are determined through Mann-whitney test b. Algorithm-based automatic gene-to-reaction association building. The algorithm uses
a variety of data bases to generate a set of gene-to-protein associations for each reaction with enzymatic activity in a model. c. transcriptomic
data integration via either GPR and S-GPR into a GSMM reconstruction analysis by applying four different constraint-based methods d. model
prediction of metabolic consumption/production e. Validation of the prediction by comparing predicted and experimental metabolic
consumption/production (Fisher exact test) f. Evaluate the improvement in model predictions provided by the incorporation of stoichiometry
into the gene-to-reaction associations (S-GPR)
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Aldrin-expressed analysis with S-GPR. The relative
weight was calculated as follows: (number of active reac-
tions of the pathway in Aldrin-exposed cells) / (number
of active reactions of the pathway in non-exposed cells).

Discussion
High-throughput technologies have transformed molecular
biology into a data-rich discipline. In order to extract
knowledge from this large amount of data, a number of
approaches have been developed. Among these methods,
those integrating transcriptomic data into GSMM have
emerged as potent tools, since they enable us to determine
molecular processes involved in a specific case from one of
the most widely used and cost-effective high-throughput
techniques. However, these approaches present important
limitations when trying to deal with complex scenarios as
the case studied here.
The present work aimed to improve the predictive

capabilities of the current transcriptomic-based model-
driven approaches by incorporating stoichiometry to the
GPR rules embedded in GSMM. For illustration, we
have studied the effects of the chronic exposure to Al-
drin on DU145 PC cells metabolism. The multi-factorial
nature of cancer disease together with the complexity of

this study, which goes beyond the classical dose-effect
studies, increases the difficulty of determining metabolic
changes associated with an increase of tumor malig-
nancy in Aldrin-exposed cells. While the human genome
microarray platform HG U-219 used for transcriptomics
analysis covers more than 36,000 transcripts and variants
(representing 20,000 genes), comparing gene expression
data obtained from Aldrin-exposed and non-exposed
cells identified only 0.35% of difference between condi-
tions. In such complex scenarios, the implementation of
S-GPRs has improved model performance at predicting
metabolite and lipids exchange in all the methods tested
(from 1.34% up to 6.53%). This improvement has been
accompanied by changes in the overall activity state of the
metabolic network (from 1,79% up to 3,57%) (Additional file
8). Additionally, the implementation of S-GPR into tran-
scriptomic-based model-driven methods has corrected sev-
eral wrongly predicted exchanges generated by classical
GPR-based analyses (Fig. 2 and represented in more detail in
Additional file 8). The degree of improvement was signifi-
cant in all the analyses when S-GPRs were implemented and
it is especially relevant since the transcriptomic profile of
non-exposed and Aldrin-exposed cells differs in only 0.35%.
The improvement was achieved despite using tran-

scriptomics as a proxy for proteomics. While transcript
level correlates with protein levels, the correlation is
relatively poor [26]. It would be expected that the per-
formance would be further improved either when using
proteomics or if the translational efficiency for each pro-
tein was included [27].
Furthermore, a pathway analysis of the results provided

by the different approaches when S-GPRs were imple-
mented revealed an over-activation of different pathways
(Additional file 9). The different approaches used to inte-
grate transcriptomic data into GSMM reconstruction ana-
lysis provided very similar results. For instance,
Leukotriene metabolism was predicted to be exclusively ac-
tive in Aldrin-exposed cells by all the approaches except by
MADE. In general, iMat and Gonçalves et al. 2012 ap-
proaches tend to predict a complete inactivation of certain
pathways in non-exposed cells. Thus, apart of the above-
mentioned Leukotriene pathway, five and three non-over-
lapped pathways were predicted to be active exclusively in
Aldrin-exposed cell in iMat and Gonçalves et al. respect-
ively. The GIMME algorithm identifies only two pathways
exclusively active in Aldrin-exposed cells, while MADE al-
gorithm, in general, predicts less differences between con-
dition and in any case pathways only active in Aldrin-
exposed cells. These results highlight the different predict-
ive capabilities of the different methods and their sensitivity
to gene expression differences. However, two key pathways
were identified as over-activated in Aldrin-expressed cells
across all the methods: Carnitine shuttle to mitochondria
and prostaglandin biosynthesis (Fig. 3) with relevance for

