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A single factor dominates the behavior of
rhythmic genes in mouse organs
Yang Cheng1, Yuhao Chi1, Luoying Zhang2 and Guang-Zhong Wang1*

Abstract

Background: Circadian rhythm, regulated by both internal and external environment of the body, is a multi-scale
biological oscillator of great complexity. On the molecular level, thousands of genes exhibit rhythmic transcription,
which is both organ- and species-specific, but it remains a mystery whether some common factors could
potentially explain their rhythmicity in different organs. In this study we address this question by analyzing the
transcriptome data in 12 mouse organs to determine such major impacting factors.

Results: We found a strong positive correlation between the transcriptional level and rhythmic amplitude of
circadian rhythmic genes in mouse organs. Further, transcriptional level could explain over 70% of the variation in
amplitude. In addition, the functionality and tissue specificity were not strong predictors of amplitude, and the
expression level of rhythmic genes was linked to the energy consumption associated with transcription.

Conclusion: Expression level is a single major factor impacts the behavior of rhythmic genes in mouse organs. This
single determinant implicates the importance of rhythmic expression itself on the design of the transcriptional
system. So, rhythmic regulation of highly expressed genes can effectively reduce the energetic cost of transcription,
facilitating the long-term adaptive evolution of the entire genetic system.
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Background
Circadian rhythm refers to a 24-h self-sustained oscilla-
tion of physiological processes, which is evolutionarily
conserved [1–5]. In animals, this oscillation coordinates
various physiological activities, including behaviors, such
as sleeping and feeding [6–8]. Surprisingly, this oscilla-
tion exists not only in an individual organism as a whole,
but is also widely detected in the constituting tissues
and single cells [9–13]. Thousands of genes display
rhythmic transcriptional oscillation, as has been deter-
mined by either microarray or RNA sequencing tech-
nologies [10, 12, 14–16]. On single-cell level, almost
every cell utilizes these oscillations to control or regulate

own overall gene expression [9, 17, 18], indicating that
circadian regulation plays a fundamental role in the
transcriptional system.
The core circadian transcriptional network in mam-

mals consists of several important transcription factors,
such as Clock, Bmal1, Per1/Per2, and Cry1/Cry2.
Although the negative feedback loop in the circadian
regulatory network is conserved in different tissues, the
regulated genes in each tissue are distinct from each
other. According to an early study involving microarray
expression profiling, approximately 8–10% expressed
genes are rhythmically regulated in the mouse liver and
heart [10]. Importantly, rhythmically expressed genes in
the two tissues rarely overlap, indicating that these genes
are highly tissue-specific. Tissue specificity of rhythmic
genes was subsequently widely confirmed. Zhang et al.
[14] constructed a circadian gene expression atlas by
using data for 12 mouse organs, and found that approxi-
mately half of the protein-coding genes are expressed
rhythmically, with strong organ-specific signals. Similar,
in humans, more than 7000 genes show rhythmic ex-
pression pattern in at least one of 13 tissues collected;
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12% of these genes are drug targets [16]. A systematic
study of 64 tissues from the baboon indicated that over
80% of protein-coding genes are rhythmically expressed
across the body, with few overlapping [19]. The wide dis-
tribution of rhythmically regulated genes indicates their
importance to the functional specificity of each tissue.
In addition to tissue specificity, rhythmically expressed

genes also exhibit species-specific characteristics. A de-
tailed comparison of 11 tissues in mouse and baboon
suggested that only a small proportion of rhythmically
expressed genes overlap in each tissue, and no signifi-
cant correlation was observed between the numbers of
rhythmic genes in the two species [19]. Further, only 46 out
of 188 rhythmically expressed genes in the epidermis in
humans exhibit strong oscillation (i.e., high amplitude and
cycling) in the epidermis of mouse [15]. The organ- and
species-specific characteristics of rhythmically expressed
genes are two fundamental properties of the circadian regu-
latory network. These properties indicate that the factors
that affect the distribution pattern of rhythmic genes may
be very complex. However, it is unclear whether a single
dominant factor exists.
Here, we aimed to determine whether a single major

factor exists, that influences the expression of rhythmic
genes. By investigating all rhythmically expressed genes in
the circadian gene expression atlas [14], which to date is
the largest circadian atlas for mouse, we have identified
expression level as the key factor that dominates rhythmic
gene expression. It explained the majority of variations in
the circadian amplitude of cyclic genes in 12 mouse
organs. We also examined the role of gene function and
tissue specificity in rhythmic expression. Finally, we sur-
veyed the energy consumed during the expression of
different regions of cyclic genes and explored its effects on
rhythmic expression. Overall, the presented data suggest
that a unified model can potentially be used to explain
rhythmic gene expression in various mouse organs.

