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Abstract

Background: Comprehensive molecular profiling of various cancers and other diseases has generated vast
amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression,
miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature
spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to
mining multi-omics data hold great promises in uncovering intricate relationships among molecular features.
However, due to the “big p, small n” problem (i.e., small sample sizes with high-dimensional features), training a
large-scale generalizable deep learning model with multi-omics data alone is very challenging.

Results: We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that
can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our
method learns feature and patient embeddings simultaneously with deep representation learning. Both feature
representations and patient representations are subject to certain constraints specified as regularization terms in the
training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good
inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive
experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological
interaction networks using our proposed method for predicting target clinical variables.

Conclusions: To alleviate the overfitting problem in deep learning on multi-omics data with the “big p, small n”
problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very
promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data
and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical
features.
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Background

With the fast adoption of Next Generation Sequencing
(NGS) technologies, petabytes of genomic, transcrip-
tomic, proteomic, and epigenomic data (collectively called
multi-omics data) have been accumulated in the past
decade. Notably, The Cancer Genome Atlas (TCGA)
Network [1] alone had generated over one petabyte of
multi-omics data for comprehensive molecular profiling
of over 11,000 patients from 33 cancer types. Multi-
omics data includes multiple types of -omics data, each
of which represents one view and has a different fea-
ture set (for instance, gene expressions, miRNA expres-
sions, and so on). Since multiple views for the same
patients can provide complementary information, inte-
grative analysis of multi-omics data with machine learning
approaches has great potentials to elucidate the molec-
ular underpinning of disease etiology. However, due to
the “big p, small n” problem, many statistical machine
learning approaches that require lots of training data
may fail to extract true signals from multi-omics data
alone.

Deep learning has achieved great success in computer
vision, speech recognition, natural language processing
and many other fields in the past decade [2]. However,
deep learning models often require large amounts of
annotated training data with clearly defined structures
(such as images, audio, and natural languages), and can-
not be directly applied to multi-omic data with unclear
structures among features and a small sample size. Novel
model architectures and learning strategies need to be
invented to address the challenge of learning from multi-
omics data with heterogeneous features and the “big p,
small n” problem.

In this paper, we present a framework called Multi-view
Factorization AutoEncoder (MAE) with network con-
straints [3], combining multi-view learning [4] and matrix
factorization [5] with deep learning for integrating multi-
omics data with biological domain knowledge. The MAE
model consists of multiple autoencoders as submodules
(one for each data view), and a submodule that combines
individual views. The model facilitates learning feature
and patient embeddings simultaneously with deep repre-
sentation learning. Importantly, we incorporate domain
knowledge such as biological interaction networks into
the model training objective to ensure the learned feature
embeddings are consistent with the domain knowledge.

Besides the molecular interaction networks, we can con-
struct multiple patient similarity networks based on the
learned patient embeddings from individual views. We
included patient similarity network constraints to ensure
these similarity networks for the same set of patients are
consistent with each other. Equipped with feature interac-
tion and patient similarity network constraints, our model
achieved better performance than traditional machine
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learning methods and conventional deep learning mod-
els without using domain knowledge on the TCGA
datasets [1].

Related work

Many genetic disease studies focus on molecular char-
acterization of individual disease types [1, 6], employ-
ing mainly statistical analyses to find associations among
molecular and clinical features. Machine learning has
been applied to individual -omics data types [7] and to
integrate multi-omics data [8, 9]. Because most existing
deep learning models cannot handle the “big p, small n”
problem effectively, many traditional machine learning
methods (such as logistic regression [7], random forest [8],
and similarity network fusion [9]) have been applied to
-omics data.

Comprehensive multi-omics data analysis with machine
learning has been a frontier in cancer genomics [1, 10,
11]. Unsupervised clustering approaches (such as iCluster
[12], SNF [13], ANF [14], etc.) are popular for multi-
omics data analysis as annotated labels are often lacking in
biomedical data. Probabilistic models [12] and network-
based regularization [15] have been employed to learn
from multi-omics data. Recently, deep learning has been
applied to sequencing data [16, 17], imaging data [18],
medical records [19], etc. However, most existing deep
learning methods focused on individual data types instead
of integrating multi-omics data. Multi-view learning pro-
vides a natural framework for learning from multimodal
data. Typical techniques for multi-view learning include
co-training, co-regularization, and margin consistency
approaches [4]. Combining deep learning with multi-view
learning more effectively is still active research [4]. There
are multiple ways to incorporate biological networks as
inductive biases into a deep learning model. Besides net-
work regularization approaches, directly encoding biolog-
ical networks into the model architecture is also possible
[20, 21], which usually requires subcellular hierarchi-
cal molecular networks as the prior knowledge. Because
high-quality human data is lacking (human biological
interaction networks such as protein-protein interaction
networks are still incomplete and noisy), network reg-
ularization approaches are often preferable to directly
encoding the noisy interaction network into the model
architecture.

