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Abstract

Background: The three-dimensional (3D) structure of chromatins plays significant roles during cell differentiation
and development. Hi-C and other 3C-based technologies allow us to look deep into the chromatin architectures.
Many studies have suggested that topologically associating domains (TAD), as the structure and functional unit, are
conserved across different organs. However, our understanding about the underlying mechanism of the TAD
boundary formation is still limited.

Results: We developed a computational method, TAD–Lactuca, to infer this structure by taking the contextual
information of the epigenetic modification signals and the primary DNA sequence information on the genome.
TAD–Lactuca is found stable in the case of multi-resolutions and different datasets. It could achieve high accuracy
and even outperforms the state-of-art methods when the sequence patterns were incorporated. Moreover, several
transcript factor binding motifs, besides the well-known CCCTC-binding factor (CTCF) motif, were found significantly
enriched on the boundaries.

Conclusions: We provided a low cost, effective method to predict TAD boundaries. Above results suggested the
incorporation of sequence features could significantly improve the performance. The sequence motif enrichment
analysis indicates several gene regulation motifs around the boundaries, which is consistent with TADs may serve as
the functional units of gene regulation and implies the sequence patterns would be important in chromatin folding.
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Introduction
The spatial organization of the chromatin plays a key
role in cellular processes [1], such as gene regulation,
DNA replication and VDJ (variable, diversity and joining
genes) recombination [2–4]. The development of tech-
niques for the chromatin conformation capture, such as

Hi–C, has been a significant breakthrough in under-
standing the genome-wide chromatin structure. The
most important discovery of 3D (three-dimensional)
genome studies are possibly the hierarchical structures:
compartments A or B [5], topologically associated
domains (TADs) [6, 7] and chromatin loops [8, 9], which
shape the genome and contribute to the functioning of
the genome [10]. The chromatin loops have been found
to vary widely [8, 11]. As for the compartments, they are
cell-type specific, but could not comprehensively de-
scribe differences between cell types across the genome
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[5]. In contrast, TADs, generally composed of many
loops, being invariant and conservative during differenti-
ation across cell types and tissues [7, 12], even between
different species [2, 7, 11].
TADs are ubiquitous across the genome sequence near

the diagonal in contact maps, but not seen at large
genomic distances greater than a few mega bases. There
are two basic features for the structure organization as a
result of colocalization of the TADs [13]: self-association
and insulation. The sequences within a TAD would pref-
erentially contact with each other [6, 7, 14]. The
enhancers and promoters of genes are found within a
TAD and genes located in the same TAD can be acti-
vated simultaneously. Corresponding to the two basic
features of organization, co-regulation and blocking of
chromatins are two functional features of TADs. It was
found to align with coordinately-regulated gene clusters
in the mouse X-inactivation center [15]. This suggests
that TADs may serve as the functional units of gene
regulation [6]. It is not surprising that several studies sug-
gest the disruption of this structure may cause diseases
[15, 16]. It is therefore desirable to identify the TADs loci,
as well as unravel their formation mechanisms, although
this remains a remarkable challenge.
For this task, DomainCaller (DI) was first created to

determine the location of TAD boundaries [7]. Other
similar methods were also proposed, such as HiCseg
[17], Armatus [18], CITD [19] and TADtree [20]. They
are all fully dependent on the interaction frequency
matrix derived from the Hi–C [7]. The interaction fre-
quency matrix is an adjacency matrix for measuring the
spatial distance between fragments on the genome. Due
to the high cost and low resolution of the Hi–C experi-
ments [20, 21]. An alternative strategy was proposed to
infer TADs by using the histone mark patterns around
TAD boundary and non-boundary [13], including the
HubPredictor [21], PGSA [22] and nTDP [23]. HubPre-
dictor only used eight histone and CTCF mark signals
and did not take the up/down environment into
consider. Although PGSA considered more than 10 gene
elements, feature type is relatively single. Therefore,
their performance was still unsatisfactory. The resolution
of data is another aspect to investigate TAD boundaries
[24], the mentioned methods did not show the impact of
data resolution on their models.
Chromatin associated factors, such as CTCF and cohe-

