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Abstract

contributions to reduce the free energy.

algorithms.

Background: RNA pseudoknot structures play an important role in biological processes. However, existing
RNA secondary structure prediction algorithms cannot predict the pseudoknot structure efficiently. Although
random matching can improve the number of base pairs, these non-consecutive base pairs cannot make

Result: In order to improve the efficiency of searching procedure, our algorithm take consecutive base pairs
as the basic components. Firstly, our algorithm calculates and archive all the consecutive base pairs in triplet
data structure, if the number of consecutive base pairs is greater than given minimum stem length. Secondly,
the annealing schedule is adapted to select the optimal solution that has minimum free energy. Finally, the
proposed algorithm is evaluated with the real instances in PseudoBase.

Conclusion: The experimental results have been demonstrated to provide a competitive and oftentimes
better performance when compared against some chosen state-of-the-art RNA structure prediction

Keywords: RNA secondary structure, Pseudoknot, Simulated annealing algorithm, Minimum free energy

Background

RNA is a linear molecular compound formed by
polymerization of ribonucleotides with phospho-
diester bonds, the ribonucleotides are composed of
phosphoric acid, ribose and bases. The RNA sequence
consists of Adenine (A), Uracil (U), Guanine (G) and
Cytosine (C), the four-base arrangement allows RNA
to have a variety of functions that can play great role
in genetic coding, translation, regulation, and gene
expression. The search for the secondary structure of
RNA sequence has been widely used as the first step
to understand biological functions [1].
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Pseudoknot is a special RNA secondary structure
that is found in many important biologically mole-
cules [2, 3], it usually contains not well-nested base
pairs. These non-nested base pairs make the presence
of pseudoknots in RNA sequences more difficult to
be predicted by dynamic programming, which use a
recursive scoring system to identify paired stems. The
general problem of predicting minimum free energy
(MFE) structures with pseudoknots is NP-complete
problem [4]. In general, researchers apply the
principle of MFE to evaluate RNA secondary struc-
ture. When the RNA sequence is freely folded in
space to form the secondary structure of MFE under
fixed experimental conditions, the change is stopped,
meanwhile, the stable state of the RNA sequence is
formed. For the calculation of the free energy of RNA
secondary structure, the stem energy is defined as a
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negative, the energy of loop is defined as a positive,
and the free single strand does not participate. Deng
found that the molecular free energy is related to a
single complementary base pair, but adjacent base
pairs also affect the free energy calculation of the
molecule [5]. In the secondary structure prediction, if
the free energy calculation of each part does not
affect each other, the free energy of the entire struc-
ture is accumulated form the energy of each part, and
the calculation principle is shown in Eq. (1).

AG=7) AGs+) AGu+y AGi+) AGp+ ) AGy+ ) AGp+A46
(1)

In the above formula, AGs means the stem free
energy; AGy, AG;, AGp, and AGy represent the free
energy of hairpin, internal, bulged, and multi-branch
loop, respectively; AGp represent the pseudoknot
free energy, which is generally split into loop for
calculation to simplify the calculation process; Ad is
a threshold set to balance the error during the ex-
periment process. After the RNA secondary struc-
ture is calculated in the Eq. (1), researcher can
objectively evaluate whether the current structure is
stable by numerical changes.

At present, existing algorithms for the prediction of
RNA secondary structure with pseudoknots can be
classified into two categories. The first category is dy-
namic programming (DP) based approaches. DP is the
initial computational approach used to predict RNA
structure [6]. The idea of dynamic programming is to
divide a complex problem into many simple sub-
problems to facilitate their treatment [7]. Combining
the DP idea with the principle of MFE, researchers
have proposed many RNA secondary structure pre-
diction algorithms. Rivas and Eddy [8] proposed
pknots-RE algorithm that can predict RNA sequence
with pseudoknot structure. Dirks and Pierce [9] pro-
posed NUPACK algorithm which calculate a series of
recursion probabilities that can be used to compute
base-pairing probabilities with or without pseudoknots.
However, these algorithms are very time-consuming to
predict long-chain sequence, and its maximum predictive
sequence length cannot exceed 150.

The second category is Heuristic based approaches,
which can handle long RNA sequences and obtain
high quality feasible solution efficiently [10]. Ren et al.
[11] proposed HotKnots to build up candidate second-
ary structures by adding substructures one by one to
partially formed structures. Zuker et al. [12] and
Turner et al. [13] integrate thermodynamic model into
their algorithms to search for secondary structure with
minimal free energy. SARNA-predict-pk [14] algo-
rithm is an extended version of SARNA-Predict [10]

Page 2 of 13

which predicts RNA secondary structures with pseu-
doknots. This algorithm employs a new thermo-
dynamic model that was described by Rastegari and
Condon [15] and implemented in the HotKnots soft-
ware. The model can be used to evaluate RNA
sequences with pseudoknots. IPknot [16] algorithm
proposed a computational method for predicting RNA
secondary structures with pseudoknots based on maxi-
mizing the expected accuracy of a predicted structure.
Iterative HFold [17] takes as input a pseudoknot-free
structure, and produces a possibly pseudoknotted
structure whose energy is at least as low as that of any
(density-2) pseudoknotted structure containing the in-
put structure. It leverages strengths of earlier methods,
namely the fast running time of HFold, a method that
is based on the hierarchical folding hypothesis and the
energy parameters of HotKnots V2.0. Fatmi et al. [18]
proposed a new algorithm that combines between the
Greedy Randomized Adaptive Search Procedure
(GRASP) and the Genetic Algorithm (GA) principle.
This method repeats a process consisting of two
phases: the construction phase and the local search
phase. During the construction phase, a list of feasible
solutions is iteratively constructed. The local search
phase comes with the wake of the construction step; it
aims to improve the solution obtained from the first
phase by launching a local search to find the local
optimum solution.

