Chen et al. BMC Genomics (2019) 20:823
https://doi.org/10.1186/s12864-019-6142-y

BMC Genomics

RESEARCH ARTICLE Open Access

DNA methylation profiles capturing breast

cancer heterogeneity

Xiao Chen'", Jianying Zhang®' and Xiaofeng Dai®"

Check for
updates

Abstract

improve breast cancer prognosis at the epigenetic level.

Background: As one of the most described epigenetic marks in human cancers, DNA methylation plays essential
roles in gene expression regulation and has been implicated in the prognosis and therapeutics of many cancers.
We are motivated in this study to explore DNA methylation profiles capturing breast cancer heterogeneity to

Results: Through comparisons on differentially methylated CpG sites among breast cancer subtypes followed by a
sequential validation and functional studies using computational approaches, we propose 313 CpG, corresponding
to 191 genes, whose methylation pattern identifies the triple negative breast cancer subtype, and report cell
migration as represented by extracellular matrix organization and cell proliferation as mediated via MAPK and Wnt
signalings are the primary factors driving breast cancer subtyping.

Conclusions: Our study offers novel CpGs and gene methylation patterns with translational potential on triple
negative breast cancer prognosis, as well as fresh insights from the epigenetic level on breast cancer heterogeneity.

Background

Breast cancers are highly heterogeneous, which can at
least be classified into luminal, HER2 positive (HER2p)
and triple negative (TN) types of tumors given their in-
trinsic differences in the transcriptional expression pat-
tern and clinical outcome association [1, 2]. TN breast
cancers are malignant, lack effective targeted therapy,
and is not homogeneous that complicates its diagnosis
and therapeutics. DNA methylation plays essential roles
in numerous cellular processes such as embryonic devel-
opment, genomic imprinting, cell differentiation and
senescence, deregulation of which contributes to several
human diseases including cancers [2]. DNA methylation
markers are more chemically and biologically stable than
RNA and most proteins [3], thus have emerged as an
important class of diagnostic or prognostic markers [4—
6], with some of which already being applied in clinics
[3]. In this regard, several computational approaches
have been established to model methylation patterns in-
cluding, e.g., Bayesian network that has been applied to
analyze chromatin interactions [7]. Here, we are
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motivated to identify the primary DNA methylation pro-
files that captures the heterogeneity of breast cancers
and can be used to distinguish TN tumors from the rest
breast cancer subtypes, with the aim of identifying epi-
genetic marks or targets facilitating the diagnosis and
therapeutics of TNBCs and gaining insights on the epi-
genetic drivers differentiating breast cancer subtypes.

Results

Primary methylation profiles differentiating breast cancer
subtypes

The overall methylation profile of each breast cancer
subtype, computed as the average of all DNA methyla-
tion sites in each subtype, showed that DNA methylation
status decreases in the order of HER2p, luminal, and TN
subtypes, and the methylation pattern of luminal cancers
is more dispersedly distributed than that of the other
subtypes (as the heterogeneity of luminal cancers is
higher than the other subtypes that can be further
divided into the luminal A and B subtypes) (Fig. 1la).
The difference on overall methylation patterns across
breast cancer subtypes does not reach statistical signifi-
cance (p value from ANOVA is 0.0675), due to stochastic
gains and losses of cellular processes such as senescence at
the population level. However, the results are informative
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in showing observable alterations and patterns of the mode
expression or trend of breast cancer subtypes that does not
necessarily need to be statistically significant. The TN sub-
type has, on average, lower methylation level than the other
two subtypes, suggesting that more genes are acti-
vated in TN breast cancers, a more malignant state of
breast cancers, than the other subtypes [8, 9]. PCA
results showed that TN and luminal cancers can be
well separated along the first principle component
(Fig. 1b, ¢).

Prognostic methylation profiles differentiating breast
cancer subtypes

There are 2690 differentially methylated CpGs between lu-
minal and TN subtypes (Luminal vs TN’, 80.1% of all

differentially methylated CpGs, Fig. 1d), 354 between
HER2p and TN subtypes (HER2p vs. TN’, 10.5% of all dif-
ferentially methylated CpGs, Fig. 1d). There are 183 hyper-
methylated and 130 hypo-methylated CpGs shared between
‘Luminal vs TN” and ‘HER2p vs. TN’ comparisons, which
correspond to 191 differentially methylated genes (Add-
itional file 1: Table S1, S2, S4). Therefore, we obtained 313
CpGs and 191 pDMGs.

