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Abstract

Background: Rhodococci are industrially important soil-dwelling Gram-positive bacteria that are well known for
both nitrile hydrolysis and oxidative metabolism of aromatics. Rhodococcus rhodochrous ATCC BAA-870 is capable of
metabolising a wide range of aliphatic and aromatic nitriles and amides. The genome of the organism was
sequenced and analysed in order to better understand this whole cell biocatalyst.

Results: The genome of R. rhodochrous ATCC BAA-870 is the first Rhodococcus genome fully sequenced using
Nanopore sequencing. The circular genome contains 5.9 megabase pairs (Mbp) and includes a 0.53 Mbp linear plasmid,
that together encode 7548 predicted protein sequences according to BASys annotation, and 5535 predicted protein
sequences according to RAST annotation. The genome contains numerous oxidoreductases, 15 identified antibiotic and
secondary metabolite gene clusters, several terpene and nonribosomal peptide synthetase clusters, as well as 6 putative
clusters of unknown type. The 0.53 Mbp plasmid encodes 677 predicted genes and contains the nitrile converting gene
cluster, including a nitrilase, a low molecular weight nitrile hydratase, and an enantioselective amidase.
Although there are fewer biotechnologically relevant enzymes compared to those found in rhodococci with larger
genomes, such as the well-known Rhodococcus jostii RHA1, the abundance of transporters in combination with the
myriad of enzymes found in strain BAA-870 might make it more suitable for use in industrially relevant processes than
other rhodococci.

Conclusions: The sequence and comprehensive description of the R. rhodochrous ATCC BAA-870 genome will facilitate
the additional exploitation of rhodococci for biotechnological applications, as well as enable further characterisation of
this model organism. The genome encodes a wide range of enzymes, many with unknown substrate specificities
supporting potential applications in biotechnology, including nitrilases, nitrile hydratase, monooxygenases, cytochrome
P450s, reductases, proteases, lipases, and transaminases.

Background
Rhodococcus is arguably the most industrially important
actinomycetes genus [1] owing to its wide-ranging appli-
cations as a biocatalyst used in the synthesis of pharma-
ceuticals [2], in bioactive steroid production [3], fossil
fuel desulphurization [4], and the production of kilotons

of commodity chemicals [5]. Rhodococci have been
shown to have a variety of important enzyme activities
in the field of biodegradation (for reviews see [6, 7]).
These activities could also be harnessed for synthesis
of various industrially relevant compounds [8]. One of
the most interesting qualities of rhodococci that make
them suitable for use in industrial biotechnology is
their outer cell wall [9]. It is highly hydrophobic
through a high percentage of mycolic acid, which
promotes uptake of hydrophobic compounds. Further-
more, upon contact with organic solvents, the cell
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wall composition changes, becoming more resistant to
many solvents and more stable under industrially
relevant conditions like high substrate concentration
and relatively high concentrations of both water-
miscible and -immiscible solvents. This results in a
longer lifetime of the whole cell biocatalyst and sub-
sequent higher productivity.
Rhodococcal species isolated from soil are known to

have diverse catabolic activities, and their genomes hold
the key to survival in complex chemical environments
[10]. The first full Rhodococcus genome sequenced was
that of Rhodococcus jostii RHA1 (NCBI database: NC_
008268.1) in 2006 [10]. R. jostii RHA1 was isolated in
Japan from soil contaminated with the toxic insecticide
lindane (γ-hexachlorocyclohexane) [11] and was found
to degrade a range of polychlorinated biphenyls (PCBs)
[12]. Its full genome is 9.7 Mbp, inclusive of the 7.8 Mbp
chromosome and 3 plasmids (pRHL1, 2 and 3). Since
then, many additional rhodococci have been sequenced by
various groups and consortia (Additional file 1: Table S1).
One sequencing effort to improve prokaryotic systematics
has been implemented by the University of Northumbria,
which showed that full genome sequencing provides a ro-
bust basis for the classification and identification of rhodo-
cocci that have agricultural, industrial and medical/
veterinary significance [13].
A few rhodococcal genomes have been more elabor-