In this paper, a novel efficient simulated annealing
(SA) algorithm is proposed to predict RNA secondary
structure with pseudoknot. Firstly, an efficient base
pairing method is designed, which is based on the
minimum stem length and the minimum loop length,
and a completed conflict resolution is provided for
the conflicting bases; Then a simple and effective fit-
ness function is proposed, and the number of stem
and the total number of base pairs of the RNA se-
quence is used as metrics for evaluating the secondary
structure of RNA; Finally, the annealing schedule is
selected to systematically decrease the temperature as
the algorithm proceeds, the final solution is the struc-
ture with MFE. In this paper, eighteen test sequences
are randomly selected from the PseudoBase [19], and
the results are compared with other leading predic-
tion algorithms such as HotKnots [11], IPknot [16],
TT2NE [20], CombFold [21], RnaStructure [22], Cylo-
Fold [23] and RNAflod [24] which shows, the effect-
iveness of our algorithm.

Methods

The RNA secondary structure folds itself by forming
hydrogen bonds between G-C, A-U, and G-U. There-
fore, the prediction of all hydrogen connections
among the primary structure of the sequence become
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the first in predicting RNA secondary structure. Many
components can be identified in the secondary struc-
ture, such as stem, hairpin loop, multi-branched loop
or multi-loops, bulge loop, internal loop, and pseudo-
knot, as shown in Fig. 1.

Definition
For a given RNA sequence X =5"-x1%5..., x;, ... X,-3°
of length n, i is defined as the initial index of the
current base and Y(X) is the mapping string of consecutive
complementary base pairs of X, Y(X)=(y1, y2 -

vey

Yir -» Yu), ¥i Is assigned to be j, if base x; bond with base
x;, as shown in Eq. 2.

>

As shown in Fig. 2, when the base is paired, the
sequence numbers of the paired bases are exchanged
and stored in Y(X), then Y(X)=(1, 14, 13, 12, 5, 6, 7,
8, 9, 10, 11, 4, 3, 2, 15). Each mapping string Y(X) is
a candidate solution, the solution with MFE is the

J, if x; paired with x;
i,else

(2)

Index

X)) 1 14 18 12 5

Fig. 2 One of the mapping string Y(X) for sequence X
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optimal solution, which is the most stable secondary
structure.

In order to better simulate the folding process of RNA
secondary structure in the program, we define each part
of the RNA secondary structure as follows:

Definition 1: X =5"-x,x,...x,-3", x; € {A, U, G, C}, Se-
quence X is called an RNA sequence of length 7.

Definition 2 (stem): xx;, 1...%; 4 1 and X, 1...%.1%;
is two sub-segments in sequence X, (x; x;) €
W:{(A: U)x (Ux A)’ (G: C): (C: G): (G: U): (U’ G)}:
1 <i<j<mn j-iz 3, then the structure of consecu-
tive base pairing by {(x; %), (xiy1, %150 (X4 1)
xj.1)} is called the stem of length k (k > 2). To sim-
plify calculations, stem can be expressed as a m; = (i,
j» k), where parameters i and j are the index of be-
ginning base and ending base, and parameter k is
the length of this stem.

Definition 3 (hairpin Loop): There must be at least
MinLoop (MinLoop = 3) unpaired bases in any hairpin
loop structure.

Definition 4 (consecutive complementary base
paired set): The complete RNA secondary structure
of a sequence X is called a consecutive complemen-
tary base pair set, recorded as M(X), M(X) = (my,
Mmay,..., M; ...,m,). Each m; represents a stem, ac-
cording to the above definition, any m; can be re-
corded as (i, j, k). In the sequence X, the secondary
structure formed by the pairing of M(X) is repre-
sented by Y(X).

Definition 5 (pseudoknot): V x,, x,, x,, x;, € X, (%,
%), (x %) € W, and the number of four bases in X
satisfies 1 < p<r<g<s <mor 1l <r<p<s<q < n,
then the structure formed by these two base pairs is
called a pseudoknot structure, as shown in Fig. 3.

According to the above definition, the secondary
structure prediction problem with pseudoknot can
be converted to find the number of stems in all
possible stem of the X sequence. These stems are so
unique that secondary structure formed by their
base complementarity has MFE state. Thus, an
efficient Prediction algorithm of RNA secondary
structure with pseudoknot based on SA (PRSA) is
proposed.