sins, recruit enhancers to their target genes. They are
regarded as vital elements for shaping the genome. Some
DNA sequences have a preference [25]. We therefore in-
corporate sequence information with the histone mark
patterns and propose TAD–Lactuca to predict the TAD
boundaries. We used the contextual information of the
loci as inputs to explore patterns of CTCF and eight his-
tone mark signals as well as k-mer’s frequency [26]

between the boundaries and non-boundaries. Moreover,
various resolutions were also investigated. Both random
forest and deep learning algorithm were applied in our
method. Our method is stable in various resolutions and
different datasets. It could achieve high accuracy and
even outperforms the state-of-art method when the se-
quence patterns incorporated. Moreover, several transcript
factor binding motifs, beside the well-known CCCTC-
binding factor (CTCF) motif, were found significantly
enriched on the boundaries. A python 3.* implementation
of the TAD–Lactuca and instructions for use are available
at https://github.com/LoopGan/TAD-Lactuca.

Results
Signal patterns around the TAD boundaries
We firstly investigated the CTCF and histone mark sig-
nal patterns around TAD boundaries, including
H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me3,
H3K27ac, H3K27me3 and H3K36me3. We calculated
the signal intensities under various resolutions for each
feature. Two terms were employed to describe a locus
and its chromatin context: bin _ size and bin _ number.
Then, Len(region) can be calculated as the Eq. (1):

Len regionð Þ ¼ bin size� bin number�2þ 1ð Þ ð1Þ

The bin _ size = 40kb and bin _ number = 10 resulted in a
region of 840kb. We use this as an example to compare
the enrichment difference of CTCF and eight different
histone mark signals around the TAD boundaries and
non-boundaries (Fig. 1).
The depletion of H3K9me3 around the TAD

boundary was not present in non-boundary areas. It
suggests that for a region with a similar Hi–C contact
frequency, a stronger H3K9me3 mark signal intensity
means that it is less likely to be a TAD boundary.
This is because the H3K9me3 signal is usually associ-
ated with silenced genes [27]. At the boundary, the
transcription may not be strong, most of the loci may be
silenced genes. We also noticed that the signals of
H3K4me1 and H3K27me3 are different from other sig-
nals. The H3K4me1 mark is positively correlated with the
levels [27], with the TAD boundary having lower tran-
scriptional levels compared with other regions in a TAD.
The H3K27me3 mark signals were enriched at silent pro-
moter regions, while they were reduced at active promoter
regions and genic regions [27]. Therefore, these signals
might be enriched around the TAD boundary instead of
the center region of the TAD boundary.
To evaluate the differences in CTCF and eight his-

tone mark signals between the TAD boundaries and
non-boundaries, we calculated the cosine similarity
[28] of the two categories. The cosine similarity is
calculated as follows:

Gan et al. BMC Genomics 2019, 20(Suppl 13):980 Page 2 of 12

https://github.com/LoopGan/TAD-Lactuca


Sim TAD
��!

;NonTAD
�����!� �

¼
PN

i¼1 TAD
��!

i � NonTAD
�����!

i

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1TAD

��!2

i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1NonTAD

�����!2

i

q

ð2Þ
where the TAD

��!
;NonTAD
�����!

denote the histone mark signal
vector for a TAD boundary and a non-boundary, re-
spectively. N represents the dimension of each vector.
When we calculated the cosine similarity, each sample
was processed with z-score standardization by factor
type. In Fig. 2, we found that the mark signals within the
same category always have significantly higher similar
scores (Wilcoxon rank sum test, p-value < 0.05) than
from different categories. In particular, for the CTCF
mark signal, we observed that the cosine similarities are
concentrated in (− 0.1, 0.1). The value of the intra cosine

similarity was greater than the inter cosine similarity.
This further suggest the mark patterns could be discrim-
inative between TAD boundaries and non-boundaries.