Results
Gene expression level explains > 70% of the variation in
amplitude
First, we investigated the distribution of more than 13,
000 rhythmically expressed transcripts in 12 mouse or-
gans [14] and found that their distribution was uneven.
Although the numbers of rhythmic genes varied greatly
from organ to organ (ranging from 180 rhythmic tran-
scripts in the hypothalamus to 3874 transcripts in the
liver), the proportion of rhythmic genes increased with
increasing expression level (Fig. 1a–l). For instance, the
proportion of rhythmic transcripts in the top 20% of
most highly expressed genes was 30 times higher than
that for the bottom 20% of the least expressed genes in
the liver (30% vs. 1%); this ratio was 100 in white fat
(2.8% vs. 0.028%). This indicated that highly expressed

genes have a strong tendency to be regulated by the cir-
cadian network.
Since the proportion of rhythmic genes increased with

the increasing expression levels, we tested the hypothesis
that the transcriptional level of these genes is directly re-
lated to their amplitude, defined as the oscillation
strength of each cycling gene. Unexpectedly, we ob-
served a strong linear correlation between gene tran-
scriptional level and amplitude (P < 1 × 10− 40 in all
organs; Fig. 2a–l). The strongest correlation was appar-
ent in brown fat and the lowest in the brainstem (r =
0.87 and 0.80, respectively; Fig. 2c and d), indicating that
65 to 76% of the variation of amplitude (71% on an aver-
age) could be explained by the transcriptional level (Fig.
2a–l). A strong correlation was also apparent when only
the top 50% of the highly expressed genes were included
in the analysis, indicating that the observation was not
an artifact of the noise of low-abundance transcripts
(Additional file 1: Figure S1).
Microarray data were used for the computational

analyses since the sampling frequency of each tissue
was close to that recommended in the large-scale
analysis of rhythmic expression [20]. The obtained re-
sults were very similar if we use RNA sequencing
data from the mouse circadian atlas for the analysis
(Additional file 2: Figure S2). In addition to JTK_
Cycle, which was originally used to calculate the os-
cillation features in the mouse atlas, we recalculated
the properties of rhythmic genes by using ARSER.
The obtained results were similar to those described
above (Additional file 3: Figure S3).

Gene functionality and tissue specificity are not strong
predictors of amplitude
It is generally assumed that the function of rhythmically
expressed genes is important for their rhythmicity [21,
22]. To test this hypothesis, we explored the relationship
between the functional classification of genes, i.e., Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG), or Reactome annotation terms, and the
cycling amplitude of these genes [23, 24]. Generally, the
amplitude of rhythmic genes did not obviously increase
with the increase of the fold-enrichment of functional
pathways and did not consistently increase with the
enrichment significance (Additional file 4: Table S1 and
Table S2). Further, in 10 out of 12 organs, the average
amplitude of rhythmic genes in the most enriched path-
ways was not the highest for the annotation from bio-
logical process among all the pathways examined (10/12
for the annotation of cellular components and 6/12 for
the annotation of molecular function) (Fig. 3). In
addition, no significant correlation existed between the
pathway fold-enrichment and amplitude among the top
5 most-enriched pathways classified by the GO
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annotation as “cellular component” or the remaining
four annotations (“biological process”, “molecular func-
tion”, KEGG, or Reactome pathways, P > 0.05) (Fig. 3
and Additional file 4: Table S3). We found that this rela-
tionship extended to the enriched pathways in all (12)
organs but was slightly significantly anti-correlated in
Reactome pathway analysis (r = 0.005 for biological

process; r = 0.04 for cellular component; r = − 0.029 for
molecular function; and r = − 0.25 for Reactome pathway
analysis; Additional file 4: Table S4). Finally, the correl-
ation between the mean amplitude and fold-enrichment
of all the cycling gene related pathways is not high, after
controlling for expression level (R2 < 0.1 in all the tissues,
partial correlation test). (Additional file 4: Table S5).