Fig. 2 Metabolic consumption/production predictions S-GPR vs GPR.
Percentage of improvement in predicting reaction activity in each
method using S-GPR compared with GPR. Significance tested with
Fisher’s Exact test [23] with p < 0.05 in all the analyses
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tumor proliferation, invasiveness, and metastasis. In this
sense, prostaglandin metabolism has already been related
to the regulation of mechanisms associated to malignancy
[13]. Interestingly, Marin de Mas et al. already reported in
2018 the relevance of these pathways in the Epithelial-
mesenchimal-transition programme (EMT) in the PC-3
prostate cancer cells as well as the importance of the long-
chain fatty acids in the process [16]. More specifically, pros-
taglandins have been found to be related to an increase of
the angiogenic capacity of the tumor [29]. Conversely, the
Carnitine shuttle pathway involves numerous cytosolic sub-
strates among which there are some long-chain fatty acids
with antiproliferative effects [15]. Thus, a higher activity of
this pathway in Aldrin-exposed cells may have two roles: i)
first, and probably the most evident, fuel mitochondrial
beta-oxidation to maintain the energetic requirements im-
posed by a higher proliferation rate and ii) to eliminate

compounds with antiproliferative effects. Secondly, prosta-
glandin metabolism produces a variety of molecules such
as 2S-HETE, TXB2 and PGE2 which promote cell adhe-
sion, angiogenesis, and cell invasion in prostate cancer [13].
In addition EP4, one of the PGE2 receptors, has been re-
cently investigated as a potential immune-oncology drug
target [30]. Despite some prostaglandines and fatty acid as-
sociated to the carnitine shuttle have been detected, no sig-
nificant differences in the consumption/secretion rates
between condition have be determined. It can be due a low
of sensitivity to measure lowly abundant species of the
non-targeted metabolic approach used in this study. Thus,
more sensitive targeted approaches would be required in
order to further investigate how the chronic exposure to
Aldrin alters prostaglandine and carnitine shuttle path-
ways and the role in the adquisition of malignancy in
PC DU145 cells. Overall, the model predictions were

Table 1 Metabolic consumption/production perditions S-GPR vs GPR

Experimental 
Measurement 

Improved predictions with 
S-GPR 

Metabolites 
Aldrin-
exposed 

Non-
exposed 

iM
at 

GIMM
E 

Gonçalv
es 

MAD
E 

1D-myo-inositol-3-
phosphate 
1-pyrroline-2-carboxylate 
3-amino-propanal 
4-coumarate 
acetoacetate 
cholest-5-ene-
3beta,7alpha,24(S)-triol 
cholesterol-ester pool 
formylglutathione 
glycocholate 
GSH 
hydracrylate 
indole-3-acetaldehyde 
myristic acid 
noradrenaline 
pantetheine 
THF 
UDP-galactose 
UDP-glucose 
UDP-glucuronate 

Metabolites’ uptake/secretion that have been wrongly predicted by GPR-based analyses and corrected when applying S-GPRs. In the first column are represented
the metabolites. Column 2 and 3 show the significant metabolites’ uptake/secretion experimentally measured in Aldrin-exposed and non-exposed DU145 cells
respectively. Here green and red represents either metabolite consumption or production respectively. The four last columns represent the four different methods
used to integrate transcriptomic data into a GSMM reconstruction analysis. Here, cells highlighted in gray represents those cases in which GPR-based analyses
provided a wrong prediction that was corrected when using S-GPR instead (the opposite case haven’t been observed in our case study)

Marín de Mas et al. BMC Genomics          (2019) 20:652 Page 6 of 12



consistent with reported evidences and experimental
phenotypic observations.
Although these findings are supported by the four dif-

ferent methods and are consistent with reported evi-
dences, it is necessary to consider that solutions
provided by CBM are not unique. This can be further
tested by applying a robustness test and a sensitivity ana-
lysis on the methods used here, which will provides the
list of reactions that are unambiguously active or in-
active in a particular conditions. Finally, model predic-
tions would need to be further validated experimentally.