Sequence pattern analysis around the boundaries
Sequence patterns were also analyzed by performing
motifs enrichment detection at TAD boundaries. Several
chromatin structure and gene regulatory associated
motifs were detected, such as CTCF, CAMTA, ERF3
and HINFP. Among them, the CCCTC-binding factor
(CTCF) is a well-known chromatin protein, which orga-
nizes the higher-order chromatin structure and plays a
key role in intrachromosomal/interchromosomal interac-
tions [30]. CAMTA functions as a transcriptional activator
and coactivator. It could control the cell growth and pro-
liferation, and may function as tumor suppressors and in

Fig. 1 Histone mark signatures of TAD boundaries: a Non-transformed signal patterns, which were higher in the boundary compared to the non-
boundary area. ‘0’ is the boundary bin, − 10 and 10 represent the number of bin distance with the center bin. ‘-‘ stands for upstream and
‘+’(ignored) stands for downstream bin. Y axis means each bin’s histone or CTCF modification intensity. b The cosine similarity of different signals
between the TAD boundary and non-boundary areas. The inter-type is calculated from inter-category samples and the intra-type is calculated
from intra-category samples, respectively

Fig. 2 Heatmap of each bin’s importance, which was calculated by the function feature_importance_ of sklearn [29]. The lighter the color of bins,
the higher the importance
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episodic memory performance [31]. The eukaryotic releas-
ing factor ERF3 is a multifunctional protein that plays
pivotal roles in translation termination as well as the initi-
ation of mRNA decay [32]. ERF3 also participates in cell
cycle regulation and cytoskeletal organization apart from
its function in translation [33]. ERF3 also functions in the
regulation of apoptosis [32]. The histone gene transcrip-
tion factor HINFP is an essential developmental regulator
of the earliest stages of embryogenesis, controlling H4
gene expression in early preimplantation embryos in order
to support normal embryonic development [34].

TAD boundary prediction
Besides the sequence information, nine protein factors
were combined into TAD–Lactuca. To evaluate the pre-
diction performance of different factors, we measured
the importance of different bins and the performance of
different features at bin _ size = 40kb and bin _ number =
10. Figure 2 shows the importance of different bins.
TAD–Lactuca used the Gini Importance to evaluate the
importance of each bin. Figure 2 shows that the bin
located in the center of the region was the important
feature. After we separated the nine types of features, we
observed that the CTCF is the most important compared
to other histones (Supplementary Materials). The central
bins of the region indicate that the CTCF plays a domin-
ant role and is the most predictive protein for distin-
guishing between the TAD boundary and non-boundary.
This is consistent with the findings of previous studies
[35–37]. Acting as enhancer blocking, CTCF can act as
a chromatin barrier by preventing the spread of hetero-
chromatin structures [38]. The CTCF binding sequence
elements can block the interaction between enhancers
and promoters. These two are consistent with the result
of our model.
Random Forest was applied to the CCCTC-binding

factor (CTCF), eight types of histone marks and also
the sequence information (details in the section of
Materials and Methods), respectively. Then, the
TAD–Lactuca was constructed by incorporating all
these features. CTCF could well discriminate the
TAD boundaries from non-boundaries with an aver-
aged AUC value of 0.754 at five-fold cross-validation.
When on the histone marks, the AUC was 0.773. The
combination of these two types of features obtained
an AUC value of 0.817. The sequence features, 3-mer,
got the AUC of 0.636. All features incorporation
could improve the AUC to 0.867. The MLP was simi-
larly applied. Its performance was listed in Table 1.
To illustrate the effectiveness of our method (TAD–

Lactuca), a comparison was performed with HubPredic-
tor [21] and PGSA [22]. Compared with HubPredictor
[21], both TAD–Lactuca_RF(short as RF) and TAD–
Lactuca_MLP(short as MLP) could achieve higher AUC

than the HubPredictor (Table 1). Particularly when the
sequence information incorporated, over ~ 0.1 higher
AUC value was improved by RF. We also calculated
AUPR (The area under the precision-recall curve)
values, a common classifier evaluation index [39, 40].
Figure 3a shows the AURP values of different features
combination of RF and MLP model. RF with k-mer gets
the highest performance among them, which AURP was
0.855. Without the k-mers’ frequency, the performance
will degrade. The same tendency can be found of MLP.
They both suggest that the sequence information is im-
portant for TAD boundaries’ formation.
The details of these results are available at https://github.

