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Abstract

Background: After the extensive implementation of genomic selection (GS), the choice of the statistical model and
data used to estimate variance components (VCs) remains unclear. A primary concern is that VCs estimated from a
traditional pedigree-based animal model (P-AM) will be biased due to ignoring the impact of GS. The objectives of
this study were to examine the effects of GS on estimates of VC in the analysis of different sets of phenotypes and
to investigate VC estimation using different methods. Data were simulated to resemble the Danish Jersey population. The
simulation included three phases: (1) a historical phase; (2) 20 years of conventional breeding; and (3) 15 years of GS. The
three scenarios based on different sets of phenotypes for VC estimation were as follows: (1) Pheno1: phenotypes from only
the conventional phase (1–20 years); (2) Pheno1+2: phenotypes from both the conventional phase and GS phase (1–35
years); (3) Pheno2: phenotypes from only the GS phase (21–35 years). Single-step genomic BLUP (ssGBLUP), a single-step
Bayesian regression model (ssBR), and P-AM were applied. Two base populations were defined: the first was the founder
population referred to by the pedigree-based relationship (P-base); the second was the base population referred to by the
current genotyped population (G-base).

Results: In general, both the ssGBLUP and ssBR models with all the phenotypic and genotypic information (Pheno1+2)
yielded biased estimates of additive genetic variance compared to the P-base model. When the phenotypes from the
conventional breeding phase were excluded (Pheno2), P-AM led to underestimation of the genetic variance of P-base.
Compared to the VCs of G-base, when phenotypes from the conventional breeding phase (Pheno2) were ignored, the ssBR
model yielded unbiased estimates of the total genetic variance and marker-based genetic variance, whereas the residual
variance was overestimated.

Conclusions: The results show that neither of the single-step models (ssGBLUP and ssBR) can precisely estimate
the VCs for populations undergoing GS. Overall, the best solution for obtaining unbiased estimates of VCs is to
use P-AM with phenotypes from the conventional phase or phenotypes from both the conventional and GS
phases.
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Background
In animal breeding, the prediction of breeding values re-
quires accurate and unbiased estimates of variance com-
ponents (VCs). There are several approaches available
for VC estimation depending on the practical conditions
(for instance, population structure) [1]. Among these
methods, restricted maximum likelihood (REML) [2] is a
well-known method that has been widely applied under
animal models to obtain genetic parameters for traits of
interest [3–8]. Alternatively, Bayesian methods with
Markov chain Monte-Carlo (MCMC) procedures such
as Gibbs sampling can be adopted to obtain marginal in-
ferences for VCs [9–12].
Before genomic information was available, Sorensen

and Kennedy [13] showed that unbiased estimation of
VCs in a base population could be obtained by an ani-
mal model when all data leading to selection decisions
and complete relationships were incorporated, while ig-
noring data from selected ancestors led to biased estima-
tion due to not accounting for gametic disequilibrium.
Moreover, in small populations with few generations, an
animal model with pedigree information can account for
bias due to inbreeding and the Bulmer effect [14]. How-
ever, these results were obtained assuming the infinitesi-
mal model. To date, although there are currently several
genomic prediction models available, the choice of stat-
istical model and which data should be used to estimate
VCs in the genomics era remain unclear.
The use of genomic selection (GS) has greatly en-

hanced genetic gains due to improved selection accuracy
and shortened generation intervals (e.g., dairy cattle
breeding); this has led to faster changes in gene frequen-
cies compared to traditional phenotype and pedigree-
based genetic improvement programmes. In such situa-
tions, the extra selection acting on genomic information
increases the challenges of obtaining unbiased VC esti-
mates. Concerns have been raised about biased VC esti-
mates caused by ignoring genomic information and
selective genotyping [15]. Hence, it can be expected that
after performing GS for several generations, the esti-
mates of VC from a pedigree-based animal model (P-
AM) would be biased due to not accounting for the im-
pact of GS.
Single-step genomic BLUP (ssGBLUP) derived by [16–