Set of K consecutive base pairs
Since single base pairs cannot contribute to the re-
duction of free energy, the PRSA algorithm con-
siders consecutive base pairs. In order to find all
the stem structures, we defined the minimum stem
length (MinStem = 2) and the minimum loop length
(MinLoop > 3) parameters, as shown in Fig. 4.

After initially setting the parameters MinStem and
MinLoop, all the reasonable m; can be calculated.
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Parameters i, j and k need to satisfy the following
three constraints:

1<i<n-2xMinStem-MinLoop + 1 (3)
i+ 2xMinStem + MinLoop-1<j<n (4)

j—i—-MinLoop + 1
2

MinStem<k<

For example, Mengo_PKB is an RNA molecule from
the PseudoBase, whose sequence is 5 - ACGUGAAGGC
UACGAUAGUGCCAG - 3. Let MinStem and MinLoop
be 3, all possible triplets (i, ], k) are (2,14,3), (2,14,4), (2,
20,3), (3,13,3), (3,21,3), (8,22,3), (9,19,4), (10,18,3), (11,
20,3). The pseudo code of calculation consecutive base
pairs is shown as Algorithm 1.

Algorithm 1: Calculate consecutive base pairs
Input: RNA sequence, MinStem, MinLoop
Output: Pairs //All consecutive base pairs are saved in Pairs
-For (i= 1 to n — 2*MinStem-MinLoop + 1) do //To find consecutive base pairs
For(j = (i + 2*MinStem + MinLoop-1) to n) // n is the length of the RNA sequence
conPair = 0,k = 0; /The number of consecutive base pairs
While(k < (j-i-MinLoop + 1)/2) do
If (JudgingPair.singlePair(i + k, j - k)) do
conPair++;
If (conPair > MinStem) do
tempPair = (i, j, conPair);

Pairs.Add (tempPair);

End If

Else
break;

End If

kt+;

End While
End For
-End For

-Return all base pairs: Pairs.

But in all base pairs, the same position of bases
may have different consecutive base pair numbers,
we need to merge these same positions. Like the
above Mengo_PKB sequence, the set of base pairs
after the merge is (2, 14, (3, 4)), (2, 20, (3)), (3, 13,
(3)), (3, 21, (3)), (8, 22, (3)), (9, 19, (3, 4)), (10, 18,
(3)), (11, 20, (3)). The pseudo code that saves the
merged result to the K consecutive base pair set is
shown in Algorithm 2.
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Algorithm 2: Merge Pairs into K consecutive base pairs
Input: Pairs// Save all possible base pairs
Output: PairList// Save the merged K consecutive base pairs
-Initial PairList, tempRd1, tempRd2;
-For(i = 0 to Pairs.Count) do
If (Pairs [i].rd] == tempRd1&& Pairs [i].rd2== tempRd2) do
PairList [PairList.Count-1].kList. Add (Pairs [i].k);
Else
PairList.Add (Pairs [i]);
End If
-End For

-Return set of K consecutive base pair: PairList.

As known that most predicted algorithms require more
effort to calculate the MFE structure after calculating the
free energy of the current prediction, which makes their
algorithm converge very slowly. A pool of candidate struc-
tures is generated by constructing a set of K consecutive
base pairs, which makes the PRSA algorithm converge fas-
ter than other prediction algorithms. This also makes each
iteration more valuable because each iteration generates a
new structure from the candidate pool.

Neighbor state and its conflict

When the secondary structure prediction is performed
on any of the RNA molecules, the PRSA algorithm
would first calculate the K consecutive base pair set by
parameter preprocessing, and then generate a neighbor
state through a random function in the simulated
annealing algorithm.
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Taking the TMEV molecule as an example, after the
preprocessing process of the upper section ‘Set of K con-
secutive base pairs’, a K consecutive base pairs set of
TMEYV molecules is obtained, as shown in Fig. 5.

Divided according to the base start position and end
position of stem, this set contains 13 elements. Since the
base start and end positions of the stem are the same,
different stem lengths may exist, so the algorithm deter-
mines one stem by generating two random numbers.
The first random number is between 1 and 13, and the
second random number is related to its corresponding
set of K consecutive base pairs.

For example, take two random values as 10 and 1, re-
spectively. At this time, m; = (9, 19, 3), a local RNA sec-
ondary structure is formed. In order to be recorded in
the programming, this section of the algorithm has been
processed in 4 steps:

(1) The paired base numbers are exchanged as shown
in Fig. 6, m; is added to the consecutive base pair set
M(X), at this time M(X) = {m; = (9, 19, 3)}, and the sec-
ondary structure corresponding to M(X) is represented
by Yi(X).

(2) A randomly generated m; that may conflict with el-
ements in the set M(X). When the algorithm program
performs the next iteration of the loop, a new stem
my = (2, 20, 3) is generated. At this time, a base pairing
conflict occurs, that is, the bases originally numbered 18
and 19 have been paired with the bases at other posi-
tions, and the base complementary pairing conflicts are
shown in Fig. 7.