Multi-modality deep learning [22] has been success-
fully applied to integrate audio and video features [23]
by employing shared feature representations. However,
many multi-modality deep learning models still rely on
large amounts of training data and do not facilitate knowl-
edge integration. Our method can learn feature and
patient embeddings simultaneously with the integration
of domain knowledge to learn robust and generalizable
deep learning models.
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Many multi-view learning techniques have been pro-
posed [24, 25]. Many of these methods learn transforma-
tions that map each view to a latent space and reconstruct
the original data from the latent space representation (i.e.,
adopting an AutoEncoder architecture). Importantly, they
may add additional constraints to ensure the latent fea-
tures for multiple views are highly correlated [24]. Our
model also adopted the Multi-view AutoEncoder archi-
tecture as the model backbone, but we chose different
regularization schemes for incorporating domain knowl-
edge as inductive biases into the model. We do not assume
the latent spaces learned for each view to be “canonically
correlated” Instead, the learned feature representations
should be consistent with the domain knowledge such
as gene-gene and miRNA-miRNA interaction networks.
As the gene-gene interaction network and the miRNA-
miRNA interaction network are very different, the cor-
responding gene and miRNA feature interactions can be
very different as well. Importantly, we are focusing on the
multi-omics data, of which each feature (such as a gene)
has a clear biological meaning and the feature interactions
have been captured as domain knowledge, while many
other proposed multi-view learning methods deal with
data without “biologically meaningful” features (for exam-
ple, in image data, individual pixels are not informative at
all, but their arrangement and structure do contain infor-
mation). While other widely used multi-view learning
methods [22, 24, 25] focus on how to effectively utilize fea-
ture correlation among different views to improve model
performance, our main focus in this paper is to demon-
strate that biological interaction networks as an "external"
domain knowledge source can be effectively incorporated
into deep learning models through network regularization
to improve model generalizability for multi-omics data
analysis.

Our main contribution can be summarized as follows.
We proposed a Multi-view AutoEncoder model with net-
work constraints for the integrative analysis of multi-
omics data. Our model learns good representations for
both molecular entities and patients simultaneously and
facilitates mining relationships among molecular features
and clinical features. Most importantly, we demonstrated
that “external” domain knowledge sources such as bio-
logical interaction networks can be incorporated into the
model as inductive biases, which could improve model
generalizability and reduce the risk of overfitting in the
“big p, small n” problem. We devised novel network reg-
ularizers that will “force” the learned feature representa-
tions to be consistent with domain knowledge, effectively
reducing the search space for good feature embeddings.
We have performed extensive experiments and showed
that the models trained with domain knowledge out-
performed those without using domain knowledge. Our
work provides a proof-of-concept framework for unifying
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data-driven and knowledge-driven approaches for mining
multi-omics data with biological knowledge.

Methods and implementation

Our method builds upon matrix factorization [5], multi-
view learning, and deep learning. We will describe each
component in the following section.

Some notations Given N samples and V types of -omics
data, we can often represent the data using V sample-
feature matrices: M@ e RN j = 1,2,...,V. Each
matrix corresponds to one data view, and p'? is the feature
dimension for view i.

Before describing Multi-view Factorization AutoEn-
coder, we first discuss how to process individual views. For
ease of description, we drop the superscript ) when deal-
ing with a single view. For matrix M, M;; represents the
element of ith row and jth column, M; . represents the ith
row vector, and M. ; represents jth column vector.

Let M € RN*? be a feature matrix, with each row corre-
sponding to a sample and each column corresponding to a
feature. The features are often not independent. We repre-
sent the interactions among these features with a network
G € RPXP. For instance, if these features correspond
to protein expressions, then G will be a protein-protein
interaction network, which is available in public databases
such as STRING [26] and Reactome [27]. G can be an
unweighted graph or a weighted graph with non-negative
elements. Let D be a diagonal matrix with D;; = Zle Gjj,
then the graph Laplacian of Gis Lg = D — G.