Fig. 1 Proportion of rhythmic genes increases with increasing transcription. All genes expressed in each organ were divided into five groups,
namely, bottom 20%, 20–40%, 40–60%, 60–80%, and top 20% expressed genes, with the grouping depending on the mRNA expression level.
Different colors represent the proportion of rhythmic genes in different groups. a Adrenal gland (n = 558). b Aorta (n = 434). c Brown fat (n =
1411). d Brainstem (n = 183). e Cerebellum (n = 232). f Heart (n = 1008). g Hypothalamus (n = 180). h Kidney (n = 2607). i Liver (n = 3874). j Lung
(n = 2525). k Skeletal muscle (n = 347). l White fat (n = 366). The number of rhythmically expressed genes is noted in parentheses. Proportion of
rhythmic genes was calculated by the number of rhythmically expressed genes in each group divided by the total number of rhythmically
expressed genes in each organ
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Collectively, these data indicated that although the func-
tionality and rhythmicity of the genes are linked, the func-
tionality is not a strong predictor of amplitude compared
with the gene transcriptional level.
Further, we found that tissue specificity was correlated

with amplitude, i.e., the amplitude of genes that were
rhythmically expressed in multiple organs was greater
than that of genes rhythmically expressed in only one
organ. The correlation between the two parameters was
moderate in the 12 organs analyzed (r = 0.26 on average,
P < 0.05 in all organs; Additional file 5: Figure S4A–L).
Further, the expression levels of genes that were cyclic-
ally expressed in multiple organs were higher in some
organs than in others (Additional file 6: Figure S5A–L).

By utilizing partial correlation analysis, we also ob-
served that the effect of tissue specificity did not
explain the correlation between the transcriptional
level and amplitude (0.81 ≤ r ≤ 0.88 after controlling
for the effect of cyclic tissue number; Additional file
4: Table S6). These observations indicated that tissue
specificity is a positive but not strong predictor of
amplitude compared with the transcriptional level. In
addition, we have compared the housekeeping genes
with other genes and little differences between the
amplitude of cycling housekeeping genes and other
cycling genes were found, suggesting that housekeep-
ing gene is not a strong predictor of cycling genes
(Additional file 4: Table S7).

Fig. 2 The amplitude of rhythmic genes strongly correlates with their transcriptional level. Scatter plots, characterizes characterizing the
relationship between the transcript level and the amplitude of the rhythmic genes, are shown for the different organs. a Adrenal gland (n = 558).
b Aorta (n = 434). c Brown fat (n = 1411). d Brainstem (n = 183). e Cerebellum (n = 232). f Heart (n = 1008). g Hypothalamus (n = 180). h Kidney
(n = 2607). i Liver (n = 3874). j Lung (n = 2525). k Skeletal muscle (n = 347). l White fat (n = 366). Amplitude is shown log2-transformed; r represents
the Pearson correlation coefficient and p represents the significance level. Pie chart in each plot shows the percentage of amplitude variation
explained by the expression level of rhythmic genes (R2)
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Fig. 3 Relationship between functional enrichment and amplitude of rhythmic genes. a Biological process. b Cellular component. c Molecular
function. The top 5 significantly enriched (adj. P < 0.05) functional annotations were plotted, with the fold-enrichment increasing from left to right
in each organ. Different colors represent different functional units, which are annotated on the right in each panel. Amplitude
was log2-transformed
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Energetic cost is linked to expression level and explains
the strength of circadian oscillation
Since the transcription of each gene is not cost free, highly
expressed genes require greater energy expenditure during
transcription than genes expressed at a lower level. Down-
regulation of the expression of these genes when they are
not needed serves to reduce the overall metabolic cost in
the cell [25]. We next determined the synthetic cost of the
rhythmic transcripts. Briefly, the energetic cost of each
mRNA molecule was calculated based on the sequence
composition by integrating the energy required for the pre-
cursors during mRNA synthesis, the energy required for
transcription initiation and termination, and the rate of
mRNA degradation. The total energy cost of the transcrip-
tion of each gene was calculated taking into account the
mRNA decay rate and the transcriptional level [25, 26]. As
anticipated, we observed a strong positive correlation be-
tween the expression level of the transcripts and energy
consumption during their transcription (r > 0.75, P < 1 ×
10− 50 in all organs; Additional file 7: Figure S6), implying
that the rhythmical regulation of transcription of highly
expressed genes also determines the energy expenditure.
In addition, we found that although the amounts of