(3) If there is a conflict, the position number of the
conflicting base is exchanged again to remove the con-
flict, and the m; in the M(X) is updated, and the sche-
matic diagram of removing the base pairing conflict is
shown in Fig. 8. The M(X) is updated to {m; = (11, 17,
1)} after removal.

(4) Determine whether the updated m; meets the con-
straint. If it does not, remove it; if it does, it will not be
considered. When the constraint is initialized, the

Index: 1 2 3 4 5 6 7 8
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Fig. 3 A arc representation for pseudoknot structure
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algorithm program sets the minimum length of the stem
to be no smaller than MinStem. Assume that the initial
value of MinStem is 3, therefore, the remaining pairing
mode of m; needs to be removed, and the element is
deleted from M(X), and M(X) is an empty set. The oper-
ation process is shown in Fig. 9.

After the conflicts and constraints are resolved, the base
pairing is performed in the new stem and added to M(X),
as shown in Fig. 10. At this time, M(X) = {m, = (2, 20, 3)},
the secondary structure corresponding to M(X) is repre-
sented by Y5(X), and Y5(X) is the neighbor state of Y;(X).

Fitness function
For most MFE based RNA secondary structure prediction
algorithm, the complex thermodynamic model is often
used to evaluate candidate solutions [21]. However, there
is no useful information to guide the candidate solution to
find lower neighbor energy state. Consequently, the con-
vergence of these MFE based prediction algorithms is very
slow. Actually, only the consecutive base pairs stem AGg
provide negative free energy which contributes to the re-
duction of free energy. The stability of RNA sequence can
also be approximately evaluated by consecutive base pairs
stem.

Where Group is the number of stems of the secondary
structure of the RNA sequence, TP is the sum of the
number of all base pairs in the sequence, TP divided by

Group is the average number of base pairs (AP), PG is
the predicted number of pseudoknots by the algorithm,
MG is the expected number of pseudoknots, and k is the
length of the stem. The evaluation function for random
candidate M(X) can be seen in the following Equation:

TP x AP?, PG<MG
F(M(X)):{TPXAszM, PG > MG
Group

(6)
P = mk 7)

TP
P =
Group

(8)

The two structures of the BCRV1 molecule are evalu-
ated using the custom fitness function,

My(X) = {m, = (547,6), my=(14,80,6), ms=(20,38,5),
my =(26,98,7), ms=(53,74,9)}, as shown in Fig. 1la;
My(X) = {m; = (4,48,8), my=(19,39,6), ms3=(26,98,7),
my = (52,75,10)}, as shown in Fig. 11b. We produce the
images of RNA structure with jViz. Rna [25].

After evaluation, the calculated data of the secondary
structure of BCRV1 molecule are shown in Table 1.
According to the fitness function values of the two
structures, it indicates that M, is better than M.

i 2 2 3 3 4 6

jO) 14 20 13 21 12 22
K (G455 (3 G4 3 O

(3,4,5,6,7) (3)

6 7 8 9 10 11 12

25 21 20 o] 18
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Fig. 5 K consecutive base pairs set of TMEV molecules
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Overall algorithm

The PRSA algorithm initializes the parameters to de-
termine the constraints of the RNA sequence, thereby
calculating a set of K consecutive base pairs. Accord-
ing to this set, the neighbor state is randomly gener-
ated, and the custom fitness function is adopted to
evaluate the quality of the current solution (Curren-
tPairs) and the previous generation solution (Max-
Pairs). If the CurrentPairs performs better, it would
replace the MaxPairs directly. Otherwise, it will de-
termine whether to accept the new pairing structure
based on probability from Boltzmann distribution.
The final predicted solution structure is stored in
MaxPairs, which has MFE and includes pseudoknot.
The pseudo-code of the overall algorithm is shown in
Algorithm 3.

Algorithm 3: PRSA algorithm framework
Input: RNA sequence, MinStem, MinLoop, Max_T, Min_T, MG
Output: MaxPairs; // The final prediction structure is preserved in MaxPairs
-Initial CurrentPairs, MaxPairs// The new prediction structure is preserved in CurrentPairs
-While(T > Min_T) do: // T is current temperature, Min_T is the minimum temperature
CurrentPairs.Clear();
For (i=0to n—2 * MinStem) do // n is the length of the RNA sequence
The new Pair is randomly generated from the random K consecutive pair set;
index = Find the of the location of the conflict;
While (index! = Default Value) do
index = Find the of the location of the conflict;
Reset the conflict location pair;
Remove the conflict pair from the CurrentPairs;
End While
Using base pair to fold RNA;
CurrentPairs.Add (Pair);
AE = EnergyDelta (CurrentPairs, MaxPairs, MG);
If(AE > =0)
MaxPairs = CurrentPairs;
Else
If (Exp(AE/T) > Random[0,1))

MaxPairs = CurrentPairs;

Result

In section ‘method’, Predicting RNA secondary struc-
tures with pseudoknots is implemented using the PRSA
algorithm. In the following, we first present the datasets,
the exiting methods and accuracy measures we use for
the evaluation of the algorithm, then the prediction
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performance of the PRSA algorithm is demonstrated by
comparative experiments.