Low-rank matrix factorization
Matrix factorization techniques [5] are widely used for
clustering and dimensionality reduction. In many real-
world applications, M often has a low rank. As a result,
low-rank matrix factorization can be used for dimension-
ality reduction and clustering:

M ~ XY, where X € RVXK Y ¢ RK>? |k < p

Some additional constraints are often added as regular-
izers in the objective function or enforced in the learning
algorithm to find a good solution {X,Y}. For instance,
when M is non-negative, Non-negative Matrix Factoriza-
tion (NMF) [28] is often a “natural” choice to ensure both
X and Y are non-negative.

Generally speaking, the objective function can be for-
mulated as follows:

arg min M — XY|% + AR(X,Y) (1)

In Eq. 1, R(X,Y) is a regularization term for X and Y.
For instance, R(X,Y) can include L; and Ly norms for X
and Y. In addition, structural constraints based on bio-
logical interaction networks can also be incorporated into
R(X,Y).
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Interpretation X € RN*K can be regarded as a sample-
factor matrix and the inherent non-redundant represen-
tation of N samples, with each column corresponding to
an independent factor. These k factors are often latent
variables. Y € R¥*” can be seen as a linear transforma-
tion matrix. The k rows of Y can be regarded as a basis for
the underlying factor space. The observable feature matrix
M is generated by a linear transformation Y from X. In
a sense, this formulation can be seen as a shallow linear
generative model.

Limitations The limitations of matrix factorization tech-
niques often stem from their “shallow” linear structure
with a limited representation power. In many real-world
applications, however, we need to learn a complex nonlin-
ear transformation. Deep neural networks are often good
at approximating any complex nonlinear transformations
with appropriate training on a sufficiently large dataset.

Non-linear factorization with AutoEncoder
As simple matrix factorization techniques are limited
to model complex nonlinear relationships, we can use
an Autoencoder to reconstruct the observable sample-
feature matrix M, as it can approximate more complex
nonlinear transformations well.

The entire Autoencoder is a multi-layer neural network
with a encoder and a decoder. We use a neural network
with parameter ®, as the encoder:

Encoder(M, ©,) = X € RN*k (2)

Here X can be regarded as a factor matrix containing the
essential information for all N samples. The encoder net-
work will transform the observable sample-feature matrix
M to its latent representation X. The decoder reconstructs
the original data from the latent representation.

Decoder(X, ©q) = Z € RN*? (3)

In our framework, for the convenience of incorporating
biological interaction networks into the framework, the
encoder (Eq. 2) contains all layers but the last one, and the
decoder is the last linear layer. The parameter of decoder
(Eq. 3) is a linear transformation matrix same as in matrix
factorization:

Oq =Y € RF*? (4)

The input sample-feature matrix can be reconstructed
as

Z = Encoder(M, ®.) - Y = XY (5)

The reconstruction error can be computed as:
IM - Z]3.

Different from matrix factorization—-which can be
regarded as a one-layer AutoEncoder, the encoder in our
framework is a multi-layer neural network that can learn
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complex nonlinear transformations through backpropa-
gation. Moreover, the encoder output X can be regarded
as the learned patient representations for N samples, and
Y can be seen as the learned feature representations. With
the learned patient and feature representations, we can
calculate patient similarity networks and feature inter-
action networks, and add network regularizers to the
objective function.

Incorporate biological knowledge as network regularizers
We aim to incorporate biological knowledge such as
molecular interaction networks into our model as induc-
tive biases to increase model generalizability. Denote G €
RP*P as the interaction matrix among p genomic features,
which can be obtained from biological databases such as
STRING [26] and Reactome [27].

Since our model can learn a feature representation Y,
this representation should ideally be “consistent” with the
biological interaction network corresponding to these fea-
tures. We use a graph Laplacian regularizer to minimize
the inconsistency between the learned feature representa-
tion Y and the feature interaction network G:

L2
Trace (YLgYT> =3 Z Z GyllY.; — Y-,j||2 (6)
i=1 j=1

Lg is the graph Laplacian matrix of G in Eq. 6. G;; > 0
captures how “similar” feature i and feature j are. Each fea-
ture i is represented as a k-dimensional vector Y.;. We
can calculate the Euclidean distance between feature i and
jas [IY.; — Y |l. The term Trace (YL(;YT) is a surro-
gate for measuring the inconsistency between the learned
feature representation Y and the known feature interac-
tion network G. When Y is highly inconsistent with G,
the loss term Trace(YLgYT), which accounts for the level
of inconsistency between the learned feature representa-
tion and the biological interaction network, will be large.
Therefore, minimizing the loss function can effectively
reduce the inconsistency between the learned feature rep-
resentation and the biological interaction network.