18] has provided a way to predict breeding values using
phenotype, pedigree and genomic information simultan-
eously for both genotyped and non-genotyped individuals
via a combined relationship matrix (H). Thus, in contrast
to typical genomic BLUP (GBLUP) [19, 20] using pheno-
types only from genotyped individuals, a large number of
historical phenotypes from non-genotyped individuals can
also be used for analyses. Alternatively, a single-step
Bayesian regression model (ssBR) was proposed by [21,
22]. In contrast to ssGBLUP, in which markers for non-

genotyped individuals are implicitly imputed, ssBR re-
quires the explicit imputation of the markers for non-
genotyped individuals, followed by fitting of the marker ef-
fects in the model. Previous studies have reported that
ssGBLUP and the original ssBR model perform equally in
terms of accuracy of prediction when assuming that VCs
are known [23, 24]. However, an attractive feature of ssBR
that has been neglected is that ssBR offers separate esti-
mation of marker variance (σ2α) and total genetic variance
( σ2g , denoted as σ2

ε in ssBR). Therefore, ssBR could be

employed as a variance component model for VC estima-
tion that includes two additive genetic components.
The compatibility between pedigree-based relationships

and marker-based relationships is a crucial factor for en-
suring unbiased estimation when using single-step
methods [19, 25, 26]. This concern is due to the different
base populations to which these two relationships refer.
More specifically, the pedigree-based relationship refers to
a founder population in which individuals are assumed to
be unrelated (denoted as P-base hereafter). The base
population of marker-based relationships can be defined
as the population from which the allele frequencies were
obtained to compute the relationships (denoted as G-base
hereafter) [27, 28]. Therefore, the VCs estimated using
single-step methods with phenotypes from a population
undergoing GS may not be directly comparable with the
VCs estimated using pedigree-based methods [29]. The
objectives of this study were (1) to examine the effects of
genomic selection on estimates of VC based on the sce-
nario of choosing phenotypes from different phases of
breeding programme and (2) to investigate the estimation
of VCs using different methods in a population undergo-
ing GS.

Results
To determine the effects of GS on the estimation of
VCs, we analysed data from three scenarios reflecting no
application of GS (Pheno1), application of GS (Pheno1 +
2), and a lack of information from the previous conven-
tional breeding scheme (Pheno2). Table 2 presents the
means and standard deviations (SDs) of the estimated
VCs and heritabilities over replicates. In general, the use
of single-step methods with all the phenotypes and ge-
notypes (Pheno1 + 2) yielded biased estimates of the total
genetic variance of P-base. Using P-AM with all the phe-
notypes (Pheno1 + 2) produced unbiased VC estimates
and heritability of P-base. When the phenotypes from
the conventional breeding phase were excluded
(Pheno2), P-AM led to the underestimation of genetic
variance (P < 0.01) of P-base. As expected, we obtained
unbiased VC estimates and heritability when using P-
AM with phenotypes only from the conventional phase
(Pheno1).
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For ssGBLUP, in general, the estimates of genetic vari-
ance were all biased (P < 0.005) across all the scenarios
(Table 2). In contrast to the VCs from P-base, when
using phenotypes only from the conventional phase
(Pheno1), the genetic variance was significantly underes-
timated, and the residual variance was significantly over-
estimated. Furthermore, when including phenotypes
from the GS phase in the model (Pheno1 + 2), the genetic
variance was significantly underestimated, although un-
biased estimated residual variance was observed. In con-
trast to the VCs from G-base, when ignoring data from
the conventional breeding phase (Pheno2), ssGBLUP sig-
nificantly overestimated genetic variance, although an
unbiased estimate of residual variance was obtained.
For ssBR, the convergence of the Gibbs sampler was