ately described (Table 1), including R. erythropolis PR4

(NC_012490.1) [18] which degrades long alkanes [19].
Multiple monooxygenases and fatty acid β-oxidation
pathway genes were found on the R. erythropolis PR4
genome and several plasmids, making this bacterium a
perfect candidate for bioremediation of hydrocarbon-
contaminated sites and biodegradation of animal fats
and vegetable oils. The related R. rhodochrous ATCC
17895 (NZ_ASJJ01000002) [20] also has many mono-
and dioxygenases, as well as interesting hydration activ-
ities which could be of value for the organic chemist.
The oleaginous bacterium R. opacus PD630 is a very ap-
pealing organism for the production of biofuels and was
sequenced by two separate groups. Holder et al. used en-
richment culturing of R. opacus PD630 to analyse the
lipid biosynthesis of the organism, and the ~ 300 or so
genes involved in oleaginous metabolism [16]. This se-
quence is being used in comparative studies for biofuel
development. The draft sequence of the R. opacus
PD630 genome was only recently released (NZ_
AGVD01000000) and appears to be 9.15 Mbp, just
slightly smaller than that of R. jostii RHA1. The full se-
quence of the same strain was also deposited in 2012 by
Chen et al. (NZ_CP003949) [15], who focused their re-
search on the lipid droplets of this strain. Twenty strains
of R. fascians were sequenced to understand the patho-
genicity of this species for plants [21], which also re-
sulted in the realisation that sequencing provides
additional means to traditional ways of determining

Table 1 Fully sequenceda and well described Rhodococcus species ranked by completion date

Organism Date
Completedb

Group Reference Chromosome
(Mbp)

Plasmid
(Mbp)

Total Size,
Mbp

G +
C %

Protein coding
genes

R. rhodochrous
ATCC BAA-870

2018 This study This paper 5.37 0.53 5.9 65 7548e

R. erythropolis
R138

19-03-2013 Centre National de la Recherche
Scientifique, Institut des Sciences
du Vegetal, France

NZ_
CP007255
[14]

6.2 477,915;
91,729

6.8 62 6130

R. opacus
PD630c

26-11-2012 National Laboratory of Macromolecules,
Chinese Academy of Sciences, Beijing

NZ_
CP003949
[15]

8.38 9 plasmids 9.17 67 8947

R. opacus
PD630c

10-11-2011 Massachusetts Institute of Technology
and The Broad Institute

GCF_
000234335
[16]

– – 9.27 67 7910

R. hoagii
103Sd

21-10-2009 IREC (International Rhodococcus
equi Genome Consortium)

NC_014659
[17]

5.04 None
determined

5.04 69 4540

R. jostii RHA1 24-07-2006 Genome British Columbia, Vancouver NC_008268
[10]

7.8 1,123,075;
442,536;
332,361

9.7 67 8690

R. erythropolis
PR4

31-03-2005 Sequencing Center: National Institute
of Technology and Evaluation, Japan

NC_012490
[18]

6.5 271,577;
104,014;
3637

6.9 62 6321

aAll sequences are completed and fully assembled, except GCF_000234335, which consists of 282 contigs
bDate completed refers to genome sequence completion/submission to database; plasmids may have been completed at another time. Total genome size
comprises the chromosome and the plasmid sequence. Genome information of strains other than BAA-870 is obtained from the NCBI database
cTwo separate references, therefore 2 entries
dR. equi is renamed to R. hoagii
eBased on BASys annotation
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speciation in the very diverse genus of Rhodococcus [22].
The clinically important pathogenic strain R. hoagii 103S
(formerly known as R. equi 103S) was also fully se-
quenced in order to understand its biology and virulence
evolution (NC_014659.1) [17]. In this and other patho-
genic R. hoagii strains, virulence genes are usually lo-
cated on plasmids, which was well described for several
strains including ATCC 33701 and 103 [23], strain
PAM1593 [24] and 96 strains isolated from Normandy
(France) [25]. As many important traits are often located
on (easily transferable) plasmids, numerous rhodococcal
plasmid sequences have been submitted to the NCBI
(Additional file 1: Table S2). More elaborate research
has been published on the virulence plasmid pFiD188
from R. fascians D188 [26], pB264, a cryptic plasmid
from Rhodococcus sp. B264–1 [27], pNC500 from R. rho-
dochrous B-276 [28], and several plasmids from R. opa-
cus B4 [29] and PD630 [15]. R. erythropolis harbours
many plasmids besides the three from strain PR4, in-
cluding pRE8424 from strain DSM8424 [30], pFAJ2600
from NI86/21 [31] and pBD2 from strain BD2 [32]. All
these sequences have highlighted the adaptability of rho-
dococci and explain the broad habitat of this genus.
The versatile nitrile-degrading bacterium, R. rhodo-