energy consumed during the transcription of 5′ UTR, 3′
UTR, and coding regions are different by several orders
of magnitude, they correlated with the amplitude of
rhythmic transcripts (r > 0.4, P < 1 × 10− 8 in all compari-
sons; Additional file 4: Table S8). This correlation was
stronger for the 5′ UTR region than for the 3′ UTR re-
gion (Additional file 4: Table S8). According to the lin-
ear model, the energy cost of 5′ UTR could explain 31
to 44% of the variation of amplitude; that of 3′ UTR, 19
to 39% variation; and that of coding region, 31 to 49%
variation (Additional file 4: Table S8). Since the three
factors are inter-correlated (r > 0.7, P < 1 × 10− 100 in all
comparisons; Additional file 4: Table S9), we then per-
formed principal component analysis to evaluate the
overall effect of these factors on amplitude. We found
that the first principal component (PC1) accounted for
the most variation, explaining 41.4 to 58.0% (48% on
average) of the variation of amplitude, while PC2 and
PC3 explained only very low percentages of variation in
each organ (Fig. 4 and Additional file 8: Figure S7). Fi-
nally, we permuted the amplitude and repeated the ana-
lysis model of principal components 1000 times. We
found that the explained variations of amplitude were
significantly higher than those identified in permutation
experiments (P < 0.001). Collectively, the presented re-
sults indicate the importance of the regulation of ener-
getic cost for rhythmic gene transcription.

Discussion
In mammals, over 50% of the transcriptome is rhythmic-
ally regulated in at least one organ. Although previous

studies have shown that the expression level of rhyth-
mically expressed genes is higher than that of other
genes [25, 27, 28], the extent to which this factor con-
tributed to the rhythmicity of gene expression remained
unclear. This question is important considering the
possibility of existence of other factors such as different
functional pathways that might govern the expression
rhythmicity, should the expression level exert only a
minor effect on rhythmic gene expression. In the current
study, we showed that the expression level of transcripts
plays a crucial role in determining whether the rhythmic
transcripts are regulated by the circadian regulatory net-
work or not, and that the effect of expression level exceeds
that of other potential factors, such as functionality and
tissue specificity. We further showed that this single factor
can explain > 70% of the variation in the amplitude of
rhythmic transcripts. Further, the higher the expression of
rhythmic genes, the greater the energy expenditure of the
transcription process. Transcriptional systems tend to
downregulate the highly expressed genes when their func-
tion is not necessary.
Circadian rhythms are closely linked with the cellular

metabolism [2, 29]. For instance, the activity of BMAL,
one of the core regulators of the circadian regulatory net-
work, is regulated by the transcriptional repressor REV-
ERB [30, 31]. The findings of the current study suggest
that the output of the circadian regulatory network itself
is an energy-saving strategy for the gene expression
process. Collectively, these lines of evidence indicate that
the regulation of metabolism and metabolic cost are crit-
ical for the evolutionary adaptation of the cell.
The lack of preservation of rhythmic properties among

diverge tissues and organs, or between divergent species,
is different from that of gene function, as the latter is
typically highly evolutionarily conserved. This difference
is a strong indication that the direct link between the
rhythmicity and functionality of the cyclic genes is very
weak. Since the regulation of highly expressed genes is a
major requirement for circadian gene expression, func-
tional pathways that contain many highly expressed
genes are usually over-enriched in cyclic genes, com-
pared with pathways that are expressed relatively weakly.
Pathway analysis of rhythmic gene expression should
take into account the effects of gene expression levels to
obtain an unbiased view of the functional distribution of
those genes, as a warning for interpreting many previous
cyclic pathway analyses.
The observations of the current study indicate that a spe-

cific biological function plays a minor role in determining
the rhythmic gene expression. Since selective downregula-
tion of highly expressed genes is a systematic strategy to re-
duce the energetic cost of transcription, undoubtedly,
under some specific circumstances, the function of a par-
ticular gene could be directly related to its rhythmicity. For