com/LoopGan/TAD-Lactuca. To further test whether our
model is cell-type and dataset specific, we applied TAD-
Lactuca on other two datasets: hESC from Dixon [7] and
IMR90 from Filippova [18]. The TAD-Lactuca also attained
satisfactory results (Fig. 3b).
When compared with PGSA [22], the performance of

RF is a little worse while only taking the histone mark
signals as features (Fig. 4). Significant improvement was
observed when additional sequence information, particu-
larly 3-mer features, combined. The performance improved
with the length of k-mer increased. The length of the fea-
ture vector would increase sharply at the scale of 4k _mer.
Here, we only performed the experiment until k _mer = 5,
at which a performance decrease was observed.
Our two methods achieve a better performance than

HubPredictor [21] and PGSA [22]. We attribute the re-
sults of models to the consideration of contextual and
sequence information. Deep learning works excellent
among mass of data. The data of our task is only about
4, 000, RF model with the highest performance is in our
expectation.

Robustness in different resolutions
Resolution is a significant factor when identifying the
TAD regions [24, 41]. We tested the robustness of
TAD–Lactuca in different resolutions and adjusted the
downstream and upstream bin number to 8 and 6. Fur-
thermore, we also resized the bin to 20 kb and 10 kb.

Table 1 Prediction accuracy using various features and some
combinations, with the AUC scores of different models shown
in the table (TAD–Lactuca_RF represent Random Forests Model
and TAD–Lactuca_MLP represents Multi-Layer Perceptron, the
details of them are introduced at section 3.2.3.)

Methods Features

ALL CTCF+Histones CTCF Histones 3-Mer

HubPredictor – 0. 774 0.703 – –

TAD–Lactuca_RF 0.867 0. 817 0. 754 0. 773 0.636

TAD–Lactuca_MLP 0.812 0. 810 0. 752 0. 756 0.592
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When we reduced the downstream or upstream region
of the loci of interest, we found that TAD–Lactuca has
an equal or even better performance in separating the
TAD boundary from non-boundary. When we rescaled
the size of the bin, the accuracy is approximately similar
to that achieved with the bin sized 40 kb (Fig. 5). These
results suggested that our method is robust at different
resolutions. From Fig. 5, we also observed that TAD–

Lactuca has better performance compared to HubPre-
dictor [21] across all different resolutions.

Discussion and conclusion
In this work, we designed the TAD–Lactuca to distin-
guish the TAD boundaries from other genomic areas by
utilizing the CTCF and histone mark signals as well as
sequence information around a locus of interest. It

Fig. 3 The result of TAD-Lactuca. a The Precision recall curves of RF and MLP. RF and MLP represent model only with histone and CTCF feature,
RF with k-mer and MLP with k-mer represent model with sequence information respectively. b The ROC Curves among different datasets. 2012 in
the legend means the dataset is from Dixon [7] and 2015 means the dataset is from Filippova [18]. For example, hESC_2012_MLP means the
result of our MLP model on the dataset of Dixon [7]. AUC scores are shown in the legend

Fig. 4 TAD boundary prediction compared with PGSA and HubPredictor. The HubPredictor bar (blue) shows the result by Huang [21], the PGSA
bar (orange) shows the best multi-element models result by Hong [22]. The No-mer bar (green) shows the result of TAD-Lactuca without
sequence information. The rest bar (purple) is the result of different k-mer combined with histone mark signals. The red dotted lines indicate
their trend
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outperforms the existing methods in predicting the
boundary of topologically-associated domains. We
additionally applied our method on the hESC datasets
produced by Dixon [7] and IMR90 dataset produced by
Filippova [18] and then tested the TAD–Lactuca at vari-
ous resolutions. All these results suggested the incorpor-
ation of sequence features could significantly improve
the performance. The sequence motif enrichment ana-
lysis indicates several gene regulation motifs. It implies
the sequence patterns would be important in chromatin
folding.
Although TAD-Lactuca achieves good performance

and detects several chromatin structure and gene regula-
tory associated motifs, there are some limitations in our
approach. For example, the relationships between differ-
ent histones not take into consideration, a model com-
bined spatial information will be addressed in the future
study.