chrous ATCC BAA-870 [33], was isolated through en-
richment culturing of soil samples from South Africa on
nitrile nitrogen sources. R. rhodochrous ATCC BAA-870
possesses nitrile-hydrolysing activity capable of metabo-
lising a wide range of aliphatic and aromatic nitriles and
amides through the activity of nitrilase, nitrile hydratase
and amidase [33–36]. These enzymes can also perform
enantioselective hydrolysis of nitrile compounds selected
from classes of chemicals used in pharmaceutical inter-
mediates, such as β-adrenergic blocking agents, antitu-
mor agents, antifungal antibiotics and antidiabetic drugs.
Interestingly, the nitrile hydratase-amidase system can
enantioselectively hydrolyse some compounds, while the
nitrilase hydrolyses the opposite enantiomer of similar
nitriles [37]. Biocatalytic nitrile hydrolysis affords valu-
able applications in industry, including production of
solvents, extractants, pharmaceuticals, drug intermedi-
ates, and pesticides [38–41]. Herein, we describe the se-
quencing and annotation of R. rhodochrous ATCC BAA-
870, identifying the genes associated with nitrile hydroly-
sis as well as other genes for potential biocatalytic appli-
cations. The extensive description of this genome and
the comparison to other sequenced rhodococci will add
to the knowledge of the Rhodococcus phylogeny and its
industrial capacity.

Results
Genome preparation, sequencing and assembly
The genome of R. rhodochrous ATCC BAA-870 was ori-
ginally sequenced in 2009 by Solexa Illumina with

sequence reads of average length 36 bps, resulting in a
coverage of 74%, with an apparent raw coverage depth
of 36x. An initial assembly of this 36-cycle, single-ended
Illumina library, together with a mate-pair library,
yielded a 6 Mbp genome of 257 scaffolds. A more re-
cently performed paired-end Illumina library combined
with the mate-pair library reduced this to only 6 scaf-
folds (5.88 Mbp). Even after several rounds of linking
the mate-pair reads, we were still left with 3 separate
contiguous sequences (contigs). The constraint was
caused by the existence of repeats in the genome of
which one was a 5.2 kb contig that, based on sequence
coverage, must exist in four copies, containing 16S-like
genes. Applying third generation sequencing (Oxford
Nanopore Technology) enabled the full assembly of the
genome, while the second generation (Illumina) reads
provided the necessary proof-reading. This resulted in a
total genome size of 5.9 Mbp, consisting of a 5.37 Mbp
circular chromosome and a 0.53 Mbp linear plasmid.
The presence of the plasmid was confirmed by perform-
ing Pulse Field Gel Electrophoresis using non-digested
DNA [42]. The complete genome sequence of R. rhodo-
chrous ATCC BAA-870 is deposited at NCBI GenBank,
with Bioproject accession number PRJNA487734, and
Biosample accession number SAMN09909133.

Taxonomy and lineage of R. rhodochrous ATCC BAA-870
The R. rhodochrous ATCC BAA-870 genome encodes
four 16S rRNA genes, consistent with the average 16S
gene count statistics of Rhodococcus genomes. From a
search of The Ribosomal RNA Database, of the 28 Rho-
dococcus genome records deposited in the NCBI data-
base, 16S rRNA gene counts range from 3 to 5 copies,
with an average of 4 [43]. Of the four 16S rRNA genes
found in R. rhodochrous ATCC BAA-870, two pairs are
identical (i.e. there are two copies of two different 16S
rRNA genes). One of each identical 16S rRNA gene was
used in nucleotide-nucleotide BLAST for highly similar
sequences [44]. BLAST results (complete sequences with
percentage identity greater than 95.5%) were used for
comparison of R. rhodochrous ATCC BAA-870 to other
similar species using 16S rRNA multiple sequence align-
ment and phylogeny in ClustalO and ClustalW respect-
ively [45–47] (Fig. 1). Nucleotide BLAST results of the
two different R. rhodochrous ATCC BAA-870 16S rRNA
genes show closest sequence identities to Rhodococcus
sp. 2G and R. pyridinovorans SB3094, with either 100%
or 99.74% identities to both strains depending on the
16S rRNA copy.
We used the in silico DNA-DNA hybridisation tool,