Cheng et al. BMC Genomics          (2019) 20:879 Page 6 of 10



example, PER1, PER2, and PER3 are expressed periodically
in at least 8 of 13 human tissues [16], and Per2 shows ro-
bust rhythmic transcription in the mouse liver [12].
The findings of the current study also indicate that

identification of genes whose function is directly related
to their rhythmic expression pattern is not a trivial task.
Two potential approaches are proposed here for further
consideration. One involves controlling for the effect of
gene expression, as the expression level is the primary
factor determining the rhythmic expression of cyclic
genes. If the expression profile of a particular gene is ro-
bustly rhythmic regardless of whether the gene is over-
expressed or underexpressed in a cell, the function of

the gene may be related to its rhythmicity. Another ap-
proach is controlling for tissue specificity. We are con-
vinced that genes that are rhythmically expressed in
multiple tissues are most likely to be strong candidates for
essential cyclic genes. Ultimately, one may find that, con-
trary to the current widespread observations that the ma-
jority of transcribed genes are rhythmically expressed, only
a small fraction of these genes are essential cyclic genes.

Conclusions
We here showed that the transcriptional level is the sin-
gle factor that dominates the behavior of rhythmic genes
in mouse organs. In mouse, on the molecular level, the

Fig. 4 Variation of amplitude explained by the energetic cost. As shown, 40 to 60% of the variation of amplitude can be explained by the
energetic cost of rhythmic genes. PC1 contributes the most to the amplitude variation, while PC2 and PC3 contribute very little. a Adrenal gland
(n = 558). b Aorta (n = 434). c Brown fat (n = 1411). e Brainstem (n = 183). e Cerebellum (n = 232). f Heart (n = 1008). g Hypothalamus (n = 180). h
Kidney (n = 2607). i Liver (n = 3874). j Lung (n = 2525). k Skeletal muscle (n = 347). l White fat (n = 366). Pie charts represent the percentage of
amplitude that can be explained by each principal component. Red, percentage of variation explained by PC1; green, percentage of variation
explained by the PC2 and PC3; white, unexplained variation
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circadian regulatory network mainly regulates highly
expressed genes rather than other genes, to reduce the
overall energetic cost. Although many key genes influen-
cing the circadian behavior have been identified in the
past decades, big gaps still exist to obtain a full explan-
ation of the circadian behavioral phenotypes based on
the underlying plethora of molecular activities.

Methods
Data collection
The expression profiles of all transcripts from 12 organs of
mouse (Mus musculus) were derived from the mouse
circadian gene expression atlas (last accessed on August,
2018), which is currently the largest repository for rhythmic
expression data for mouse [14]. The parameters of rhyth-
mic gene expression were calculated by using JTK_ Cycle
[32, 33], with adjusted P < 0.05 (Benjamini-Hochberg–cor-
rected) as the cutoff for identifying cycling genes. Ampli-
tude refers to a one-cycle median sign-adjusted deviation
from the median expression, and was calculated by using
JTK_Cycle. Only genes with assigned expression values
across all time points in a particular tissue were considered
“expressed” and used in the analysis. Almost half of the
expressed transcripts are rhythmically transcribed [14].
Finally, similar parameters were calculated by ARSER to
double check the primarily results. The parameters for
determining the energetic cost of each mRNA molecule,
such as the synthesis energy required, were derived from
the determinations for the yeast metabolic system and
based on the number of activated phosphate bonds (~P)
[26]. The genome-wide mRNA degradation rates were
determined by metabolic pulse labeling, as previously re-
ported [34]. The analyses were made under the assumption
that the degradation rate is primarily determined by
the mRNA sequence and relatively consistent at dif-
ferent rhythmic time points.