Data sets

The eighteen benchmark instances from PseudoBase were
used to test the proposed method. The characteristic of
each sequence is shown in Table 2. The second column is
the Abbreviation of the RNA sequence, the third column
is the RNA PKB number, the fourth column is the RNA
type, the fifth column is the sequence length and the last
column is the number of base pairs in the known struc-
ture. The predicted structure should be similar to the base
pairs of the known structure.

Accuracy measures

The prediction accuracy is calculated by comparing the
predicted structure with the known structure. In order
to assess the quality of the results produced, three evalu-
ation criteria were used: sensitivity (SN%), specificity
(SP%) and F-measure(%) [26]. The evaluation criteria are
as follows:

SN = TP = (TP + EN) 9)
SP = TP + (TP + FP) (10)
F-measure = 2xSP+SN + (SN + SP) (11)

Where TP represents the number of correctly pre-
dicted base pairs; FP represents the number of incor-
rectly predicted base pairs; FN represents the number of
unpredicted base pairs compared with the known struc-
ture. When the prediction results are accurate, both SN
and SP should be close to 100%.

Comparison with existing methods

To better reflect the accuracy of the algorithm proposed
in this paper, the computational results of the PRSA al-
gorithm are compared with seven state-of-the-art algo-
rithms, including HotKnots [11], IPknot [16], TT2NE
[20], CombFold [21], RnaStructure [22], CyloFold [23]
and RNAflod [24]. Among these algorithms, the Hot-
Knots algorithm and the IPknot algorithm use heuristic
ideas to predict the secondary structure. The names of
the seven algorithms and the website links to the
algorithm-based Web sites are listed in Table 3.

Overall results

The comparisons of the proposed method with the
other methods are shown in Tables 4, 5 and 6. If the
value in the table is “#”, it means that the algorithm
does not support the prediction of the length of the
sequence, such as TT2NE. The results of the pro-
posed method and the compared methods are all run
10 times for each sequence.
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Table 1 Evaluation results

Structure MG PG Group TP AP FIM(X))
Mi(X) 1 2 5 33 6.6 862.49
M5(X) 1 1 4 31 7.75 1861.94

From Table 4, in terms of sensitivity, the proposed
method provides the best results in nineteen sequences,
of which 9 sequences predict 100%. In addition, there
are 3 sequences predicting with sensitivities greater than
90%. In terms of specificity, the specificity of 8 se-
quences in Table 5 is more than 90%, including that the
specificity of 6 sequences is 100%. For F-measure, there
are 14 sequences exceeding 82%, including 9 sequences
above 90%.

The proposed method has average sensitivity, speci-
ficity, and F-measure of 91.1, 86.9, and 88.0%, re-
spectively. In addition, the average sensitivity of the
proposed method is better than the CyloFold method
by 7%, better than the TT2NE method by 4.4% and
better than the HotKnots method by 12.3%. In case of
the average of specificity, the proposed method is bet-
ter than the CyloFold method by 3.2%, better than the
TT2NE method by 13.7% and better than the Hot-
Knots method by 13.1%. In case of the average of F-
measure, the proposed method is better than the
CyloFold method by 5.3%, better than the TT2NE
method by 8.9% and better than the HotKnots
method by 13.1%.

Table 2 Benchmark Instances from RNA PseudoBase
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Discussion and conclusion
According to Section ‘Accuracy comparison tests’, we
can find that the PRSA algorithm has obvious advan-
tages in the quality of the solution compared with other
algorithms. Taking the BCRV1 molecule as an example,
the sequence of this method is predicted by the PRSA
algorithm and the CyloFold algorithm, respectively. The
arc representation of the obtained secondary structure is
shown in Fig. 12. It can be seen from the figure that the
secondary structure predicted by the algorithm in this
paper has become infinitely close to the real structure.

In this paper, we propose an efficient simulated an-
nealing algorithm for the RNA secondary structure pre-
dicting with pseudoknots, combined with the evaluation
function to compensate for the high time complexity of
the free energy calculation model. The algorithm sets
the MinStem and MinLoop parameters to determine the
pseudoknot structure formed by the base pair cross-
combination, and optimizes the pool of candidate solu-
tions, thereby reducing the time cost of the algorithm.
The custom evaluation function is used to improve the
efficiency of RNA secondary structure prediction algo-
rithms. Moreover, the performance of the PRSA algo-
rithm is compared with state of art algorithms including
eighteen PseudoBase benchmark instances, and the com-
parison results show that the PRSA algorithm is more
accurate and competitive with higher sensitivity and
specificity values.