The objective function incorporating biological interac-
tion networks through the graph Laplacian regularizer is
as follows:

arg{)nig IM — Z||12_~ + a Trace (Y -Lg ~YT> (7)

In Eq. 7, « > 0 is a hyperparameter as the weight for
the network regularization term. In practice, we normal-
ize G and Y so that the Trace (Y - Lg - YT) is within the
range of [ 0, 1]. In the implementation of our model, we set

Gl = 1, 1Yl = ﬁ,i = 1,2,---,p (this also means
IY[r = 1). This facilitates easy multi-view integration

since all the network regularizers from individual views
are on the same scale.
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Measuring feature similarity with mutual information
Eq. 6 uses Euclidean distance to measure the dissimilarity
between learned feature representations. Euclidean dis-
tance relies on the inner product operator, which is essen-
tially linear. The fact that two molecular entities interact
with each other does not imply that they should have
very similar feature representations or a small Euclidean
distance. Mutual information can be a better metric quan-
tifying if two molecular entities interact with each other.
Let’s briefly review the definition of mutual information
between two random variables X and Y.

IX,Y) = HX) — HX|Y)
= H(Y) — HY|X)
=HX)+HY)-HX,Y)

For discrete random variable X ~ P(x) (P(x) is the dis-
crete probability distribution of X), the entropy of X is
definedas HX) =), P(x)log%.

The observed sample-feature matrix M € RN*? can be
used to measure the pair-wise mutual information scores
between feature i and j: Mutuallnfo(M. ;, M. ;). However,
due to measurement noise and error, this may not be
accurate.

Ideally, the reconstructed signal with the proposed
autoencoder model should reduce the noise in the data.
Thus we can calculate pair-wise normalized mutual infor-
mation scores using the reconstructed signal Z (Eq. 5):

K = PairwiseMutuallnformation(Z) € RP*P

K can be regarded as a learned similarity matrix based
on mutual information. Again we want to ensure that the
learned similarity matrix is consistent with the known
biological interaction network G. We can estimate the
consistency between G and K as:

IG O K|2 8)

@ is element-wise matrix multiplication. As G and K
are normalized feature interaction network and pairwise
feature mutual information matrix, the norm of their
element-wise multiplication can be an estimate of the
consistency between G and K. We inject this mutual
information regularization term into Eq. 9:

arg min ||[M — Encoder(M, ®g) - Y||12_~
Oe,Y

+ o Trace (Y -Lg - YT> ©)
~yIGOK|?

«,y are non-negative hyperparameters. There are
numerical methods to measure the mutual information
between two continuous high-dimensional random vari-
ables. The simplest approach is to divide the continuous
space into small bins and discretize the variables with
these bins. In order to estimate mutual information from
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data accurately, a large sample size is needed. Due to
the difficulty in accurately calculating mutual informa-
tion based on a limited number of data points, we do
not include mutual information term in the following
discussion and leave this for future work.

Multi-view factorization AutoEncoder with network
constraints

We have given the objective function for a single view in
Eq. 7. For multiple views, the objective can be formulated
as follows:

1%
2
arg min Z <HM(") — Encoder (M(V), @e(v)> YW
{9:M,Y"} =1 E
4o Trace <Y(") -Lgw ~Y(V)T>)
(10)

Note we use a separate autoencoder for each view.
We try to minimize the reconstruction loss and feature
interaction network regularizers for all views in Eq. 10.

Here Encoder(M®™,0.") = X® can be seen as the
learned latent representation for N samples. We can
derive patient similarity network S (which can also be
used for clustering patients into groups) from X, Multi-
ple approaches can be employed to calculate a patient sim-
ilarity network. For example, we can use cosine similarity:

1X,. - X, |

Sj=—0 "I (11)
TN 1,

We can get a patient similarity network S for each
view v (Eq. 11 omits the superscript for clarity). Moreover,
the outputs of multiple encoders can be “fused” together
for supervised learning.

v v
X = Z XW = ZEncoder (M(V), ®e(")> (12)

=1 v=1

This idea is similar to ResNet [29]. Another approach is
to concatenate all views together like DenseNet [30]. We
have tried using both in our experiments and the results
are not significantly different.