Materials and methods
Materials
The TAD boundaries of IMR90 and hESC were obtained
from Dixon [7], which is available from GEO with the
accession number GSE35156. We also downloaded a
contemporary dataset of IMR90 TAD boundaries from
Filippova [18]. The TAD boundaries of these three data-
sets are provided as supplementary data. The genome-

wide signal coverage tracks of CTCF for both cell types
were downloaded from ENCODE [42], while the other
eight histone mark (H3K4me1, H3K4me2, H3K4me3,
H3K9ac, H3K9me3, H3K27ac, H3K27me3 and H3K36me3)
signal tracks for the two cell types mentioned before were
downloaded from NIH Roadmap Epigenome Project [43].
Due to the boundaries/non-boundaries’ coordinates basing
on hg18, all these genome-wide signal coverage tracks were
converted from hg19 to hg18 by the lift function of bwtool
[44]. The k-mer frequency model is also based on hg18.

Methods
Using the significant differences in CTCF and eight his-
tone mark signals between TAD boundaries and the
other regions, we proposed a method, TAD–Lactuca, for
determining whether a locus on the genome is in a TAD
boundary. To improve the prediction accuracy, the k-
mer analysis merged into our model. The TAD–Lactuca
used the signal intensity vector of CTCF and eight his-
tone mark signals, different k-mer’s frequency for both
the given locus and its context, respectively. These nine
vectors were subsequently cascaded. While comparing
with PGSA [44], the k-mer’s frequency vector also do
the same operation. For positive samples, we directly
used the TAD boundary downloaded from Dixon [7].
For negative samples, according to the method outlined
previously [21], the same number of non-boundary

Fig. 5 TAD–Lactuca has implemented Random Forests (RF) and Multi-Layer Perceptron (MLP) for different resolutions without sequence
information. The ROC curves of different resolutions are shown, while the AUC scores and resolutions are shown in the rectangle
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genomic loci were randomly selected with a similar
interaction frequency as the boundary. The TAD–Lac-
tuca used the vector as input, before utilizing both the
Random Forests model and Artificial Neural Network to
fit the data. The workflow (Fig. 6) of TAD–Lactuca in-
cludes four steps: (1) downloading and processing data
as previously mentioned; (2) selecting the loci as the
description in the Pick Loci; (3) using bwtool [44] to get
a 189-dimension (bin_size as [40 kb, 20 kb or 10 kb] re-
spectively, bin_number as 10), a 153-dimension (bin_size
as 40 kb, bin_number as 8) or a 117-dimension (bin_size
as 40 kb, bin_number as 6) vector for each locus, calcu-
lating k-mer’s frequency for different k size(k as [1, 2, 3,
4 and 5]); and (4) letting TAD–Lactuca use a matrix of
4416 vectors of IMR90 (2208 positive samples and 2208

negative samples, with alternative other scales for hESC
and contemporary IMR90 dataset [18]) as input to fit a
model and provide predicted results.

Pick loci
For the TAD boundaries of IMR90 and hESC, we selected
the boundary loci from Dixon [7]. Dixon identified 2208
TAD boundaries of IMR90 and 3837 TAD boundaries of
hESC by ‘DomainCaller’ [7], Filippova identified 4052
TAD boundaries by Armatus [18]. The non-boundary loci
were randomly selected from the genomic loci with the
same interaction frequency as the TAD boundaries [21].
For loci with several bins, the center bin would be taken
as the region for the TAD boundaries’ or non-boundaries’

Fig. 6 Three length k-mers. For k = 3, the first three k-mers are GCA, CAA, AAC, the rest and other length k-mer can be obtained as k-mer’s definition
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loci. The list of TAD boundary and non-boundary loci are
available at https://github/LoopGan/TAD-Lactuca.

Calculate signal
Histone signals
The patterns of different histone marks around TAD
boundaries have been shown by previous studies [7,
21]. However, these previous studies [21] only used
the averaged signal for each histone mark. In this
present study, we argue that the context in which
these signal patterns are found is also important for a
boundary. So binning technology was introduced to
describe the loci information. We take the up/down-
stream information to calculate CTCF and eight his-
tone mark signals. As Fig. 7 shows, each bin contains
bin _ size bases and bin _ num ∗ bin _ size ∗ 2 bases were
considered. Then we used summary in bwtool [44] to
calculate the signal intensity of the noticed factor in
each bin. For example, bin _ size = 40kb (reported
resolution of Hi–C experiment by Dixon [7]) and bin
_ num = 10, we will get a vector lengthened to 21 to
express a mark signals, not a scalar as previous done.
For 9 different marks as we used, we will obtain a 21
* 9-dimension vector to describe a boundary/non-
boundary. For CTCF and each histone mark signal,
we alternatively calculated the mean signal for TAD
boundaries and non-boundaries, with significant dif-
ferences found in this study (Fig. 1).