assessed by estimating Monte Carlo error (MCE) (via
batch means). The MCEs for the estimates of the total
genetic variance and residual variance were at the level
of 10− 3, and for the estimates of marker variances, they
were at the level of 10− 6. Two estimated genetic vari-
ances are reported (Table 2). In contrast to VCs from P-
base, when using phenotypes only from the conventional
phase (Pheno1), unbiased total genetic variance and re-
sidual variance were obtained. This led to an unbiased
estimate of heritability. However, the marker-based gen-
etic variance was significantly overestimated (P < 0.001)
compared to the variance in G-base, resulting in a biased
estimate of heritability. Conversely, when including phe-
notypes from the GS phase in the model (Pheno1 + 2),
the marker-based genetic variance was unbiased, but the
total genetic variance was significantly underestimated
(P < 0.001). In contrast to the VCs from G-base, when
ignoring data from the previous conventional breeding
phase (Pheno2), ssBR yielded unbiased estimates of the
total genetic variance and marker-based genetic vari-
ance, whereas the residual variance was overestimated.

Discussion
In this study, we addressed the effects of GS on esti-
mates of VCs. Two single-step methods (ssGBLUP and
ssBR), together with the traditional pedigree-based ani-
mal model (P-AM), were used and compared based on
simulated datasets that mimic dairy cattle populations.
The first question addressed in this study was aimed at
determining the impact of the choice of phenotypes
from different phases of a breeding program on the esti-
mation of VCs. The results showed that both the
ssGBLUP and ssBR models led to biased VC estimates
across all scenarios.

Selection of data to be included in the estimation of
genetic variance
We showed that P-AM yielded unbiased estimates of
VC when including the phenotypes from the GS phase

(Pheno1 + 2). We also demonstrated that when using phe-
notypes only from the conventional selection phase
(Pheno1), P-AM produced unbiased VC estimates. The
scenarios of Pheno2, which reflects current breeding pro-
grammes using GS, led to biased estimates of VC by
using P-AM. This was mainly caused by ignoring the in-
formation from the selection decisions. Another possible
cause of this bias might be explained by the negative LD
between QTLs across the genome [30, 31]. In particular,
this negative LD is stronger in a population selected
according to GS information than in a population se-
lected based on only the pedigree relationships [the
mean (SD) variance of TBV for animals from generation
35 decreased to 2.46 (0.04)].
Reductions in genotyping costs have contributed to

the comprehensive implementation of GS in many gen-
etic selection programmes. This offers the opportunity
to select for new traits that are difficult to measure or
not yet among the breeding goals. In this situation, a
new phenotyping strategy might be used, or new pheno-
types may be more likely to be collected from popula-
tions under intense GS. In the present study, based on
the scenario of Pheno2 with P-AM, our results con-
firmed the reduction of genetic variance due to ignoring
the information from the conventional breeding phase;
i.e., there are no phenotypes to account for the selection
conducted in the previous period, and previous selection
cannot be properly handled in the current model. There-
fore, the use of P-AM including only the phenotypes
from the GS phase (Pheno2) resulted in biased estimates
of VC.

Changed base population
With respect to the genomic relationship, an arbitrary
base population may exist close to the current popula-
tion undergoing GS. It can be expected that using such a
base population (more recent) would lead to smaller es-
timates of genetic variance than using P-base. Therefore,
in this study, the G-base corresponding to the current
GS phase was defined separately from P-base. Conse-
quently, it may be improper to compare VCs estimated
in the GS phase (e.g., Pheno2) with the VCs in P-base,
which is generally referred to by the pedigree. This con-
cern was initially raised by Powell et al. [25]; that is, VCs
estimated using genetic markers can be erroneous since
an inconsistent base population is defined compared to
the base population with common founders. A similar
study was conducted by Veerkamp et al. [32] based on a
small dataset from Holsteins, where VCs for milk yield,
dry matter intake, and body weight were estimated with
P-AM, GBLUP, and ssGBLUP. Their results showed that
ssGBLUP produced the most precise estimates of VCs;
however, they questioned whether the VCs obtained
using genomic information might not be comparable
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with the VCs obtained using only pedigree information
since these relationship matrices might refer to different
base populations. Our results confirmed that when phe-
notypes only from the GS phase (Pheno2) were used,
both ssGBLUP and ssBR yielded smaller genetic variance
estimates compared with the VCs in P-base (Table 2).
In the present simulation study, we directly used the