Applying the pCpGs to the discovery dataset through
hierarchical clustering showed 4 distinct patterns across
sample subtypes, which correspond to the TN, HER2p
and two luminal sample cohorts (Fig. 2a). Purity test re-
vealed that our pCpGs performs better in identifying TN
tumors (over 90% purity maximum) than differentiating
all the three subtypes (around 80% purity maximum); and



Chen et al. BMC Genomics (2019) 20:823

Page 3 of 12

Boxplot of CpG methylation

HER2p Luminal TN
Subtypes
-40 -20 0 20 4®0

PC1

PCA plot
A n
0.550 R . . 60 N N
. ‘. R i A . A [ -
0525{ [- . | i .| A )
. N T . 30
c s . * A A N L -
o R PN . R . J .
¥ 0.500 pat . subtypes A A A A X subtypes
s LAl e £ HER2p * Ad Al " o HER2p
£ + e & Luminal & ATMA A N L A A Luminal
‘d-.; » a = = TN AA A A. A, o e .l = TN
. . A " ° »
=075 f s A R :‘ A e -
. N . A
A o A A.- ° A
. W -30 Al °
0.450 A ] ]
oA A - ¢ L ] [ ]
N )
. . [ ]
-50 25 0 25 50
PC1
TN vs Luminal TN vs HER2p

Fig. 2 Methylation profiles across breast cancer subtypes in the discovery dataset. (a) Methylation of all CpGs across 3 canonical breast cancer
subtypes. (b) Two-dimentional PCA plot on all CpGs across breast cancer subtypes. (c) Three-dimensional PCA plot on all CpGs across breast
cancer subtypes. (d) Differentially methylated CpGs across different subtype-wise comparisons. The discovery dataset is GSE72251

.

the purity reaches the plateau when the number of clus-
ters reached 3 or above in differentiating TN and non-TN
tumors, implicating the existence of at least three dis-
tinct sample cohorts (excluding HER2) regarding their
methylation profiles (Fig. 2b). PCA analysis revealed
that the first principle component could distinguish
TN and non-TN breast cancers into separate groups,
suggesting that the identified pCpGs could capture
the primary molecular differences between these

subtypes (Fig. 2c). Breast cancer 10-year OS using the
pCpGs suggest patients could be stratified into two
distinct groups regarding their outcome (p =0.0199,
HR =11.53, Fig. 2d).

Performance validation of prognostic methylation profiles
We used the GSE72245 dataset to validate our pCpGs
(Fig. 3a, d, g, j) and TCGA data to validate pDMGs
regarding both the methylation (Fig. 3b, e, h, k) and
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Fig. 3 Performance evaluation of pCpGs using the discovery dataset. (@) Heatmap showing breast cancer subtypes classified using pCpGs.
(b) Purity of clusters obtained from hierarchical clustering using pCpGs. (c) PCA plot coupled with support vector machine in clustering
breast cancer samples based on pCpGs. (d) Kaplan Meier survival curves stratified by pCpGs

transcriptional profiles (Fig. 3¢, f, i, 1), with results be-
ing consistent with those obtained using the discovery
dataset. The alteration directions of methylation and
transcriptional profiles are opposite in pPDMGs (Add-
itional file 1: Table S3).

The ROCs constructed from random forest classifica-
tion using our validation datasets revealed an AUC of

0.88, 0.82, 0.95, respectively, for pCpGs, methylation and
gene expression of pDMGs (Fig. 4).

Six genes (including genes encoding ER, PR, HER2
and their transcription factors MYC, FOXA1, MYBL2)
were removed from PAM50 (the new panel is named
PAM50-6) to exclude their confounding effect on the
classifier, as the ground truth was based on tumor
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Fig. 4 Performance validation of pCpGs and pDMGs using the validation datasets. Heatmaps showing breast cancer subtypes classified
using (@) pCpGs of GSE72245 on gene methylation, pDMGs of TCGA on (b) gene methylation and (c) gene expression. Purity of clusters
obtained from hierarchical clustering using (d) pCpGs of GSE72245 on gene methylation, pDMGs of TCGA on (e) gene methylation, and
(f) gene expression. PCA plot coupled with support vector machine in clustering breast cancer samples using (g) pCpGs of GSE72245
on gene methylation, pDMGs of TCGA on (h) gene methylation, and (i) gene expression. Kaplan Meier survival curves stratified using (j) pCpGs of
GSE72245 on gene methylation, pDMGs of TCGA on (k) gene methylation and (I) gene expression

classification stratified by ER, PR and HER2. The confu-
sion matrix showed that our pDMGs and the PAM50 each
has 563 and 577 samples correctly classified using the
TCGA mRNA data (with the F1_nonTN score being 0.97
for pDMGs and PAM50-6; F1_TN score being 0.70 and
0.79, respectively, for pPDMGs and PAM50-6) (Table 1).