However, as the size of RNA molecules becomes
larger, this superiority will gradually disappear. The

D RNA Abbreviation PKB Number RNA Type Length (nt) Known bps
1 Mengo_PKB PKB295 Viral 5 UTR 24 7
2 T4_gene32 PKB74 MRNA 28 11
3 HAV_PK1 PKB297 Viral 5 UTR 33 12
4 TEV_PK1 PKB277 Viral 5 UTR 35 11
5 IPCV1 PKB35 Viral tRNA-like 40 8
6 ScyLv PKB281 Viral Frameshift 42 8
7 Ec_PK3 PKB51 tmRNA 46 14
8 Ec_PK4 PKB52 tmRNA 52 19
9 BEV PKB128 Viral Frameshift 59 16
10 BakVv PKB98 Viral Readthrough 62 15
1 VMV PKB280 Viral Frameshift 68 14
12 ALFV PKB350 Viral Frameshift 77 17
13 MVEV PKB349 Viral Frameshift 80 18
14 SARS-CoV PKB254 Viral Frameshift 82 26
15 FCiLV3 PKB395 Viral tRNA-like 109 37
16 BBMV3 PKB135 Viral tRNA-like 116 39
17 w3 PKB389 Viral tRNA-like 129 37
18 CCMV3 PKB136 Viral tRNA-like 134 45
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Table 3 State-of-the-art RNA structure predication algorithms

Table 5 Specificity Comparison Results
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ID Method Website link ID  #BP  Specificity (%)
1 RnaStructure http://rna.urmc.rochester.edu/RNAstructureWeb/ 1 2 3 4 5 6 7 PRSA
2 CyloFold https://cylofold.ncifcrf.gov/ 7 500 100.0 600 600 600 600 # 100.0
3 IPknot http://rtips.dna.bio.keio.ac jp/ipknot/ 2 11 875 100.0 100.0 100.0 875 100.0 100.0 100.0
4 RNAflod http://rna.tbiunivie.acat/cgi-bin/RNAWebSuite/ 3 12 1000 8.7 1000 1000 100.0 857 917 857
RNAfold cgi 4 11 625 1000 286 625 625 625 # 100.0
5 CombfFold  http//www.rnasoft.ca/cgi-bin/RNAsoft/CombFold/ s g 556 556 556 556 556 800 556  100.0
combfold.pl
6 HotKnots http://www.rnasoft.ca/cgi-bin/RNAsoft/HotKnots/ 6 8 /4 889 /78 625 714 727 88.9
hotknots.pl 7 14 875 100.0 769 90.0 90.0 90.0 100.0 929
7 TT2NE http://eole2 Isce.ipsl fr/ipht/tt2ne/tt2ne.php 8 19 100.0 66.7 100.0 100.0 100.0 100.0 100.0 100.0
9 16 688 1000 813 647 647 647 667 762
10 15 00 813 00 0.0 0.0 316 65.2 70.0
reason for the analysis may be that the algorithm for 11 14 438 737 389 412 412 700 650 700
evaluating individuals is based on the average base 12 17 478 739 458 458 440 708 708 708
pairs length rather than the standard thermodynamic |3 15 509 720 440 478 478 720 750 720
model. As the length of the RNA molecule increases,
the number of grogups of Complementary bases M(X) 14 26 895 72.0 783 85.7 783 73.1 46.9 100.0
will become larger, so that the effect of average base- 537 &7 947735 09 545 829 974
pairs on prediction results becomes weaker, the accuracy 16 39 816 868 /50 81 735 # 737 821
of the PRSA algorithm will be reduced. Besides, the 17 37 825 882 1000 868 892 # 614 818
parameter settings of the PRSA algorithm will also affect 18 45 837 667 884 864 756 # 711 767
the prediction results, which will be studied further in the Average €93 837 680 700 664 738 732 869
future. The best Specificity values for each algorithm are shown in boldface
Table 4 Sensitivity Comparison Results Table 6 F-measure Comparison Results
ID  #BP  Sensitivity (%) ID  #BP  F-measure (%)
1 2 3 4 5 6 7 PRSA 1 2 3 4 5 6 7 PRSA
1 7 286 1000 429 429 429 429 # 100.0 1 7 364 1000 500 500 500 500 # 100.0
2 11 636 100.0 636 636 636 100.0 818 100.0 2 11 737 100.0 778 778 737 100.0 900 100.0
3 12 583 100.0 583 583 583 100.0 917 100.0 3 12 737 923 737 737 737 923 91.7 923
4 11 455 455 182 455 455 455 # 90.9 4 11 526 625 222 526 526 526 # 95.2
5 8 625 625 625 625 625 1000 625 875 5 8 588 588 588 588 588 889 588 93.3
6 8 625 100.0 875 625 625 100.0 # 100.0 6 8 66.7  94.1 824 625 667 842 # 94.1
7 14 500 857 714 643 643 643 100.0 929 7 14 636 923 741 750 750 750 100.0 929
8 19 579 421 684 684 684 684 100.0 632 8 19 733 516 813 813 813 813 1000 774
9 16 688 938 813 688 688 688 875 100.0 9 16 688 96.8 813 667 667 667 757 86.5
10 15 00 867 0.0 0.0 00 400 1000 933 10 15 # 83.9 # # # 353 789 80.0
1M 14 500 100.0 500 500 500 100.0 929 100.0 11 14 46.7 84.8 438 452 452 824 76.5 824
12 17 647 100.0 647 647 647 100.0 1000 100.0 1217 550 85.0 537 537 524 829 829 829
13 18 611 100.0 611 611 611 1000 1000 100.0 13 18 550 837 512 537 537 837 85.7 83.7
14 26 654 692 692 692 692 731 517 84.6 14 26 756 706 735 766 735 731 517 91.7
15 37 811 973 676 811 676 # 919 100.0 15 37 833 96.0 704 857 704 # 87.2 98.7
16 39 79.5 846 692 821 641 # 71.8 82.1 16 39 805 85.7 720 821 685 # 72.7 82.1
17 37 89.2 811 892 892 892 # 73.0 73.0 17 37 857 845 943 880 892 # 66.7 77.1
18 45 800 66.7 844 844 689 # 71.1 733 18 45 818 66.7 86.4 854 721 # 71.1 75.0
Average 594 84.1 616 621 595 788 86.7 91.1 Average 665 827 67.1 688 660 749 79.1 88.0