allele frequencies calculated from P-base to avoid the
compatibility issue between the G and A22 matrices in
ssGBLUP [26, 27, 33]. In practice, the allele frequencies
of P-base are unknown, but they can be estimated using
the approach proposed by Gengler et al. [34] by regres-
sing the gene contents of ancestors on the genotypes of
the progenies.

Two estimates of genetic variance in ssBR
As originally introduced by Fernando et al. [21, 22], the
ssBR model is essentially a marker effect model with all
markers fitted in the model. Consequently, this feature re-
sults in a model with two estimates of additive genetic var-
iances, i.e., the total genetic variance (σ2ε ) and the marker-
based genetic variance, which can be obtained by multi-
plying

Pm
j¼1 2pjð1−pjÞ by the estimated marker variance (

σ2α ). When using phenotypes only from the conventional
phase (Pheno1), the estimated total genetic variance was
unbiased; however, the marker-based genetic variance was
biased upwards, although the allele frequencies from P-
base were used. This result can be explained by the fact
that a small proportion (1.2%) of animals (only progeny-
tested bulls) in the pedigree were genotyped, resulting in
poor imputation for non-genotyped animals and biased
estimation of marker variance.
Apart from the estimated marker variance, the total

genetic variance shows a relationship with the condi-
tional variance of the breeding values of non-genotyped
individuals (g1) given the breeding values of genotyped
individuals (g2), i.e., Varðg1jg2Þ ¼ ðA11−A12A−1

22A21Þσ2g
[16]. With the assumption of multivariate normality, the
markers of non-genotyped individuals were imputed via
a pedigree-based linear system. A residual vector (ε) ac-
counting for the remaining portion of the breeding
values that could not be modelled by the imputed
markers was added to the marker-based breeding values
to obtain the final g1. The accuracy of this imputation
quality depends on the genetic relationships between ge-
notyped and non-genotyped animals; i.e., it is expected
that less precise imputation will be achieved for old an-
cestors than for younger ones. More specifically, the im-
putation is based on a linear relationship between
genotyped and non-genotyped individuals, which may
not approximate the distribution of marker genotypes
very well [21]. Thus, better methods (e.g., an imputation
method based on a peeling algorithm [35]) for imputing

the genotypes of non-genotyped individuals conditional
on the genotyped individuals would be expected to yield
more accurate results. In addition, as pointed out by
[21], in the single-step method, we do not observe g2,
but M2; this indicates that the conditioning is on the ob-
served marker information, and the conditional genetic
variance estimated in ssBR is therefore actually only an
approximation of the genetic variance.

Conclusions
This study contributes to a better understanding of the
effects of GS on VC estimation. The results show that
neither of the single-step models (ssGBLUP and ssBR)
can precisely estimate the VCs for populations undergo-
ing GS. Furthermore, this study has demonstrated that
when the complete data are analysed with both pre-GS
data and data from the GS phase, the classic P-AM can
yield unbiased estimates of VC. Therefore, an implica-
tion of these findings is that the best solution for obtain-
ing unbiased estimates of VC is to use P-AM with
phenotypes from the conventional phase or phenotypes
from both conventional and GS phases.