the Genome-to-Genome Distance Calculator (GGDC)
version 2.1 [48–50], to assess the genome similarity of R.
rhodochrous ATCC BAA-870 to its closest matched
strains based on 16S rRNA alignment (R. pyridinovorans
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SB3094 and Rhodococcus sp. 2G). The results of genome
based species and subspecies delineation, and difference
in GC content, is summarised (Additional file 1: Table
S3), with R. jostii RHA1 additionally shown for compari-
son. GC differences of below 1% would indicate the
same species, and therefore R. rhodochrous ATCC BAA-
870 cannot be distinguished from the other strains based
on GC content. Digital DNA-DNA hybridisation values
of more than 70 and 79% are the threshold for delineat-
ing type strains and subspecies. While 16S rRNA se-
quence alignment and GC content suggest that R.
rhodochrous ATCC BAA-870 and R. pyridinovorans
SB3094 and Rhodococcus sp. 2G are closely related
strains, the GGDC supports their delineation at the sub-
species level.

Genome annotation
The assembled genome sequence of R. rhodochrous
ATCC BAA-870 was submitted to the Bacterial Annota-
tion System web server, BASys, for automated, in-depth
annotation [51]. The BASys annotation was performed
using raw sequence data for both the chromosome and
plasmid of R. rhodochrous ATCC BAA-870 with a total
genome length of 5.9 Mbp, in which 7548 genes were
identified and annotated (Fig. 2, Table 1). The plasmid
and chromosome encode a predicted 677 and 6871
genes, respectively. 56.9% of this encodes previously
identified proteins of unknown function and includes

305 conserved hypothetical proteins. A large proportion
of genes are labelled ‘hypothetical’ based on sequence
similarity and/or the presence of known signature se-
quences of protein families (Fig. 3). Out of 7548 BASys
annotated genes, 1481 are annotated enzymes that could
be assigned an EC number (20%). Confirmation of anno-
tation was performed manually for selected sequences.
In BASys annotation, COGs (Clusters of Orthologous
Groups) were automatically delineated by comparing
protein sequences encoded in complete genomes repre-
senting major phylogenetic lineages [52]. As each COG
consists of individual proteins or groups of paralogs
from at least 3 lineages, it corresponds to an ancient
conserved domain [53, 54]. A total of 3387 genes anno-
tated in BASys were assigned a COG function (44.9% of
annotated genes), while 55 and 59% of annotated genes
on the chromosome and plasmid respectively have un-
known function.
The genome sequence run through RAST (Rapid

Annotation using Subsystem Technology) predicted
fewer (5535) protein coding sequences than BASys
annotation (Fig. 4), showing the importance of the
bioinformatics tool used. The RAST subsystem anno-
tations are assigned from the manually curated SEED
database, in which hypothetical proteins are annotated
based only on related genomes. RAST annotations are
grouped into two sets (genes that are either in a sub-
system, or not in a subsystem) based on predicted

Fig. 1 Phylogenetic tree created using rhodococcal 16S rRNA ClustalW sequence alignments. Neighbour joining, phylogenetic cladogram created
using Phylogeny in ClustalW, and ClustalO multiple sequence alignment of R. rhodochrous ATCC BAA-870 16S rRNA genes and other closely
matched genes from rhodococcal species. R. rhodochrous ATCC BAA-870 contains four copies of the 16S rRNA gene (labelled RNA_1 to RNA_4)
and are indicated with an asterisk. For clarity, only closely matched BLAST results with greater than 95.5% sequence identity and those with
complete 16S rRNA gene sequences, or from complete genomes, are considered. Additionally, 16S rRNA gene sequences (obtained from the
NCBI gene database) from R. jostii RHA1, R. fascians A44A and D188, R. equi 103S, R. erythropolis CCM2595, and R. aetherivorans strain IcdP1 are
included for comparison. Strain names are preceded by their NCBI accession number, as well as sequence position if there are multiple copies of
the 16S rRNA gene in the same species
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Fig. 2 (See legend on next page.)
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roles of protein families with common functions.
Genes belonging to recognised subsystems can be
considered reliable and conservative gene predictions.
Annotation of genes that do not belong to curated
protein functional families however (i.e. those not in
the subsystem), may be underpredicted by RAST,
since annotations belonging to subsystems are based
only on related neighbours. Based on counts of total
genes annotated in RAST (5535), only 26% are classi-
fied as belonging to subsystems with known func-
tional roles, while 74% of genes do not belong to
known funtional roles. Overall 38% of annotated
genes were annotated as hypothetical irrespective of
whether or not they were included in subsystems.
The use of two genome annotation pipelines allowed
us to manually compare and search for enzymes, or
classes of enzymes, using both the subsystem based,
known functional pathway categories provided by
RAST (Fig. 4), as well as the COG classification
breakdowns provided by BASys (Fig. 3 and Additional
file 1: Table S4). From both the RAST and BASys an-
notated gene sets, several industrially relevant enzyme
classes are highlighted and discussed further in the
text.