Conclusion
The current work highlights the improvement of
GSMMs predictive capabilities when stoichiometry is in-
corporated into gene-to-reaction associations (S-GPR).
This novel approach has been tested with different
methods to integrate transcriptomic data into GSMM
reconstruction analyses with the same result: S-GPR in-
corporation improves model analysis performance. In
addition, this novel concept has been tested on a very
complex scenario involving a multifactorial disease, acti-
vation of secondary metabolism triggered by very low
concentrations of pollutant and two highly isogenic pop-
ulations which make more relevant the improvements
provided by S-GPR based analyses. Despite it does not
exist a lineal relationship between individual gene ex-
pression and specific metabolic flux, the incorporation
of stoichiometry into the gene-to-reaction formulations
has enhanced the predictive capabilities of the transcrip-
tome-based model-driven approaches used in this study
at evaluating the effects of the chronic exposure to Al-
drin in DU145 PC cells. The approach presented here
has the potential to be extrapolated to the study of other

cancer types like the NCI-60 cancer cell lines of which
consumption/release metabolic profiles and gene expres-
sion can be retrieved from the CORE database [31].
Thus, the approach we are introducing here is conceptu-
ally new and its results highlight the importance of our
proposal, which paves the way for more accurate ana-
lyses with possible important environmental and clinical
implications.

Methods
Omic datasets preprocessing
Non-targeted metabolomic data, lipidomic data and
cDNA samples for transcriptomics analysis were ob-
tained from a previous study [8] which tackled the lipid
profile alterations in experiments of chronic exposure of
DU145 PC cells to Aldrin, an ED. Sampling of Aldrin-
exposed and non-exposed cells and measurements were
conducted after 50-days-long exposure [8]. Following, it
is explained in more details how the metabolomic, lipi-
domic and transcriptomic data were pre-treated before
being used in our computational analysis.
Metabolomic and lipidomic data analysis: In this work,

lipid and metabolite measurements from non-targeted LC–
MS analysis at time 0 and after 5 h of incubation were used.
Lipidomic data was generated by following the same proto-
col of lipid extraction and analysis as Bedia et al., 2015.
Metabolomic data was obtained as follows: metabolites
from snap-frozen cells were extracted using cold methanol/
chloroform (90:10). After vortexing, mixtures were centri-
fuged 5min at 16000 g. The supernatants were evaporated
and further dissolved in 150 μl of LC–MS mobile phase
[32]. The LC–MS analysis was carried out using a LC–
ESI–HRMS, Orbitrap Exactive HCD (Thermo) with a
HILIC TSK Gel Amide-80 column (250 × 2.1mm, 5 μm

Fig. 3 Pathways over-activation predicted in each method. Bars represent the % of pathway over-activity in Aldrin-exposed cells compared with
non-exposed cells (n° of active reactions in Aldrin-exposed cells/n° of active reactions in non-exposed cells). The non-continuous bars indicate
that a given pathway is predicted to be active only in Aldrin-exposed cells. Its significance was tested with a t-test [28] (p-value < 0.05)
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particle size, Tosoh Bioscience). Elution gradient was
performed using solvent A (acetonitrile) and solvent B
(5 mM of ammonium acetate adjusted to pH 5.5 with
acetic acid) as follows: 0–8 min, linear gradient from 25
to 30% B; 8–10 min, from 30 to 60% B; 10–14 min, 60%
B; 14–20 min, back linearly from 60 to 25% B; and from
20 to 27 min, 25% B.
The resulting chromatogram matrix was compressed

by applying regio-of-interest (ROI) strategy [33] together
with multivariate curve resolution alternating least
squares (MCR-ALS) [34], as previously described in
Marques A.S. et al. 2016 [35]. In brief, ROI approach im-
poses multiple criteria to compress the data matrix with
no loss of information. The used criteria includes: i) a
signal-to-noise ratio threshold (STNRT) above which a
given signal is considered as relevant, ii) a minimum
number of consecutive retention times above the
STNRT and iii) mass accuracy of the mass spectrometer
(Additional file 1).
Next, the relevant molecular masses and retention

times of the lipids and metabolites annotated in the
model were identified by using both home-made and ex-
ternal on-line databases (Human Metabolome Database
[36], Lipid Maps [37] and Human metabolic atlas [38]).
As a result, we were able to determine the abundance of
75 lipids and 169 metabolites at each time point (Add-
itional file 2). Following, the metabolite and lipid con-
sumption/productions were determined by comparing
the peak areas at time 0 and after 5 h in both Aldrin-ex-
posed and non-exposed cells (Fig. 1A). The significance
between the two time-points was determined by Mann-
Whitney test [39]. Thus, for each measured metabolite
we qualitatively determine whether it was significantly
consumed/secreted or not. Both, lipidomic and metabo-
lomic data were used to determine the reliability of the
model predictions.
Transcriptomic data analysis: The gene expression