The best Sensitivity values for each algorithm are shown in boldface

The best F-measure values for each algorithm are shown in boldface


http://rna.urmc.rochester.edu/RNAstructureWeb/
https://cylofold.ncifcrf.gov/
http://rtips.dna.bio.keio.ac.jp/ipknot/
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://www.rnasoft.ca/cgi-bin/RNAsoft/CombFold/combfold.pl
http://www.rnasoft.ca/cgi-bin/RNAsoft/CombFold/combfold.pl
http://www.rnasoft.ca/cgi-bin/RNAsoft/HotKnots/hotknots.pl
http://www.rnasoft.ca/cgi-bin/RNAsoft/HotKnots/hotknots.pl
http://eole2.lsce.ipsl.fr/ipht/tt2ne/tt2ne.php

Kai et al. BMC Genomics 2019, 20(Suppl 13):979 Page 12 of 13

N
UAUAUACUAGGUUGGCAUUUUGAGCGCAUCUUACUCAAAUCCUAGUAUUUCCAUUAAUAUCUAAUGAUAUUAAUGAUGCCUCUUAAUAUAAGAGAUGC

0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 8 7 8 a
1 0 0 0 0 0 0 0 0 0

(a) BCRV1 Prediction structure of PRSA

\
IIIHI\I llllll\llkl IARRA! \IAIHH

UAUAUACUAGGUUGGCAUUUUGAGCGCAUCUUACUCAAAUCCUAGUAUUUCCAUUAAUAUCUAAUGAUAUUAAUGAUGCCUCUUAAUAUAAGAGAUGC

0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 g
1 0 0 0 0 0 0 0 0 0
L L
(b) BCRV1 Prediction structure of CyloFold
4;5;;q:=;5§=regi-
.::.

77—
UAUAUACUAGGUUGGCAUUUUGAGCGCAUCUUACUCAAAUCCUAGUAUUUCCAUUAAUVUAUCUAAUGAUVUAUUAAUGAUGCCUCUUAAUAUAAGAGAUGE
0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 a
1 0 0 0 0 0 0 0 0 0

(¢) Known secondary structure of BCRV1

Fig. 12 Comparison of predicted secondary structure by PRSA and CyloFold algorithm
A\

Abbreviations Availability of data and materials
A: Adenine; C: Cytosine; DP: Dynamic Programming; G: Guanine; GA: Genetic Pseudoknots sequencing data are available from the PseudoBase database
Algorithm; GRASP: Greedy Randomized Adaptive Search Procedure; (http//www.ekevanbatenburg.nl/PKBASE/PKB.HTML).

MFE: minimum free energy; NP: Non-deterministic Polynomial;

RNA: Ribonucleic Acid; SA: Simulated Annealing; U: Uracil Ethics approval and consent to participate

Not applicable.
Acknowledgements
The author would like to thank the editors and reviewers for their

suggestions, which is a great help for this article. Consent for publication

Not applicable.

About this supplement

This article has been published as part of BMC Genomics Volume 20
Supplement 13, 2019: Proceedings of the 2018 International Conference on
Intelligent Computing (ICIC 2018) and Intelligent Computing and Biomedical
Informatics (ICBI) 2018 conference: genomics. The full contents of the
supplement are available online at https.//bmcgenomics.biomedcentral.com/
articles/supplements/volume-20-supplement-13.

Competing interests
The authors declare that they have no competing interests.

Author details

'School of Computer Science, Wuhan University of Science and Technology,
Wuhan 430081, China. *Hubei Province Key Laboratory of Intelligent
Information Processing and Real-time Industrial System, Wuhan 430081,
China.

Authors’ contributions

Conceived and developed the algorithm: ZK and WYT. Performed the Published: 27 December 2019

experiments: WYT, LYL and LJ. Analyzed the data: ZK and HJJ. Wrote the
article: ZK, WYT, and LYL. The manuscript has been read and approved by all

References
named authors.

1. Tinoco |, Bustamante C. How RNA folds. J Mol Biol. 1999;293(2):271-81.

2. Van Batenburg FH, Gultyaev AP, Pleij CW. Pseudobase: structural information
Funding on RNA pseudoknots. Nucleic Acids Res. 2001;29(1):194-5.
This work was supported by the National Natural Science Foundation of 3. Deiman BALM, Pleij CWA. Pseudoknots: a vital feature in viral RNA. Semin
China (Grant Nos. 61702383, U1803262, 61602350). Virol. 1997,8(3):166-75.


https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-supplement-13
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-supplement-13
http://www.ekevanbatenburg.nl/PKBASE/PKB.HTML

Kai et al. BMC Genomics 2019, 20(Suppl 13):979

20.