With the fused view X, we can again calculate the
patient similarity network Sy using Eq. 11. Moreover,
since Sy, andS™,v = 1,2,---, V are for the same set of
patients, we can fuse them together using affinity network
fusion [14]:

Vv
1
§ = SV +s
v (250

i=1

(13)

Similar to the feature interaction network regularizer
(Eq. 6), we also include a regularization term on the
patient view similarity:
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Trace (X(")T -Lg- X(V)) (14)
Here Lg is the graph Laplacian of S. Adding this term to
Eq. 10, we get the new objective function:

v

2
arg min Z (HM(") — Encoder (M(V), @e(v)> LYW
CRER ) o F

+ «a Trace <Y<V) -Lgw 'Y(")T)

+8 Trace (X(")T -Lg - X(V)))
(15)

For each type of -omic data, there is one correspond-
ing feature interaction network G"). Different molecular
interaction networks involve distinct feature sets and thus
cannot be directly merged. However, patient similarity
networks are about the same set of patients, and therefore
can be combined to get a fused patient similarity network
S using techniques such as affinity network fusion [14].
Our framework uses both molecular interaction networks
and patient similarity networks for regularized learning.

Supervised learning with multi-view factorization
autoencoder

With multi-view data and feature interaction networks,
our framework with the objective function Eq. 7 can be
used for unsupervised learning. When labeled data is
available, we can use our model for supervised learning by
adding another loss term to Eq. 7:

v
argmin £(T, (Z Encoder (M("), @e("))> .C)

{9,y

|4
+1y (HM<V> — Encoder (M), 0,7 - Y
v=1

v=1

!

1%
+« Z Trace (Y(") -Lgw - Y(")T)
v=1
1%
+B Y Trace (xMT ‘Lg- x(V))
v=1

(16)

The first term L£(T, (ZLI Encoder (M("), @e("))) -C)is
the classification loss (e.g., cross entropy loss) or regres-
sion loss (e.g., mean squared error for continuous target
variables) for supervised learning. T is the true class labels
or other target variables available for training the model.

As in Eq. 12, Y.V Encoder (M®,0") is the sum
of the last hidden layers of V' autoencoders. This also
represents the learned patient representations com-
bining multiple views. C is the weights for the last
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fully connected layer typically used in neural net-
work models for classification tasks. The second term

V1 (IM® = Encoder (M®, ©) - Y1) i the
reconstruction loss for all the submodule autoencoders.
The third and four terms are the graph Laplacian con-
straints for molecular interaction networks and patient
similarity networks as in Eq. 6 and Eq. 14. n,«, B are
non-negative hyperparameters adjusting the weights of
the reconstruction loss, feature interaction network loss,
and patient similarity network loss.

A simple illustration of the whole framework combining
two views with two-hidden-layer autoencoders is depicted
in Fig. 1. The whole framework is end-to-end differen-
tiable. We implemented the model using PyTorch (https://
github.com/BeautyOfWeb/Multiview- AutoEncoder).

Results and discussion

Datasets

We downloaded and processed two datasets from The
Cancer Genome Atlas (TCGA): Bladder Urothelial Carci-
noma (BLCA) and Brain Lower Grade Glioma (LGG). 338
patients from the BLCA project and 423 patients from the
LGG project were selected for downstream analysis, all of
which have gene expression, miRNA expression, protein
expression, and DNA methylation as well as clinical data
available.

Target clinical variable

The main target variable is the Progression-Free Inter-
val (PFI) event. PFI is a derived clinical (binary) outcome
endpoint [31], which is relatively accurate and is recom-
mended to use for predictive tasks [31]. PFI=1 implies
the treatment outcome is unfavorable. For example, the
patient had a new tumor event in a fixed period, such as
a progression of disease, local recurrence, distant metas-
tasis, new primary tumors, or died with cancer without a
new tumor event. PFI=0 means the patient did not have
a new tumor event or was censored in a fixed period. We
are trying to predict the Progression-Free Interval (PFI)
event using four types of -omics data (i.e., gene expres-
sion, miRNA expression, protein expression, and DNA
methylation). As this is a binary classification problem, we
used Average Precision and AUC (Area Under the ROC
Curve) score as the main metrics to evaluate classification
performances. The results using other metrics are similar.

Data preprocessing

We performed log transformation and removed outliers
for gene features. Four thousand nine hundred forty two
gene features were kept for downstream analysis after fil-
tering out genes with either low mean or low variance. We
removed features with low mean and variance for DNA
methylation data. Four thousand seven hundred fifty three
methylation features (i.e., beta values associated with CpG
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Fig. 1 A simple illustration of the proposed framework with two data views, each with an encoder and a decoder. Different views are fused in the
latent space and the fused view is used for supervised learning. Feature interaction networks are incorporated as regularizers into the training

islands) were selected for analysis. We also performed
log transformation and removed outliers for miRNA fea-
tures. We removed nine protein expression features with
NA values. In total, 10,546 features were selected for
downstream analysis. For each type of features, we nor-
malize it to have zero mean and standard deviation
equal to 1.