DNA sequencing
Letting s be a biological sequence of length m, then s =
q1q2q3…qm, where qi ∈ Σ (Σ is the symbol space of bio-
logical sequence, and for gene sequence, there is Σ = {A,
T,C,G}). In bioinformatics, a consecutive symbol subse-
quence (of length k) starting at any position i(1 ≤ i ≤m −
k + 1) in a read is called k-mer. Different length k-mers
can be obtained as Fig. 8 shown.
We use different k-mers’ frequencies as features to ex-

pression the sequence information of boundary/non-
boundary. As so far, we only use the center bin’s sequence
to calculate the different k-mer’s frequency. Take k = 3,
bin _ size = 40kb as an example, we can get 64 useful k-
mers, there may be some ‘N’ in the sequence, we just leave
them alone and the sum of different k-mers’ frequency is
less or equal than 1, so the feature vector is 64-dimension.
Then we sort the k-mers by lexicographical, calculating

the frequency as FrequencyðkÞ ¼
P

k−mer

40000−3þ1. For the model
with sequence information, we concatenate the frequency
vector at the tail of histone and CTCF marks signal
vector.

Model and measurement
The model of TAD–Lactuca contains two parts:
Random Forests and Multi-Layer Perceptron. Random
Forests and Multi-Layer Perceptron are all supervised
learning techniques, which labels the target of each
region as a boundary or non-boundary, 1 as boundaries

Fig. 8 Bin i is the locus we want to know is a boundary or not. We take bin _ size ∗ bin _ num bases up/downstream to describe the locus

Fig. 7 The workflow of the TAD–Lactuca. It contains two parts: Feature Extract and Model. The first part, namely feature extraction, can be divided into
three parts: (1) obtaining raw data, (2) selecting loci and (3) calculating multi-resolution signals. The model part consists of two models named
Random Forests (RF) and Multi-layer perceptron (MLP), which work individually and provide information regarding the locus of TAD boundaries
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and 0 as non-boundaries. The details of the two models
are given in the following section.
Random Forests (RF) is a powerful machine-learning

method developed by Breiman [45], which has been suc-
cessfully and widely applied in epigenetics [7, 46, 47]. RF
is a type of ensemble learning based on the decision tree.
The algorithm to build the tree is the Classification and
Regression Tree (CART). The RF contains two parts: (1)
building the decision trees and (2) assembling the trees
to form a forest for classification. The principles of RF
are summarized briefly as follows:

� Build the decision trees

■ Sample N cases at random with replacements (i.e., a
Bootstrap Sample method) to create a subset of the
training set.

■ At each node:
◆ For some number m, m predictor variables are

selected at random from all the M predictor vari-
ables. The value of m is constant during the forest
growing.
◆ The predictor variables that provide the best split,

according to some objective function, are used to do a
binary split on the current node.
◆ At the next node, choose other m variables set at

random from all predictor variables and repeat the first
two steps until the node cannot be split or reach to a
specific label.
◆ Each tree is grown to the largest extent possible,

there is no pruning for the tree.