The average GC content of the R. rhodochrous
ATCC BAA-870 chromosome and plasmid is 68.2
and 63.8%, respectively. The total genome has a
90.6% coding ratio, and on average large genes, con-
sisting of ~ 782 bps per gene. Interestingly, the distri-
bution of protein lengths on the chromosome is bell-
shaped with a peak at 350 bps per gene, while the
genes on the plasmid show two size peaks, one at
100 bps and one at 350 bps.

Transcriptional control
Transcriptional regulatory elements in R. rhodochrous
ATCC BAA-870 include 18 sigma factors, at least 8 reg-
ulators of sigma factor, and 118 other genes involved in
signal transduction mechanisms (COG T), 261 genes en-
coding transcriptional regulators and 47 genes encoding
two-component signal transduction systems. There are
129 proteins in R. rhodochrous ATCC BAA-870 associ-
ated with translation, ribosomal structure and biogenesis
(protein biosynthesis). The genome encodes all riboso-
mal proteins, with the exception of S21, as occurs in
other actinomycetes. RAST annotation predicts 66
RNAs. The 56 tRNAs correspond to all 20 natural amino
acids and include two tRNAfMet. Additional analysis of

Fig. 3 Protein function breakdown of Rhodococcus rhodochrous ATCC BAA-870 based on BASys annotation COG classifications. Unknown proteins form
the majority of proteins in the BASys annotated genome, and make up 55 and 59% respectively of genes in the a chromosome and b plasmid. For
simplicity, functional categories less than 0.02% are not included in the graphic. Letters refer to COG functional categories, with one-letter abbreviations:
C - Energy production and conversion; D - Cell division and chromosome partitioning; E - Amino acid transport and metabolism; F - Nucleotide transport
and metabolism; G - Carbohydrate transport and metabolism; H - Coenzyme metabolism; I - Lipid metabolism; J - Translation, ribosomal structure and
biogenesis; K - Transcription; L - DNA replication, recombination and repair; M - Cell envelope biogenesis, outer membrane; N - Secretion, motility and
chemotaxis; O - Posttranslational modification, protein turnover, chaperones; P - Inorganic ion transport and metabolism; Q - Secondary metabolites
biosynthesis, transport and catabolism; R - General function prediction only; S - COG of unknown function; T - Signal transduction mechanisms

(See figure on previous page.)
Fig. 2 BASys bacterial annotation summary view of the Rhodococcus rhodochrous ATCC BAA-870 genome. BASys visual representation of a the
5,370,537 bp chromosome, with a breakdown of the 6871 genes encoded, and b the 533,288 bp linear plasmid, with a breakdown of the 677
genes encoded. Different colours indicate different subsystems for catabolic and anabolic routes
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Fig. 4 (See legend on next page.)
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the genome sequence using the tRNA finding tool
tRNAScan-SE v. 2.0 [55, 56] confirms the presence of 56
tRNA genes in the R. rhodochrous ATCC BAA-870 gen-
ome, made up of 52 tRNA genes encoding natural
amino acids, 2 pseudogenes, one tRNA with mismatched
isotype and one + 9 Selenocysteine tRNA.