Molecular interaction networks We downloaded the
protein-protein interaction network from the STRING
(v10.5) database [26] (https://string-db.org/), which con-
tains more than ten million protein-protein interactions
with confidence scores between 0 and 1000. We filtered
out most interaction edges with low confidence scores and
selected about 1.5 million interaction edges with confi-
dence scores at least 400. We extracted a subnetwork from
this PPI interaction network for gene and protein expres-
sion features. Since the gene-gene interaction network is
too sparse, we performed a one-step random walk (i.e.,
multiplying the interaction network by itself), removed
outliers and normalized it. For miRNA and methylation
features, we first map to miRNA/methylation to gene
(protein) features and then calculate a miRNA-miRNA
and a methylation-methylation interaction network. Take
miRNA data as an example. Let M,,ir—pro be the adja-
cency matrix for the miRNA-protein mapping (this matrix
is derived from miRDB (http://www.mirdb.org) miRNA
target prediction scores), and Mp,_pr be the protein-
protein interaction network, then the miRNA-miRNA
interaction network M,,;ir—mir is calculated as follows:

T
MyyiR—mir = MmiR—pro : Mpro—pro ' MmiR—pro

All the four feature interaction matrices are normalized to
have a Frobenius norm equal to 1.

We randomly chose 70% of the dataset as the training
set, 10% as the validation set, and the rest 20% as the test
set. We trained different models on the training set and
evaluated them on the validation set. We chose the model
with the best validation accuracy to make predictions on
the test set and reported the Average Precision and AUC
score on the test set.

Experimental results

We compare our model with SVM, Decision Tree, Naive
Bayes, Random Forest, and AdaBoost, as well as Varia-
tional AutoEncoder (VAE) and Adversarial AutoEncoder
(AAE). Traditional models such as SVM only accept one
feature matrix as input. So we used the concatenated fea-
ture matrix as model input. We used a linear kernel for
SVM. We used 10 estimators in Random Forest and 50
estimators in AdaBoost.

For the Multi-view AutoEncoder (MAE) model with a
classification head, we used a three-layer neural network.
The input layer has 10,546 units (features). Both the first
and second hidden layers have 100 hidden units. The last
layer also has 10,546 units (i.e., the reconstruction of the
input). We added a classification head which is a linear
layer with two hidden units corresponding to two classes.

To facilitate fair comparisons, all of our proposed Multi-
view Factorization AutoEncoder (MAE) models share the
same model architecture(i.e., two hidden layers each with
100 hidden units for each of the four submodule autoen-
coders), but the training objectives are different. Since
this dataset has four different data types, our model has



https://string-db.org/
http://www.mirdb.org

Ma and Zhang BMC Genomics 2019, 20(Suppl 11):944

four autoencoders as submodules, each of which encodes
one type of data (one view). Figure 1 shows our model
structure (note in our experiments we have four views
instead of only two shown in the figure). We combine the
outputs of the four autoencoders (i.e., the outputs of the
last hidden layers) by adding them together (Eq. 12) for
classification tasks.

The training objective for the Multiview Factorization
AutoEncoder (MAE without graph constraints) includes
only the first two terms in Eq. 16. The objective for the
Multiview Factorization AutoEncoder with feature inter-
action network constraints (MAE + feat_int) includes the
first three terms in Eq. 16. The objective for the Multiview
Factorization AutoEncoder with patient view similarity
network constraints (MAE + view_sim) includes the first
two and the last terms in Eq. 16. And the objective for the
Multiview Factorization AutoEncoder with both feature
interaction and view similarity network (MAE + feat_int
+ view_sim) constraints includes all four terms in Eq. 16.

As our proposed model with network constraints is end-
to-end differentiable, we trained it with Adam [32] with
weight decay 10~%. The initial learning rate is 5 x 10~ for
the first 500 iterations and then decreased by a factor of
10 (i.e., 5 x 10~°) for another 500 iterations. Models with
the best validation accuracies are used for prediction on
the test set.