Functional analysis of prognostic methylation genes
The 191 pDMGs were enriched in 32 GO terms and
3 KEGG pathways. The top 10 GO terms fell into 3
categories, which are ‘extracellular matrix organization
and cell movement’, ‘kinase signaling and cell prolifer-
ation’, ‘morphogenesis and cell differentiation’, with
‘extracelluar structure organization’ and ‘extracellular
matrix organization’ being the top 2 (Fig. 5a). The 3
top KEGG pathways are ‘focal adhesion’, “Wnt signal-
ing pathway and ‘Hippo signaling pathway’ (Fig. 5b),
which correspond to ‘cell movement’, ‘cell prolifera-
tion” and ‘cell differentiation” processes, respectively.
Among the 191 pDMGs, 7 genes, MATK, IFI35,
FAMI150B, LBXCORI, WNTI10A, ABLIMI and CPTIA
were found to be significantly differentially methylated and
expressed with opposite clinical associations (Fig. 6). The
hypo-methylation and higher expression of MATK, IFI35,
FAM150B, LBXCORI and WNTIO0A are associated with fa-
vorable patient survival, while those of ABLIMI and
CPTIA are associated with poor patient outcome (Table 2).

Discussion

We identified 313 pCpGs which correspond to 191 pDMGs
capable of distinguishing breast cancer subtypes and espe-
cially identifying TN breast cancers. The performance of
the 191 pDMGs is similar with that of PAM50-6 in identi-
fying non-TNBCs, which has been clinically used for sub-
typing and prognosis as BioClassifier™ [10] and ProSigna®
[11]; however, as a classifier, pPDMGs does not outperform
PAM50-6 due to the small size of TNBC cohort. This sug-
gests that these differentially methylated genes could effect-
ively capture the molecular heterogeneity of breast cancers,
but the power in identifying small size of tumors may be
largely compromised by the restriction that genes need to
be under epigenetic regulation in the epigenetic classifier.

Among these 191 pDMGs, 23 are associated with breast
cancer outcome and driven by differential methylation sta-
tus, given the opposite clinical associations and subtype
distributions between the methylation and gene expression
levels. Out of the 23 pDMGs, 7 have reached statistical sig-
nificance on clinical associations at both methylation and
gene expression levels, which are MATK; IFI35, FAMI150B,
LBXCORI1, WNTI10A, ABLIM1I, CPTIA.

Though not many, several evidence exist to support
the roles of these 7 pDMGs played in carcinogenesis.
MATK encodes the megakaryocyte-associated tyrosine-
protein kinase that can phosphorylate and inactivate the
SRC protein, which is one of the 5 markers used in

Table 1 The confusion matrix of Random Forest classification using the proposed methylation signature

Signature Data type Dataset ™ nonTN I score MCC
F1_TN F1_nonTN

pCpGs Methylation GSE72245 N 7 2 0.67 0.90 0.58
non-TN 5 32

pDMGs Methylation TCGA TN 11 43 0.29 093 0.26
non-TN 12 384

pDMGs mMRNA TCGA TN 44 25 0.70 097 067
non-TN 12 519

PAMS50 mMRNA TCGA N 60 9 0.84 098 0.82
non-TN 14 517

PAM50-6 mRNA TCGA N 55 15 0.79 097 0.76
non-TN 15 515

The values show the number of consistent and inconsistent samples clustered using each signature panel and identified using immunohistochemistry staining. F1
score that captures both false positives and false negatives is used to assess the classification accuracy. TN" and ‘non-TN’ are triple negative and non-triple
negative breast cancers, respectively. PAM50 and PAM50-6 (with ER, PR, HER2, FOXA1, MYC, MYBL2 excluded) are used as a benchmark. ‘F1_TN’ and ‘F1_nonTN’

each refers to F1 scores in identifying TN and non-TN tumors
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ProEx™Br for breast cancer prognosis, in vitro [12]. The
IFI35 gene is located in the centromeric region and 500
kb away from the BRCAI gene in the genome, and sup-
presses NFKB signaling that plays a promotive role in
carcinogenesis [13]. LBXCORI encodes a transcriptional
corepressor of LBX1 and inhibits BMP signaling which
predisposes colorectal cancers [14, 15]. ABLIM1 encodes
the actin binding LIM protein 1, whose over-activation
promotes tumorigenesis in, e.g., brain and pancreas [16,
17]. CPT1IA is involved in the fatty acid oxidation pathway
[18] and has been proposed as a target of cancers such as
nasopharyngeal [19] and prostate [18] carcinomas. It
might be possible that malignant cells have accelerated
metabolism to meet their up-regulated requirements on
biomass production, and targeting CPT1A could kill can-
cers cells through disrupting their fast and efficient fatty
acid oxidation. TNBCs have lower CPT1A expression than
non-TNBCs, suggesting that while accelerated fatty acid
metabolism is a characteristic feature of non-TNBCs, the
malignancy of TNBCs is driven by other mechanisms such
as cell migration and cancer stemness. It was also reported
that dietary fat can perturbate genomic structure by redu-
cing DNA methylation at CPTIA gene [20], suggesting
an over-dose of CPTIA expression on high fat dietary
exposure that contributes to cancer cell malignancy