Protein location in the cell
It is often critical to know where proteins are located in
the cell in order to understand their function [57], and
prediction of protein localization is important for both
drug targeting and protein annotation. In this study, pre-
diction was done using the BASys SignalP signal predic-
tion service [51]. The majority of annotated proteins are
soluble and located in the cytoplasm (83%), while pro-
teins located at the cellular membrane make up 16% of
the total. Cell membrane proteins include proteins that
form part of lipid anchors, peripheral and integral cell
membrane components, as well as proteins with single
or multiple pass functions. Of the membrane proteins in
R. rhodochrous ATCC BAA-870, 47% constitute single-
pass, inner or peripheral membrane proteins, while 41%
are multi-pass membrane proteins. Most of the
remaining proteins will be transported over the mem-
brane. The periplasm contains proteins distinct from
those in the cytoplasm which have various functions in
cellular processes, including transport, degradation, and
motility. Periplasmic proteins would mostly include
hydrolytic enzymes such as proteases and nucleases, pro-
teins involved in binding of ions, vitamins and sugar
molecules, and those involved in chemotaxic responses.
Detoxifying proteins, such as penicillin binding proteins,
are also presumed to be located mostly in the periplasm.

Transport and metabolism
A total of 1504 genes are implicated in transport. Nu-
merous components of the ubiquitous transporter fam-
ilies, the ATP-Binding Cassette (ABC) superfamily and
the Major Facilitator Superfamily (MFS), are present in
Rhodococcus strain BAA-870. MFS transporters are
single-polypeptide secondary carriers capable only of
transporting small solutes in response to chemiosmotic
ion gradients [58, 59]. R. rhodochrous ATCC BAA-870
has 81 members of the MFS, mostly from the phthalate
permease and sugar transporter families. There are

dozens of families within the ABC superfamily, and each
family generally correlates with substrate specificity.
Transporters of R. rhodochrous ATCC BAA-870 include
at least 122 members of the ABC superfamily, which in-
cludes both uptake and efflux transport systems. Out of
3387 genes assigned a COG function, 1486 (44%) are as-
sociated with transport and metabolism. These include
206 carbohydrate, 271 amino acid, 121 coenzyme, 236
inorganic ion, 411 lipid and 67 nucleotide transport and
metabolism gene functions, and 174 secondary metabol-
ite biosynthesis, transport and catabolism genes.
The complete biosynthetic pathways for all nucleo-

tides, nucleosides and natural amino acids are also
contained in the genome of R. rhodochrous ATCC
BAA-870. The central metabolism of strain BAA-870
includes glycolysis, gluconeogenesis, the pentose phos-
phate pathway, and the tricarboxylic acid cycle, a
typical metabolic pathway for an aerobic organism.
There is no evidence for the Entner-Doudoroff path-
way (including 6-phosphogluconate dehydratase and
2-keto-3-deoxyphosphogluconate aldolase) in R. rho-
dochrous ATCC BAA-870. General metabolic enzymes
such as lipases and esterases [60, 61] are, however,
present in this strain.

Aromatic catabolism and oxidoreductases
As deduced from the better characterized pseudomo-
nads [62], a large number of ‘peripheral aromatic’ path-
ways funnel a broad range of natural and xenobiotic
compounds into a restricted number of ‘central aro-
matic’ pathways. Analysis of the R. rhodochrous ATCC
BAA-870 genome suggests that at least four major path-
ways exist for the catabolism of central aromatic inter-
mediates. The dominant portion of annotated enzymes
is involved in oxidation and reduction, which is typical
for catabolism. There are about 500 oxidoreductase re-
lated genes including oxidases, hydrogenases, reductases,
oxygenases, dioxygenases, cytochrome P450s, catalases
and peroxiredoxins. Furthermore, there are 71
monooxy-genase genes, 11 of which are on the plasmid.
In R. rhodochrous ATCC BAA-870 there are 14 cyto-

chrome P450 genes and 87 oxygenase genes. It is unclear
which oxygenases are catabolic and which are involved
in secondary metabolism. Oxygenase genes include three
cyclopentanone monooxygenases (EC 1.14.13.16) and a
phenol monooxygenase (EC 1.14.13.7) on the plasmid, a