The Average Precision and AUC scores for Bladder
Urothelial Carcinoma (BLCA) and Brain Lower Grade
Glioma (LGG) using these models are shown in Tables 1
and 2 . Our proposed models (in bold font) achieved bet-
ter Average Precision and AUC scores for predicting PFI
on both datasets. Note that traditional methods such as
Decision Tree do not perform as well as deep learning
models. This may be due to the superior representation
power of deep learning. The more recent Bayesian deep
learning approach Variational AutoEncoder (VAE) did
not achieve good results, while Adversarial AutoEncoder

Table 1 Results for bladder urothelial carcinoma (BLCA) dataset

Model name Average precision AUC
SVM 0.587 0.688
Decision tree 0.590 0.575
Naive Bayes 0456 0.635
Random forest 0.575 0670
AdaBoost 0.587 0.662
Variational AE 0.528 0.563
Adversarial AE 0617 0.693
Multi-view AE 0.595 0.699
MAE + feat_int 0.650 0.719
MAE + view_sim 0.652 0.723
MAE + feat_int + view_sim 0.664 0.740
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Table 2 Results for brain lower grade glioma (LGG) dataset

Model name Average Precision AUC
SVM 0.591 0.713
Decision tree 0.518 0.658
Naive Bayes 0.568 0.742
Random forest 0661 0.670
AdaBoost 0.594 0673
Variational AE 0628 0.642
Adversarial AE 0.659 0.702
Multi-view AE 0.551 0.726
MAE + feat_int 0.576 0.727
MAE + view_sim 0.737 0.819
MAE + feat_int + view_sim 0.746 0.825

(AAE) achieved better results than other methods except
our proposed method. Currently, the datasets contain a
lot of noise (due to the nature of ) and the feature inter-
action networks derived from public knowledgebases are
incomplete and noisy, too. If a larger dataset consisting of
hundreds of thousands of patients is available, we expect
our proposed model with more network constraints to be
able to generalize even better.

Multi-omics outperforms single -omics We trained
our autoencoder models on each type of -omics data
(i.e., gene expression, miRNA expression, protein expres-
sion, and DNA methylation), and compared them with
those trained using multi-omics data (all the four types
combined) using our proposed Multi-view Factorization
AutoEncoder model. The results on BLCA and LGG
datasets are shown in Tables 3 and 4, respectively. For both
datasets, the results using multi-omics data (all four data
types combined) significantly outperform those using a
single type of -omics data.

Results on the tCGA pan-cancer dataset

We also performed experiments on the TCGA Pan-cancer
dataset [1] consisting of 6179 patients with 21 different
cancer types. In addition to predicting Progression-Free
Interval (PFI) event, we also predict Overall Survival
(OS) event. Similar to PFI, OS is another derived clinical

Table 3 Results using single -omics versus multi-omics on BLCA

dataset

Model name Average precision AUC
Gene (single -omics) 0.532 0.688
miRNA (single -omics) 0.368 0.507
Protein (single -omics) 0.399 0.567
DNA Methylation (single -omics) 0.601 0.634
Combined multi-omics 0.664 0.740
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Table 4 Results using single -omics versus multi-omics on LGG

dataset

Model name Average precision AUC
Gene (single -omics) 0.634 0.728
miRNA (single -omics) 0.501 0.686
Protein (single -omics) 0.575 0.735
DNA Methylation (single -omics) 0.610 0.698
Combined multi-omics 0.746 0.825

(binary) outcome endpoints [31]. OS=1 means for patients
who were dead from any cause based on the follow-up
data; OS=0 for otherwise. There are 4460 patients with
0S=0 and 1719 patients with OS=1. PFI and OS are the
same for most cases (4941 out of 6179, or 80%). There
are 4268 patients with PFI=0 and 1911 patients with
PFI=1. PFI is preferred over OS given the relatively short
follow-up time. Therefore, we mainly use PFI as a binary
target.

We used the same data processing procedure and exper-
imental settings as described above for the BLCA and
LGG datasets. The average AUC scores (10 runs) for pre-
dicting PFI and OS using these models are shown in
Table 5. Our proposed models (in bold font) achieved bet-
ter AUC scores for both predicting PFI and OS than other
traditional machine learning methods.

In order to study if the model architecture would signif-
icantly affect the results, we change the number of hidden
layers from one layer to three layers. The number of units
for each hidden layer is shown in Table 6. (Note we have
omitted the input and output layers both of which have
10,546 hidden units). As shown in Table 6, the results
are not significantly different. In addition, we had tried
to use DenseNet [30] and ResNet [29] as the backbone of
the autoencoders instead of multi-layer perceptrons. The
results are also not significantly different and thus not
presented here.