profiles from Aldrin-exposed and non-exposed DU145
cells were obtained by using HG-U219 array plate (Affy-
metrix inc. California, USA), after 50 days of exposure to
sub-lethal concentration of Aldrin that did not affect the
proliferation rate of tumoral cells. Microarray data was
normalized by using RMA method [40] (Additional file
3) (Fig. 1A). Transcriptomic data was integrated into the
genome-scale metabolic network reconstruction analysis
by applying different computational approaches (Fig. 1C)
[20, 22].

GSMM readjustments/refinement
Genome-scale metabolic model: The computational ana-
lyses performed in this work were based on the generic
Human Metabolic Reaction 2 (HMR2) genome-scale
model [17]. GSMMs are an in silico representation gather-
ing all the metabolic reactions encoded by an organism/

tissue genome. More specifically, HMR2 model describes
8181 reactions, 3765 metabolic genes, 3160 unique metab-
olites and 136 biologic pathways. The model includes
information about the stoichiometry of reactions, their re-
versibility, reaction substrate/products, associated path-
ways and/or enzyme activity. In addition, HMR2 presents
a detailed annotation of lipid-associated metabolism com-
pared with other reconstruction human metabolism,
which makes this model especially well suited for lipido-
mic data integration.
Enabling GSMM for lipidomic and metabolic data inte-

gration: The model was modified to account for the
consumption/production of the lipids and metabolites of
interest. Important alterations in the lipidomic and meta-
bolomic profile of DU145 cells have been associated to
the chronic exposure to Aldrin [8]. Thus, the incorpor-
ation of the exchange reactions of the relevant lipids and
metabolites has enriched our model with the specific fea-
tures of the biological context under study. More specific-
ally two irreversible reactions (exchange reactions), one up
taken and other secreting, were added to all the species
annotated in the model with relevant differences between
groups. No new reactions were added if the exchange re-
action already existed in the model. The model expansion
has allowed determining the goodness of model predic-
tions by comparing predicted metabolic consumption/
production with experimental data (Additional file 4).
Reduction and Refinement: To eliminate those reactions

in the model that cannot carry a flux different to zero
(blocked reactions) [41] a reduction of the model was per-
formed by applying the pruning function implemented in
FASIMU software [42]. This function spots and removes
those reactions that cannot carry a metabolic flux (flux
equal to zero) in any condition. More specifically, if one
reversible reaction has one of both directions blocked, it is
turned into an irreversible reaction. In addition, once these
reactions are removed, the species that no longer partici-
pate in any reaction, (dead-end metabolites) are removed
from the model too (Additional file 4). The models used in
this analysis are in Additional file 6.

Stoichiometric gene-to-reaction association building
In this study we used one of the latest reconstructions of
human metabolism [17], which does not incorporate
GPRs. To enable the integration of transcriptomic data
in this model, we developed an algorithm that extracts
combines and interprets information retrieved from a
variety of data bases [10–12, 43] to automatically build
either GPRs or S-GPRs for each metabolic reaction with
catalytic activity in the model. In brief the algorithm uses
as input the enzyme commission code (EC) of each reac-
tion and the sub-cellular location. The EC code classifies
the enzymes based on the chemical reactions they
catalyze [44]. Thus, each enzymatic reaction in the
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model is described by one EC code (or several in case
the reaction describes a sequence of biochemical reac-
tions catalyzed by a group of enzymes or a complex) that
is associated to an enzyme, isoenzyme and/or complex
that in turns is encoded by one or more genes. The sub-
cellular location is inferred from the compartment of the
metabolites involved in the reaction and it’s used to dis-
criminate those genes encoding isoenzymes and/or com-
plexes with the same catalytic activity but expressed in a
different cellular compartment. Based on the EC code,
the cellular compartment and the associated genes of a
given reaction, the algorithm extracts, combines and in-
terpret the information from different databases by ap-
plying Levenshtein automaton formalism [45] to
generate a semantic tree that is used to build the corre-
sponding S-GPR. Classical GPRs are generated by
merely removing the stoichiometric information from
the S-GPRs (Fig. 1B). The algorithm is written in Python
programming language and can be found in the Add-
itional file 5, the resulting GPRs and S-GPRs are de-
scribed in the Additional file 4.