(See figure on previous page.)
Fig. 4 RAST annotation summary of the Rhodococcus rhodochrous ATCC BAA-870 genome. RAST annotation results show a the subsystem coverage, b
the subsystem coverage breakdown, and c organisation of the subsystems by cellular process as a percentage showing the distribution of annotations
across defined structural and functional subsystem roles. RAST uses a subsystem approach, in which annotations are assigned to groups with similar
functional or structural roles. For R. rhodochrous ATCC BAA-870, 26% of annotated genes belong to an identified functional role, or subsystem. The
coverage breakdown shows the percentage of hypothetical and non-hypothetical annotations for genes assigned to subsystems and those for which a
known functional role is not assigned (i.e. those not in the subsystem)
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methane monooxy-genase (EC 1.14.13.25), two alkane 1-
monooxygenases (EC 1.14.15.3) and five phenylacetone
monooxygenases (EC 1.14.13.92), one of which is on the
plasmid.

Nitrile biocatalysis
Rhodococci are well known for their application in the
commercial manufacture of amides and acids through
hydrolysis of the corresponding nitriles. R. rhodochrous
J1 can convert acrylonitrile to the commodity chemical
acrylamide [63], and both Mitsubishi Rayon Co., Ltd.
(Japan) and Senmin (South Africa) are applying this bio-
catalytic reaction at the multi-kiloton scale. Lonza
Guangzhou Fine Chemicals use the same biocatalyst for
large-scale commercial synthesis of nicotinamide from
3-cyanopyridine [64]. Both processes rely on rhodococ-
cal nitrile hydratase activity [65].
As R. rhodochrous ATCC BAA-870 was isolated from

a nitrile enrichment culture [33], we were very interested
in its nitrile degrading enzymes. As expected, strain
BAA-870 contains several nitrile converting enzymes: a
low molecular weight cobalt-containing nitrile hydratase
and two nitrilases, along with several amidases. The low
molecular weight nitrile hydratase and two amidase
genes form a cluster, along with their associated regula-
tory elements, including cobalt transport genes necessary
for uptake of cobalt for inclusion in the nitrile hydratase
active site. Interestingly, this cluster is found on the plas-
mid. The alternative nitrile hydrolysis enzyme, nitrilase,
is also found in R. rhodochrous ATCC BAA-870. It ex-
presses an enantioselective aliphatic nitrilase encoded on
the plasmid, which is induced by dimethylformamide
[37]. Another nitrilase/cyanide hydratase family protein
is also annotated on the plasmid (this study) but has not
been characterised.

Secondary metabolism and metabolite biosynthesis
clusters
The ongoing search for new siderophores, antibiotics
and antifungals has led to a recent explosion of interest
in mining bacterial genomes [66], and the secondary me-
tabolism of diverse soil-dwelling microbes remains rela-
tively underexplored despite their huge biosynthetic
potential [67]. Evidence of an extensive secondary me-
tabolism in R. rhodochrous ATCC BAA-870 is supported
by the presence of at least 227 genes linked to secondary
metabolite biosynthesis, transport and catabolism. The
genome contains 15 biosynthetic gene clusters associ-
ated with secondary metabolites or antibiotics, identified
by antiSMASH (antibiotics and Secondary Metabolite
Analysis Shell pipeline, version 5.0.0) [68, 69]. Biosyn-
thetic gene clusters identified in R. rhodochrous BAA-
870 include ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyri-
midinecarboxylic acid), butyrolactone, betalactone, and

type I polyketide synthase (PKS) clusters, as well as three
terpene and seven nonribosomal peptide synthetase
(NRPS) clusters. An additional six putative biosynthetic
clusters were identified on the R. rhodochrous ATCC
BAA-870 plasmid, four of an unknown type, and the
other two with low similarity to enterobactin and lipo-
polysaccharide biosynthetic clusters.
Soil-dwelling rhodococci present rich possible sources

of terpenes and isoprenoids which are implicated in di-
verse structural and functional roles in nature. Anti-
SMASH analysis revealed 3 terpene biosynthetic clusters
in the genome of R. rhodochrous ATCC BAA-870. Some
of the examples of annotated R. rhodochrous ATCC
BAA-870 genes related to terpene and isoprenoid bio-
synthesis include phytoene saturase and several phy-
toene synthases, dehydrogenases and related proteins, as
well as numerous diphosphate synthases, isomerases and
epimerases. The genome also contains lycopene cyclase,
a novel non-redox flavoprotein [70], farnesyl diphos-
phate synthase, farnesyl transferase, geranylgeranyl pyro-
phosphate synthetases and
digeranylgeranylglycerophospholipid reductase. Farnesyl
diphosphate synthase and geranylgeranyl pyrophosphate
synthases are potential anticancer and anti-infective drug
targets [71]. In addition, the R. rhodochrous ATCC
BAA-870 plasmid encodes a lactone ring-opening en-
zyme, monoterpene epsilon-lactone hydrolase.
The R. rhodochrous ATCC BAA-870 genome has