and warranting our attention to adopting low fat diet-
ary in reducing the risk of developing cancers.

Several of these 7 pDMGs may be novel players or have
novel roles during carcinogenesis and deserve further inves-
tigations. FAM150B hyper-methylation was shown to sup-
press its expression and be associated with poor clinical
outcome (Fig. 7c), where direct evidence between FAM150B
methylation and cancer has not been reported according to
our knowledge. WNT10A functions as an oncogene in renal
cell carcinoma, whose depletion was reported to prevent
tumor growth in vitro and in vivo in melanoma [21]; how-
ever, it shows tumor suppressive roles in breast cancers in
our study which worth further investigations.

The pDMGs identified are largely involved in extracellu-
lar structure organization, the regulation of actin filament-
based process, transmembrane receptor protein serine/
threonine kinase signaling pathway, and connective tissue
development, which are all indispensable during cell move-
ment and known to play critical roles in breast cancer pro-
gression [22]. These pPDMGs are enriched in focal adhesion
according to our KEGG pathway analysis (Fig. 5b), which
promotes breast cancer initiation and progression once
deregulated [23]. MAPK and Wnt pathways are the second
most enriched GO terms or pathways of these pDMGs
following extracellular structure organization and local
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Table 2 Ten years overall survival of breast cancer patients
using the 7 pDMGs associated with clinical outcome

Gene Data Type Hazard Ratio P value

Methylation 040 6.91E-03
ABLIM1

Gene expression 2.03 1.23E-02

Methylation 0.35 3.64E-03
CPT1A

Gene expression 245 8.72E-04

Methylation 1.85 4.84E-02
FAM150B

Gene expression 049 1.53E-02

Methylation 229 4.22E-02
IFI35

Gene expression 0.57 3.53E-02

Methylation 265 8.55E-03
LBXCOR1

Gene expression 0.53 2.18E-02

Methylation 212 2.82E-02
MATK

Gene expression 044 4.77E-03

Methylation 2.96 1.11E-02
WNT10A

Gene expression 0.55 3.23E-02

Cox regression analysis was used. Both methylation status and gene
expression level were used for patient stratification

adhesion. Both MAPK and Wnt signalings have known
connections with carcinogenesis, whose aberration enables
cells with uncontrolled proliferation abilities. MAPK and
Wnt signalings have cross-talks through TGE[ signaling
via a Smad-independent manner [24], and can suppress or
promote each other under different circumstances. For
example, increased MAPK signaling could down-regulate
the Wnt pathway by stabilizing Axin in melanoma, and
Wnt signaling activates the MAPK pathway through Ras
stabilization in colorectal cancers [25, 26].

Conclusion

We identified 313 CpGs, corresponding to 191 differen-
tially methylated genes, which capture the molecular dif-
ferences among breast cancer subtypes with accuracy
equivalent to that of PAMS50. ‘Cell migration’ as repre-
sented by extracellular matrix organization and ‘cell prolif-
eration’ as mediated via MAPK and Wnt signalings were
identified as primary factors stratifying breast cancer sub-
types that are modulated via aberrant methylations. Our
study provides DNA methylation profiles with prognostic
values and clinical translation potential, and offers novel
insights on the driving force orchestrating breast cancer
heterogeneity from the epigenetic perspective.
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Material and methods

Data

The GEO dataset, GSE72251, performed using the Illu-
mina Infinium Human Methylation Beadchip (450 k
array), was retrieved from the NCBI Gene Expression
Omnibus (GEO) database [27] and used as the discovery
dataset, which is consisted of 119 breast cancer samples
and 415,080 CpGs.

The GEO dataset, GSE72245, was retrieved and used
as one validation dataset, which encompasses 118 sam-
ples and 415,080 CpGs.