Functional analysis
To determine whether functional classification exerts a
dominant influence on the amplitude of rhythmic genes,
enrichment analysis of cycling genes in each organ was
performed by utilizing clusterprofiler [35] and the
database for annotation, visualization, and integrated
discovery (DAVID) (https://david.ncifcrf.gov/) [36, 37]
and the Reactome pathway website (https://reactome.org/)
[38, 39]. GO analysis (enrichment for “Biological process”,
“Cellular component”, and “Molecular function”) and
KEGG pathway analysis were performed by using the
former; Reactome biological pathways were analyzed by
using the latter. Background gene list was set containing
all the expressed genes in each tissue. Both fold-
enrichment value and significance value (p) from the ana-
lysis were used as indicators for the strength of cycling
gene enrichment in a specific functional category. Log (p)

values were used to facilitate downstream analysis. Finally,
for each enriched pathway, the average amplitude of rhyth-
mic genes was calculated and correlated with the enrich-
ment strength by using R codes. For instance, for the
“Biological process” analysis in liver, all the 5822 terms
were considered as the background functional term list,
and all the 2632 cycling genes detected in liver were used
to search for the enriched pathways, with multiple testing
correction. The results show that 499 pathways were
enriched (P < 0.05, BH-correction). Other enrichment ana-
lyses were performed similarly.

Calculation of the energetic cost of mRNA
The energetic cost of mRNA was determined by the
amount of activated phosphate bonds (~P) as described
previously [25, 26]. The synthesis cost for each mRNA
molecule is mainly determined by the energy usage of
synthesizing each nucleotide and the nucleotide compos-
ition of mRNA. Hence, both the synthesis cost of single
mRNA molecule and its copy number were considered
in each calculation. To distinguish the cost effects of dif-
ferent transcriptional regions on the amplitude, the en-
ergetic costs of 3′ UTR, 5′ UTR, and coding regions
were calculated separately. Overall, 30,720,384 tran-
scripts were analyzed. The cost for each mouse gene is
listed in Additional file 9: Table S10.

Linear regression analysis
Linear regression analysis was used to quantifying the
relationship between the transcription level and ampli-
tude of rhythmic genes. Averaged expression from dif-
ferent sampling time points was calculated for each
organ. Logarithm of the averaged expression was then
correlated with the logarithm of amplitude value of each
rhythmic gene. To describe the extent to which the
changes in expression affected the changes in amplitude,
the coefficient of determination in the linear regression
was calculated. As in a typical common interpretation of
linear regression analysis, R2 was used to indicate the
contribution of the transcription level to the variance of
amplitude, namely, the explained variation of the ampli-
tude of rhythmic genes.
To examine whether the proportion of cycling genes

increases with the increasing transcription, the average
expression levels in each organ were used. All the
expressed genes in each organ were divided into five
groups according to expression level (top 20%, 20–40%,
40–60%, 60–80%, and bottom 20%). The proportion of
cycling genes in each category was calculated as the
number of cycling genes in that category divided by the
total number of cycling genes. Following this strategy,
“top 50% highly expressed genes” was defined as the top
half of all genes with assigned expression values at all
sampling time points in each tissue. This gene set was
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then used to determine the existence of correlation
between the expression level and amplitude of highly
expressed genes.

Principal component analysis
Principal component analysis was used to evaluate the
overall contribution of energetic cost to the amplitude of
rhythmic genes. That was because although the ener-
getic cost of 5′ UTR, 3′ UTR, and the coding region of
rhythmic transcription strongly correlated with ampli-
tude, these three variables were also significantly interre-
lated. The dimensionality of these factors was reduced
by using the principal component analysis [40]. The ana-
lysis was performed using the formula: amplitude ~ cost
of 5′ UTR + cost of 3′ UTR + cost of coding region.
Overall, all genes containing 5′ UTR and 3′ UTR re-
gions (19,622 genes) were included in the analysis. In
the permutation experiments, the amplitude value of
rhythmic genes was shuffled 1000 times; for each time
point, the principal component analysis was performed,
and the explained effect of energetic cost on amplitude
was determined. Energetic cost and amplitude values
were log-transformed for all the above analyses.

Partial correlation test
Analyses indicated that for rhythmic genes, the ampli-
tude slightly increases as the cyclic tissue number in-
creases. Cyclic tissue number was defined as the number
of tissues in which a particular transcript exhibits rhyth-
mic expression. To investigate whether the correlation
between transcription level and amplitude existed after
controlling for this effect, a partial correlation test was
used. Partial correlation coefficients were calculated for
each organ [41].

Statistical analysis
The analysis and processing of all the data were per-
formed by using R software. The “stats” package was
used for the linear regression analysis and principal
component analysis, and “ggm” package was used for
the partial correlation test.
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