Flux balance analysis
Flux Balance Analysis (FBA) [46] is one of the most used
constraint-based modeling (CBM) methods in systems
biology. Here, only stoichiometry and thermodynamic
(reaction reversibility) information is required which
makes this approach suitable to analyze large-scale
metabolic networks such as GSMMs. This mathematical
approach determines a space of feasible flux solutions
that is consistent with the stoichiometric and thermo-
dynamic constraints imposed by a given metabolic net-
work. This space of feasible flux solutions can be further
constrained by incorporating different high-throughput
measurements such as transcriptomics. Finally, it is ne-
cessary to define a phenotype in the form of a biological
objective that is relevant to the problem being studied,
the objective function. This objective function is used to
quantitatively define how much each reaction contrib-
utes to the chosen phenotype. Typically, this objective
function is related to the growth rate which is defined by
an artificial biomass production reaction [46]. In sum-
mary FBA enriched with transcriptomic data enables to
determine an optimal metabolic flux profile that fits
with a given phenotype which is described by an object-
ive function. In this work FBA is enhanced by integrat-
ing transcriptomic data via GPRs and S-GPRs. This
integration is performed through four different algo-
rithms developed for this purpose [47] that are depicted
in Fig. 1C.

Transcriptomic data integration
Incorporating stoichiometry into gene-to-reaction asso-
ciations: GPR and S-GPR design: GPR rules enable the

association between gene expression levels and the activ-
ity state of the biochemical reactions in a GSMM. In
brief, genes annotated in the gene-to-reaction associa-
tions are replaced by their corresponding expression
levels (absolute or relative to a control depending on the
used method). Next, the logical “OR”, representing dif-
ferent isoenzymes, is replaced by either “mean” or “max-
imum” operators, which varies depending on the
approach, while the logical “AND”, representing an en-
zymatic complex, is replaced by the operator “mini-
mum”. Here, we introduce a new state-of-the-art GPR:
S-GPR, which take into account the number of tran-
script copies required to generate a fully functional pro-
tein that catalyzes a given reaction (Fig. 1B). Thus, for
example the GPR of a reaction that is catalyzed by a
complex with three subunits one encoded by the gene
“a” and the two others by the gene “b” is: “a and b”,
while the corresponding S-GPR is: “a and 2*b”.
Transcriptomic data integration through GPR and S-

GPR associations: The integration of transcriptomic data
into model-driven methods is based on the inference of
metabolic reactions values by using the expression of the
associated genes. Next, the reaction values are used to de-
termine the activity state of a reconstructed metabolic net-
work in a specific case/tissue/organism. The way in which
transcriptomic data is propagated from genes to reactions
and how reaction values are used to perform a metabolic
network reconstruction analysis vary among the different
integration methods. In the case of GPRs, the normalized
gene expression is integrated with no previous modifica-
tion, whereas in S-GPR, prior to the integration, the ex-
pression of each gene is divided by the number of needed
copies described in the corresponding gene-to-reaction as-
sociation. To determine the improvement at integrating
stoichiometry into the classical GPR (S-GPR), transcrip-
tomic data from Aldrin-exposed and non-exposed was
integrated into a GSMM reconstruction analysis. To this
aim four different algorithms were applied, each of them
being representative of one of the main four approaches
for integrating transcriptomic data into a constraint-based
method (CBM) analysis (Fig. 1C).

Gimme
Gimme algorithm [20] integrates transcriptomic data of
each experimental condition to build a metabolic net-
work that satisfies the thermodynamic and stoichiomet-
ric constraints, while penalizing the inclusion of
reactions catalyzed by genes with expression below a
certain threshold. We proceed as it is indicated in [20].
Gimme was implemented in the computational environ-
ment provided by FASIMU [42]. Gimme classifies reac-
tions as ON or OFF regarding their transcriptomics-
based expression value whether it is over or under
threshold, respectively. Thus, the higher the difference
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between the under-expressed reaction value and the
threshold, the higher the penalty is (Fig. 2A). The chosen
threshold was set at a value that maximizes the number
of reactions that are ON in one condition and OFF in
the other one. To this aim, different thresholds were
evaluated (Additional file 9.II and Additional file 8).