Methods
Simulation of data
Populations that were similar to the Danish Jersey dairy
cattle population in terms of the breeding scheme and
population structure were simulated over a 35-year
period with 5 replicates for each scenario. The simula-
tion was conducted with the following three phases: (1)
The historical phase, covering 3000 non-overlapping
generations, was run to generate an initial linkage dis-
equilibrium (LD) structure. The simulated genome con-
sisted of 30 chromosomes of 100 centiMorgans (cM)
each with 100 QTLs and 10,000 biallelic SNP markers.
The QTLs and markers were uniformly distributed
within each chromosome. This resulted in a total of
3000 QTLs and 300,000 markers across the whole gen-
ome. The offspring inherited alleles at these loci from
their parents following Mendel’s rules allowing for muta-
tion (assumed only to happen in the historical phase)
and recombination. A recurrent mutation rate of 2.5 ×
10− 5 for both markers and QTLs was set to establish
mutation-drift equilibrium in the historical generations.
The number of recombination per chromosome (per
Morgan) was sampled from a Poisson distribution with a
mean equal to the length of the chromosome, and cross-
overs were uniformly located along the chromosome.
This part of the simulation was implemented with
QMSim software [36]. Generation 3000 was used as the
base population, in which 40,000 SNPs were randomly
chosen from the pool of 300,000 markers, and 2000
QTLs were randomly chosen from the pool of 3000
QTLs. (2) In the next phase, 20 years of conventional
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breeding were simulated. Each year, 50 young bulls were
selected based on their parent average (PA) and the pro-
geny tested, and 10,000 cows in different age groups
were maintained. Only cows in the first lactation, how-
ever, were assumed to have phenotypes. At the end of
phase (2), all proven bulls were genotyped. (3) In the last
phase, 15 years of genomic selection were simulated.
Each year, 500 bulls and 2000 heifers were selected for
genotyping at one year of age based on their PA gen-
omic estimated breeding values (GEBV) computed by
ssGBLUP. After genomic evaluation, 50 of these 500
bulls were selected for breeding. The simulations of
phase (2) and (3) were performed with ADAM software
[37]. For the herd-year-season (HYS) effect (contempor-
ary group effect), individuals were allocated to 100 herds,
35 years and 4 seasons.

Scenarios
Three scenarios based on the use of phenotypic information
from different phases of breeding programs for the estima-
tion of VCs were explored: (1) Pheno1: phenotypes only from
conventional phase (1–20 years) were used; (2) Pheno1+2:
phenotypes from both the conventional phase and genomic
selection phase (1–35 years) were used; (3) Pheno2: pheno-
types from only the genomic selection phase were used (21–
35 years). Within each scenario, the three single-trait models
(P-AM, ssGBLUP, and ssBR) were applied. An overview of
the subsets used and the average number of individuals in
the pedigree, phenotypes, and genotypes for each scenario
over 5 replicates are shown in Table 1. For validation, VCs
and heritabilities from two different base populations (P-base
and G-base) are presented in Table 2. The genetic variance
of P-base was calculated from the variance of “true” breeding
values (TBVs) based on animals from the founder popula-
tion, while the genetic variance of G-base was calculated
from the variance of TBVs based on animals from years 18,
19, and 20, i.e., the last three years before the start of GS (an-
imals in G-base were related). Hence, when genomic infor-
mation was included and phenotypes were only collected
from GS phase (Pheno2), the VC estimates needed to be
compared with the VCs from G-base.

Statistical models for VC estimation
P-AM
The classical animal model [38] using pedigree-based re-
lationships can be written as follows:

y ¼ Xβþ Zaþ e ð1Þ
where y represents the vector of phenotypes; β is a vec-
tor of fixed effects, i.e., herd-year-season effects: a is a
vector of additive genetic effects following Nð0;Aσ2gÞ ,
where A is the numerator relationship matrix, and σ2g is

the additive genetic variance; X and Z are design matri-
ces relating phenotypes to fixed effects and random ani-
mal effects, respectively; and e is a vector of residuals
following Nð0; Iσ2eÞ, where σ2e is the residual variance.

ssGBLUP
The model equation of the regular ssGBLUP model [16,
17] was the same as model (1) but used an H matrix that
combines the marker-based (G) and pedigree-based (A)
relationship matrices to replace the numerator relation-
ship matrix (A) in the classical animal model. Therefore,
the vector of GEBVs is assumed to be distributed as Nð0
;Hσ2gÞ . The mixed model equations (MME) require the

inverse of the H matrix [18]:

H−1 ¼ A−1 þ 0 0
0 G−1−A−1

22

� �
ð2Þ

where A−1
22 is the inverse of the pedigree-based relation-

ship matrix for the genotyped individuals, and G is con-
structed according to [19]:

G ¼ ZZ
0

Pm
j¼12pj 1−pj

� � ð3Þ

where Z is a centred marker covariate matrix containing
0 − 2pj, 1 − 2pj, and 2 − 2pj for genotypes of AA, AB, and
BB, respectively; pj is the allele frequency at locus j, and
m is the total number of markers. For the scenarios of
Pheno1 and Pheno1 + 2, the allele frequencies were

Table 1 Scenarios based on choosing different phases of phenotypes for variance component estimation and average statistics of
simulated datasets over 5 replicates

Phenotyping periods (years) No. of genotypes

Scenarioa Conventional
phase (1–20)

Genomic selection
phase
(21–35)

Size of pedigree No. of phenotypes Bulls Cows with phenotype Cows without phenotype

Pheno1 √ – 84,164 81,240 1050 – –

Pheno1 + 2 √ √ 160,131 144,728 8550 25,021 4979

Pheno2 – √ 106,011 63,487 8550 25,021 4979
aPheno1: phenotypes from only the conventional phase (1–20 years) were used; Pheno1 + 2: phenotypes
from both the conventional phase and genomic selection phase (1–35 years) were used; Pheno2:
phenotypes from only the genomic selection phase were used (21–35 years)
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estimated from the animals in P-base, whereas for the
scenario of Pheno2, the allele frequencies were estimated
from the animals in G-base. The variance components
of P-AM and ssGBLUP were estimated with REML [2]
using the average information algorithm (AIREML) [8]
as implemented in the DMU package [39].

ssBR
An ssBR model [21] based on BayesC [40, 41] with the
assumption of all markers having non-zero effects (i.e.,
π = 0) and a common variance for all markers can be
specified as follows:

y1
y2

� �
¼ X1

X2

� �
βþ Z1 0

0 Z2

� �
M1αþε
M2α

� �
þ e ð4Þ

where subscript 1 denotes non-genotyped individuals,
and subscript 2 denotes genotyped individuals. Thus, y
represents the vector of phenotypes; β is a vector includ-
ing elements of herd-year-season effects; X and Z are
design matrices; M2 contains observed marker covariates
for genotyped individuals; M1 contains imputed marker
covariates for non-genotyped individuals; the imputation
is conducted from the following linear relationship: M1

¼ A12A−1
22M2 based on the assumption of multivariate

normality, where A12 and A22 are the sub-matrices of A;
α is the vector of marker effects α � Nð0; Iσ2αÞ ; ε is the
vector of imputation residual deviations, ε � Nð0; ðA11−
A12A−1

22A21Þσ2εÞ , due to the inaccuracy of imputation,

where A11, A12, A22 and A21 are the sub-matrices of A;
σ2α is the variance of the marker effects under the
assumption that all markers exhibit common genetic
variance and can explain all additive genetic variance; σ2

ε
is the imputation residual variance; and e is a vector of
residuals, e � Nð0; Iσ2eÞ . For location parameters, a flat
prior is assigned for β, and normal priors are specified
for α, ε, and e, with null mean and variance of σ2α , σ

2
ε ,

and σ2e , respectively. For dispersion parameters, scaled
inverse chi-squared distributions with scale factors, S2α
¼ 0:0002, S2ε ¼ 2, S2e ¼ 2:5, and degree of freedom, να(ε,
e) = 4, are assumed to be the prior distributions for σ2α ,
σ2ε , and σ2e , respectively. The final GEBV for individuals
can be written as follows:

g ¼ g1
g2

� �
¼ M1αþ ε

M2α

� �
ð5Þ

where g1 and g2 represent the vectors of GEBV for non-
genotyped and genotyped individuals, respectively.
The use of ssBR allows the inference of the additive

genetic variance from two sources of information: first,
the total genetic variance, approximated by the esti-
mated imputation residual variance, σ2ε ; second, the
marker-based genetic variance, computed as the esti-
mated marker variance, σ2α , multiplied by