� Ensemble the trees to form a forest and provide
classification

Fig. 10 The output of a neuron

Fig. 9 The diagrammatic sketch of MLP
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■ Repeat the Build the decision trees for some number
of trees (T).
◆ Combine each tree (a weak learner) and form a

forest (a strong learner).
◆ Each tree provides a classification and votes for a

specific class. The forest chooses the classification with
the most votes.
◆ Return the sample’s classification or label.
As a part of the TAD–Lactuca, we constructed a pre-

diction model using the function RandomForestClassifier
with default parameters, except for the n_estimators of
sklearn [29], to quantitatively investigate the relationship
between the signals of CTCF and histone mark with
TAD boundaries. The value of the parameter n_estima-
tors provides the number of trees in the forest. Consider-
ing the balance between the computing cost and the
performance of the RF, we set n _ estimators = 500. The
other parameters were searched by function Grid-
SearchCV of sklearn [29]. For IMR90 from Dixon [7], the
input of RF includes 2208 TAD boundaries and 2208
TAD non-boundaries. Cross-validation using the function
cross_val_score of sklearn was used to estimate the

performance of our RF model. To assess the performance
of the features we have identified, we calculated the Area
Under Curves (AUC), accuracy and F-score (See the Sup-
plementary Materials), which are generated from 10-fold
cross-validation.
Deep learning is another dominant technique in this

classification task, which has been used in many fields,
such as regulatory genomics and biological image ana-
lysis [48–50]. To the best of our knowledge, deep learn-
ing has not been used for TAD boundary prediction. In
another part of TAD–Lactuca, we used the Multi-Layer
Perceptron (MLP), a type of deep learning technique, in
our method. A MLP might be viewed as a logistic re-
gression classifier where the input is first transformed
using a non-linear transformation. This transformation
projects the input data into a space where it becomes
linearly separable. Compared with a logistic regression
classifier, the MLP fully utilizes the logistic regression
classifier. It combines multiple logistic regression classi-
fiers, before taking the former logistic regression classi-
fier output as the input of the latter ones until the
output layer of the MLP. The MLP overcomes the prob-
lem caused by the linear inseparability samples. It pro-
jects the samples into a feature space, before projecting
the feature into the feature’s feature space until the last
intermediate logistic regression is classified. These inter-
mediate logistic regression classifiers are in a hidden
layer. We provide a brief introduction about the MLP in
the following section.
A MLP with l hidden layers is represented graphically in

Fig. 9. The basic computing unit of an artificial neural

Table 2 The parameters of MLP different layers. BN means
Batch Normalization the input or not

Number of Neurons Active Function DropOut BN

Layer 1 512 linear 0.6975 No

Layer 2 256 softplus 0.5153 Yes

Layer 3 512 linear 0.4252 Yes

Layer 4 1024 hard_sigmoid 0 No

Fig. 11 Different parameters of MLP performance. Current represents the parameters of MLP as Table 2 described. Compared with current, 5
Layers means there is double less Layer 2 and 3 Layers means Layer 2 is lacking. No dropout means each layer do not have dropout operation
and No BN (Batch Normalization) means each layer are not normalized. They are all compared with Current situation
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network (ANN) is the neuron. The neuron in the input or
output layer can be called as the input or output neurons.
The MLP (demonstrated in Fig. 9) contains n input neu-
rons, which creates n-dimensional features. The hidden
layer contains vast neurons which were determined by
model and the output layer often contains small quantity
neurons. As our task is a binary classification problem, the
output layer contains one neuron. For some neuron, the
input and output are expressed as in Fig. 10.
The output Y can be calculated using Eq. (3):

Output of neuron ¼ Y

¼ f θTi x!þ bi
� �

¼ f w1x1 þ w2x2 þ w3x3 þ bð Þ
ð3Þ

where the x! represents the input of the neuron; the θi is
the weight vector and the bi is bias. For each layer, there is
a special active function. In this study, the output neuron’s
active function that we chose is sigmoid, which can be
written as Eq. (4). The return value ranges from 0 to 1.

S xð Þ ¼ 1
1þ e−x

ð4Þ

where the x is the input of other neurons. The function
will return a value. If the value is greater than a threshold,
the input sample is labeled as a positive sample, otherwise
it is labeled as a negative sample. The back propagation
(BP) algorithm is used to train the neural network [51], in
which the weight vector and bias can be updated by min-
imizing errors between the output and the true label.
The MLP we used in this study contained four hidden

layers. It is a 6-layer artificial neural network, implemented
by Python with Tensorflow [52] and Keras [53]. For each
layer, the number of neurons, active function and dropout
size were searched by Hyperas and Hyperopt, Table 2
shows the details of the parameters and Fig. 11 shows AUC
and AUPR values of MLP with other parameters.
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