21,

22.

23.

24.

25.

26.

Wang C, Schroder MS, Hammel S, et al. Using RNA-seq for Analysis of
Differential Gene Expression in Fungal Species. Yeast Functional Genomics.
New York: Springer; 2016. p. 1-40.

Deng F, Ledda M, Vaziri S, et al. Data-directed RNA secondary structure
prediction using probabilistic modeling. RNA. 2016;22(8):1109-19.

Ray SS, Pal SK. RNA secondary structure prediction using soft computing.
IEEE/ACM Trans Comput Biol Bioinform. 2013;10(1):2-17.

Jiwan A, Singh S. A review on RNA pseudoknot structure prediction
techniques, IEEE International Conference on Computing. Electronics and
Electrical Technologies; 2012. p. 975-8.

Rivas E, Eddy SR. A dynamic programming algorithm for RNA structure
prediction including pseudoknots. J Mol Biol. 1999;285(5):2053-68.

Dirks RM, Pierce NA. A partition function algorithm for nucleic acid
secondary structure including pseudoknots. J Comput Chem. 2010;24(13):
1664-77.

Tsang HH, Wiese KC. SARNA-predict: accuracy improvement of RNA
secondary structure prediction using permutation-based simulated
annealing. IEEE/ACM Transac Comput Biol Bioinformatics. 2010;7(4):727-40.
Ren J, Rastegari B, Condon A, et al. HotKnots: heuristic prediction of RNA
secondary structures including pseudoknots. Rna-a Publication of the Rna
Society. 2005;11(10):1494-504.

Serra MJ, Turner DH. Predicting thermodynamic properties of RNA. Methods
Enzymol. 1995;259(259):242-61.

Mathews DH, Sabina J, Zuker M, et al. Expanded sequence dependence of
thermodynamic parameters improves prediction of RNA secondary
structure. J Mol Biol. 1999;288(5):911-40.

Tsang HH, Wiese KC. SARNA-Predict-pk: Predicting RNA secondary structures
including pseudoknots, IEEE; 2008. p. 1-8.

Rastegari B, Condon A. Linear time algorithm for parsing RNA secondary
structure, International Workshop on Algorithms in Bioinformatics. Berlin:
Springer; 2005. p. 341-52.

Sato K, Kato Y, Hamada M, et al. IPknot: fast and accurate prediction of RNA
secondary structures with pseudoknots using integer programming.
Bioinformatics. 2011;27(13):i85-93.

Jabbari H, Condon A. A fast and robust iterative algorithm for prediction of
RNA pseudoknotted secondary structures. BMC Bioinformatics. 2014;15(1):
147-63.

El Fatmi A, Chentoufi A, Bekri MA, et al. A heuristic algorithm for RNA
secondary structure based on genetic algorithm, IEEE Intelligent Systems
and Computer Vision (ISCV); 2017. p. 1-7.

PseudoBase Homepage. http://www.ekevanbatenburg.nl/PKBASE/PKB.HTML.
Accessed 01 Aug 2018.

Michaél B, Henri O. TT2NE: a novel algorithm to predict RNA secondary
structures with pseudoknots. Nucleic Acids Res. 2011;39(14):93.
Andronescu M, Aguirre-Herndndez R, Condon A, et al. RNAsoft: a suite of
RNA secondary structure prediction and design software tools. Nucleic
Acids Res. 2003;31(13):3416-22.

Mathews DH. Using an RNA secondary structure partition function to
determine confidence in base pairs predicted by free energy minimization.
RNA. 2004;10(8):1178.

Eckart B, Tanner K, Shapiro BA. CyloFold: secondary structure prediction
including pseudoknots. Nucleic Acids Res. 2010;38(Web Server issue):
W368-72.

Gruber AR, Lorenz R, Bernhart SH, et al. The Vienna RNA websuite. Nucleic
Acids Res. 2008;36(Web Server issue):70-4.

Wiese KC, Glen E. jViz. Rna - An Interactive Graphical Tool for Visualizing
RNA Secondary Structure Including Pseudoknots. 19th IEEE Symposium on
Computer-based Medical Systems. Salt Lake City: IEEE Computer Society;
2006. p. 659-64.

Baldi P, Brunak S, Chauvin Y, et al. Assessing the accuracy of prediction
algorithms for classification: an overview. Bioinformatics. 2000;16(5):412-24.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 13 of 13

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



http://www.ekevanbatenburg.nl/PKBASE/PKB.HTML

	Abstract
	Background
	Result
	Conclusion

	Background
	Methods
	Definition
	Set of K consecutive base pairs
	Neighbor state and its conflict
	Fitness function
	Overall algorithm

	Result
	Data sets
	Accuracy measures
	Comparison with existing methods
	Overall results

	Discussion and conclusion
	Abbreviations
	Acknowledgements
	About this supplement
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