Pm
j¼1 2pjð1−pj

Þ, where pj is the allele frequency at locus j and m is the
total number of markers. Similar to ssGBLUP, for the

Table 2 Mean (SD) of the “true” variance components and heritability in the base (founder) population (P-base) and the base
population for the genomic phasea and estimates of variance components and heritabilities from P-AM, ssGBLUP, and ssBR based
on three scenarios of phenotypingb

Method Scenariob σ2g(σ
2
ε ) σ2e σ2α

Pm
j¼1 2p jð1−p jÞ h2c

True VCs in P-base 3.59 (0.03) 5.05 (0.09) – 0.42 (0.004)

True VCs in G-base 2.82 (0.09) 5.10 (0.07) – 0.36 (0.009)

P-AM Pheno1 3.62 (0.12) 5.02 (0.02) – 0.42 (0.009)

Pheno1 + 2 3.52 (0.06) 5.07 (0.03) – 0.41 (0.004)

Pheno2 3.19 (0.20)* 5.21 (0.10) – 0.38 (0.018)*

ssGBLUP Pheno1 2.99 (0.12)*** 5.54 (0.01)*** – 0.35 (0.009)***

Pheno1 + 2 3.39 (0.06)*** 5.17 (0.03) – 0.40 (0.009)***

Pheno2 3.36 (0.15)*** 5.19 (0.05) – 0.39 (0.013)*

ssBR Pheno1 3.44 (0.15) 5.10 (0.04) 4.20 (0.10)*** 0.40 (0.012)

Pheno1 + 2 3.14 (0.10)*** 5.24 (0.02)* 3.71 (0.11) 0.37 (0.008)***

Pheno2 2.99 (0.20) 5.27 (0.06)** 2.97 (0.09) 0.36 (0.017)
aP-AM: traditional pedigree-based animal model; ssGBLUP: single-step genomic BLUP; ssBR: single-step Bayesian regression. σ2g is the genetic variance used in P-

AM, σ2
ε is the total genetic variance used in ssBR; σ2e is the residual variance; σ2α is the marker variance; σ2α

Pm
j¼1 2p jð1−p jÞ is used to calculate genetic variance via

the estimated marker variance in ssBR, where pj is the observed allele frequency at locus j, and m is the total number of markers
bPheno1: phenotypes from only the conventional phase (1–20 years) were used; Pheno1 + 2: phenotypes from both the conventional phase and genomic selection
phase (1–35 years) were used; Pheno2: phenotypes from only the genomic selection phase were used (21–35 years)
cHeritabilities (h2) from P-AM, ssGBLUP, and ssBR calculated as

σ2
gðεÞ

ðσ2
gðεÞþσ2e Þ

The significance test was performed to determine whether the estimated parameter differs from the simulated parameter. * significant at P < 0.01; ** significant at
P < 0.005; *** significant at P < 0.001
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scenarios of Pheno1 and Pheno1 + 2, allele frequencies
were calculated based on the stored genotypes in the
base population (P-base). For the of Pheno2 scenario, the
allele frequencies were calculated based on the current
genotyped population. In addition, an extra fixed effect
(μg) was fitted in the model to account for the unknown
expectation for genotyped individuals [21]. The ssBR
program was written in Fortran 95. A Gibbs sampler
was used to draw inferences for all model parameters
from their posterior distributions. The length of the
chain was set to 50,000, with a burn-in of 20,000 itera-
tions. The convergence of the posterior distribution for
each parameter investigated was assessed using the boa
and coda packages [42, 43].
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