iMat
iMat method [19] assigns to the metabolic reactions a
discrete state (low, moderate or high) based on the ex-
pression of the associated genes in a specific experimen-
tal condition. Next, it seeks a stoichiometric and
thermodynamically consistent steady-state flux solution
while maximizing the number of active reactions associ-
ated with highly expressed genes and minimize the num-
ber of active reactions associated to lowly expressed
genes. It was proceeded as indicated in [19]. To deter-
mine whether a gene is over or under-expressed it is ne-
cessary to define an upper and a lower threshold (Fig.
2B). In this study, the chosen thresholds were those that
provided the highest difference between conditions
(Additional files 9 and 8).

Gonçalves et al. 2012
The method proposed by Gonçalves et al. 2012 [21],
uses relative gene expression values from experimental
conditions and integrates them as continuous expression
levels. This method uses treated gene expression levels
relative to a control to define the upper and lower
bounds of the metabolic reactions. In a first step, it is
performed a parsimonious FBA (pFBA) [48] which is a
two-step variant of FBA and defines the metabolic flux
profile in control group. Next, gene expression of Al-
drin-exposed cells relative to control is integrated
through either GPR or S-GPR. As it is depicted in Fig.
2C, there can be two cases when classifying reactions
into over-activated or under-activated. The boundaries
of the reactions are modified depending on the product
between the relative expression and the control flux of a
concrete reaction and its relationship with the control
flux itself. From that set of inequalities, the method pro-
posed by Gonçalves et al. 2012 creates a new set of rela-
tive-expression-based boundaries for the reactions of the
model. Finally, another pFBA is performed for the rela-
tive expression data sets.

Made
MADE algorithm [22] uses gene expression values
relative to a control and integrates them as discrete
expression levels. This method uses gene expression
levels to determine whether a reaction is up, down-
activated or has the same activity in one condition
relative to a control. These discrete levels are set by
using the log fold change of the reactions based on

the associated genes and the corresponding p-value.
Next, the algorithm finds a solution that is consistent
with maximum number of relative discrete levels
while is constrained by the stoichiometry and thermo-
dynamics imposed by the model. In other words, if a
given reaction is up-regulated in Aldrin-exposed cell
the algorithm will be penalized if provides a solution
in which the reaction is active in control and inactive
in Aldrin-treated cells (Fig. 2D).

Using metabolic and lipidomic data to evaluate the
improvement of using S-GPR
The different computational methods to integrate tran-
scriptomic data via either GPR or S-GPR predicted the
metabolism in non-exposed and Aldrin-exposed cells
(metabolite consumption/production). In order to assess
the reliability of the model predictions and to determine
the improvement associated to the use of S-GPR, a
qualitative comparison is performed between the pre-
dicted metabolic consumption/productions and the
metabolomic and lipidomic experimental measurements.
A Fisher exact test is applied for this purpose [23] (Fig. 1
E and F and Additional file 8).
Metabolic pathway analysis to unveil the metabolic al-

terations associated to the chronic exposure to endo-
crine disruptor in Prostate Cancer.
The phenotype differences associated to the chronic

exposure to Aldrin in DU145 cells should be reflected in
a different activity state of the metabolic reactions be-
tween Aldrin-exposed and non-exposed cells. Thus,
these reactions are of interest to understand the meta-
bolic reprogramming underlying the enhancing of malig-
nancy associated to the chronic exposure to ED in PC.
To this aim, a pathway analysis is performed based on
the reactions that are consistently predicted to have dif-
ferent activity state between control (or non-exposed
cells) and Aldrin-exposed cells with all the methods used
in this work. More specifically, each metabolic reaction
is associated to a given metabolic pathway in the
GSMM, which enables to determine whether a particular
pathway is over or under-active between conditions
using the number of active reactions in each condition.
To this aim, the following procedure was used: All the
reactions which were stated as differentially active in
both experimental conditions from the results of most of
the different transcriptomics-based model-driven ana-
lysis were selected. Next, all pathways from these reac-
tions were tracked down to have a list of the most active
pathways (pathways with more active reactions). This
analysis was performed in each integration analysis for
both experimental conditions. The significance was de-
termined by a t-test analysis. Finally, a bibliographic re-
search was performed in order to find evidences that
support these findings.
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