Table 5 AUC scores for predicting PFl and OS on the TCGA
pan-cancer dataset

Model name AUC (OS) AUC (PFI)
SVM 0.699 0.625
Decision Tree 0.670 0.634
Naive Bayes 0.655 0.644
kNN 0.706 0.659
Random Forest 0.720 0.661
AdaBoost 0.716 0.689
MAE + feat_int 0.765 0.721
MAE + view_sim 0.763 0.724
MAE + feat_int + view_sim 0.766 0.724
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Table 6 AUC scores for PFl with different model architectures

Number of hidden units AUC (PFI)
100 0.723
200 0.725
200-100 0.726
100-200 0.727
100-100 0.724
100-100-100 0.725
50-100-200 0.726
100-50-200 0.726
200-100-50 0.722

Learned feature embeddings preserve interaction network
structure

Our proposed model learns patient representations and
feature embeddings simultaneously. While patients are
different from datasets to datasets, the genomic features
(such as gene features) and their interaction networks are
from domain knowledge, and thus are persistent regard-
less of which dataset we are using. Since we have a
regularization term in the loss to ensure the learned fea-
ture embeddings are consistent with feature interaction
networks, we would like to know if the model is able to
learn an embedding that is “compatible” with the domain
knowledge of interaction networks. We plotted the loss
term Y.V, Trace (Y(") -Lgw -Y(")T) from one typical
run of training our model with feature interaction network
constraints in Fig. 2. This regularization term decreased to
nearly zero very fast, which means the information from
feature interaction networks is fully assimilated into the
model, or more specifically, the weights of the decoders in
the model. We found that many independent runs show
very similar loss curves, which means the model is able
to robustly learn a feature embedding that preserves the
feature interaction network information.

Conclusion

While it is challenging for applying machine learning to
multi-omics data with the “big p, small n” problem, bio-
logical domain knowledge can be incorporated into the
machine learning model as inductive biases to alleviate
potential overfitting problems. A number of knowledge-
bases (e.g., STRING [26], Reactome Pathways [27], etc.)
contain the information for extracting biological interac-
tion networks, which can be incorporated into various
machine learning models. In this paper, we presented
the Multi-view Factorization AutoEncoder (MAE) model
with network constraints that can effectively integrate
domain knowledge such as molecular interaction net-
works with multi-omics data for accurately predicting
clinical outcomes.
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Fig. 2 A typical feature interaction network regularizer training loss curve. After about 100 iterations, the training loss (corresponding to the third

term in Eq. 16) approaches almost zero, which means the learned molecular feature embeddings become consistent with the provided feature
interaction networks

The MAE model consists of multiple factorization
autoencoders as submodules for individual data types
(views) and combines multiple views with their high-level
abstract representations for supervised learning. The fac-
torization autoencoder employs a deep architecture for
the encoder and a shallow architecture for the decoder.
This increases the overall model representation power
and provides a natural way to integrate graph constraints
into the model. Our model learns molecular and patient
embeddings simultaneously. With effective network reg-
ularization techniques, we can learn good feature repre-
sentations and consistent patient similarity networks and
feature interaction networks.

The experimental results on the Bladder Urothelial Car-
cinoma (BLCA) and Brain Lower Grade Glioma (LGG)
datasets and the TCGA pan-cancer dataset demonstrated
that our proposed model with feature interaction net-
work and patient similarity network constraints outper- L

oy . Abbreviations
forms traditional methods and conventional deep learn-

AAE: Adversarial AutoEncoder; ANF: Affinity network fusion; AUC: Area under
ing models on predicting clinical target variables from  the ROC curve; BLCA: Bladder urothelial carcinoma; LGG: Brain lower grade
multi-omics data. Our method can be applied to other glioma; MAE: Multi-view factorization AutoEncoder; OS: Overall survival; PFI:

1 1 1ti ics d 1 1 Progression-free interval; SNF: Similarity network fusion; TCGA: The cancer
arge-scale multi-omics datasets to learn latent repre- genome atlas; VAE: Variational AutoEncoder
sentations that are consistent with molecular interaction
. . . . Acknowledgements
networks for various molecular entities. Besides multi-

We thank The Cancer Genome Atlas (TCGA) network for making the
omics data, our proposed method can also be applied  high-quality multi-omics data freely available to the public.

to any other multi-view data with feature interaction
networks.

The ultimate goal of multi-omics data integrative anal-
ysis is to disentangle complex factors and identify impor-
tant factors that contribute to disease etiology. Our model
learns distributed representations for various molecu-
lar entities and facilitates mining relationships among
molecular features and clinical features. Essentially, learn-
ing good representations for both molecular and clinical
features is fundamentally important to unravel the intri-
cate relationships among them. Our work also provides a
proof-of-concept framework for unifying data-driven and
knowledge-driven approaches for mining multi-omics
data with biological knowledge. We hope it can be applied
to large-scale cancer genomics data and contribute to elu-

cidating the etiology and mechanisms of cancer and other
complex genetic diseases.
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