Both GSE72251 and GSE72245 were preprocessed
by removing high-detection p-values, SNP-containing,
cross-reactive and heterochromosomic probes (which
were replaced by ‘null’) and both datasets were nor-
malized using the peak-based approach. Methylation
and mRNA data as well as clinical information from
The Cancer Genome Atlas (TCGA) [28] were down-
loaded from the cBioportal [29] and used as another
validation dataset. This data is comprised of 550 sam-
ples and 16,474 genes. Based on the assumption that
DNA methylation is a common epigenetic signaling
tool that cells use to lock genes in the ‘off’ state [30],
only the CpG probe showing the strongest negative
correlation with gene expression was kept and used
as the methylation probe of the gene when multiple
probes existed to target one single gene. Besides, as
pCpGs with gene regulatory roles typically occur in
the promoter region of the targeted gene [30], it is
unlikely to select a CpG that is functionally irrelevant
to the gene in question using this function-based ap-
proach, e.g., if a CpG happened to be located in the
3'UTR of gene A and in the promoter region of gene
B, its association could only be possibly found with
gene B but not with gene A.

All samples were classified into triple negative (TN),
HER?2 positive (HER2p) and luminal subtypes accord-
ing to estrogen receptor (ER), progestogen receptor
(PR) and human epithelial receptor 2 (HER2) immu-
nohistochemistry status (i.e., HER2p = ER-PR-HER2+,
luminal = ER + |PR+, TN =ER-PR-HER2-). Although
luminal cancers can be further divided to the A and B
subtypes, they share similar molecular patterns and
are considered as one large class in many studies [31]
including this paper.

Differential methylation analysis

Differential methylation analysis was performed based
on student T test and Bayes theorem using the ‘limma’
[32] package from the Bioconductor [33] package.
Based on the empirical Bayes method (the ‘eBayes’
function), CpG sites specifically hypo-methylated or
hyper-methylated in TN breast cancers were ranked
in the order of the statistical significance of
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methylation difference, where the Benjamin-Hochberg
adjusted P-values <0.01 was used as the significance
threshold.

Survival analysis

The 10-year breast cancer overall survival (OS) analysis
of the selected differentially methylated CpGs or genes
(DMGs) was performed using the methylation profiles
and the clinical data. The analysis was conducted using
the Cox proportional hazards model, with the logrank p-
value less than 0.01 being considered statistically signifi-
cant. We defined CpGs with prognostic significance as
pCpG and genes where pCpG reside in as pDMGs. To
interrogate the prognostic value of a panel of methylation
sites, we implemented a multi-methylation survival ana-
lysis where each methylation site was assigned with 1
(favorable) or O (unfavorable), defined as the prognostic
score, according to the univariate survival analysis; and an
averaged prognostic score of each sample was calculated
by averaging the prognostic scores over all methylation
sites for each sample, and used for sample stratification in
the survival analysis.

Hierarchical clustering and purity analysis

Hierarchical clustering, an unsupervised machine
learning approach, was performed using the Euclidean
or pair-wise sample correlation (1-r, where ‘r’ repre-
sents the correlation) distance and the Ward linkage
[34]. The subtyping performance of pDMGs was
assessed by the purity statistics at cutoffs ranged from
1 to 10. The purity of each cluster was computed by
assigning it to the most represented breast cancer
subtype by its encompassed nodes following the cal-
culation of the fraction of nodes with correct assign-
ment in each cluster.

Principle component analysis and support vector machine
classification

Principle component analysis (PCA) was conducted
using the “prcomp’ function from the ‘base’ package in
R. Support vector machine (SVM) was used to classify
samples projected by PCA via the ‘svm’ function from
the ‘€1071” package in R.

Random forest and receiver operating characteristic curve
construction

Random forest classification was conducted using the
‘randomForest’ function from ‘randomForest’” package in
R. The number of nodes in a tree was determined
through iterations from 1 to ‘n-1" where ‘n’ represents
the sample size, and the one with the minimum error
was picked. Receiver operating characteristic curve
(ROC) and the area under the curve (AUC) were com-
puted using the ‘roc’ function from the pROC’” package
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in R to assess the clustering accuracy. To take both false
positives and false negatives into account in the assess-
ment, F1 score was calculated as below:

Recall x Precision

F1=2
% Recall + Precision

P
TP+FN

where Precision = % and Recall =
Functional analysis
Functional enrichment analysis was performed based on
Gene Ontology (GO) [35] and Kyoto Encyclopedia of
Genes and Genomes database (KEGG [36]) using the R
package ‘clusterProfiler’ [37]. Fisher’s exact test was
utilized to measure the significance of GO terms and
biological pathways. The p-values were adjusted using
Benjamini-Hochberg false discovery rate (FDR), and
p <0.01 was used as the threshold to assess the statis-
tical significance of each test [38]. The overall work-
flow is demonstrated in Fig. 7.
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