two PKS genes, one regulator of PKS expression, one
exporter of polyketide antibiotics, as well as three
polyketide cyclase/dehydrases involved in polyketide
biosynthesis. In addition, there are two actinorhodin
polyketide dimerases. A total of five NRPS genes for
secondary metabolite synthesis can be found on the
chromosome. R. rhodochrous ATCC BAA-870 con-
tains 4 probable siderophore-binding lipoproteins, 3
probable siderophore transport system permeases, and
two probable siderophore transport system ATP-
binding proteins. Other secondary metabolite genes
found in R. rhodochrous ATCC BAA-870 include a
dihydroxybenzoic acid-activating enzyme (2,3-dihy-
droxybenzoate-AMP ligase bacillibactin siderophore),
phthiocerol/phenolphthiocerol synthesis polyketide
synthase type I, two copies of linear gramicidin syn-
thase subunits C and D genes, and tyrocidine syn-
thase 2 and 3.

CRISPR
One putative clustered regularly interspaced short palin-
dromic repeat (CRISPR) is contained in the R. rhodo-
chrous ATCC BAA-870 genome, according to analysis
by CRISPRCasFinder [72]. Associated CRISPR genes are
not automatically detected by the CRISPRCasFinder
tool, but manual searches of the annotated genome for
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Cas proteins reveal possible Cas9 candidate genes within
the R. rhodochrous ATCC BAA-870 genome, including a
ruvC gene, and HNH endonuclease and nuclease genes.

Horizontal gene transfer
Organisms acquire diverse metabolic capacity through
gene duplications and acquisitions, typically mediated by
transposases. Analysis using IslandViewer (for computa-
tional identification of genomic islands) [73] identifies
10 possible large genomic island regions in R. rhodo-
chrous ATCC BAA-870 which may have been obtained
through horizontal mobility. Half of these genomic
islands are located on the plasmid and make up 90% of
the plasmid coding sequence. The low molecular weight
cobalt-containing nitrile hydratase operon is located on
an 82.5 kbp genomic island that includes 57 predicted
genes in total. Other genes of interest located on this
same genomic island include crotonase and enoyl-CoA
hydratase, 10 dehydrogenases including four acyl-CoA
dehydrogenases and two aldehyde dehydrogenases, four
hydrolases including 5-valerolactone hydrolase and ami-
dohydrolase, beta-mannosidase, haloacid dehalogenase
and five oxidoreductases. The R. rhodochrous ATCC
BAA-870 genome contains 31 transposase genes found
in the genomic regions identified by IslandViewer, one
of which is from the IS30 family, a ubiquitous mobile in-
sertion element in prokaryotic genomes [74]. Other
transposase genes belonging to at least 10 different fam-
ilies of insertion sequences were identified in R. rhodo-
chrous ATCC BAA-870, including ISL3, IS5, IS701, two
IS1634, three IS110, three IS3, three IS256, five IS21,
and six IS630 family transposases. The majority of these
transposons (27 of the 31 identified by IslandViewer) are
located on the plasmid.

Discussion
Sequencing and annotation
New sequencing technology has revolutionized the cost
and pace of obtaining genome information, and there
has been a drive to sequence the genomes of organisms
which have economic applications, as well as those with
environmental interest [75, 76]. This holds true for Rho-
dococcus genomes, of which only two were sequenced in
2006, while 13 years later 353 genomes are now avail-
able, mainly due to Whole Genome Shotgun sequencing
efforts (Additional file 1: Table S1). The impact of better
and faster sequencing, using improved sequencing tech-
niques, is evident in this case of sequencing the R. rho-
dochrous ATCC BAA-870 genome: an initial assembly of
a 36-cycle, single-ended Illumina library sequence per-
formed in 2009, together with a mate-pair library,
yielded a 6 Mbp genome of 257 scaffolds. A more re-
cently performed paired-end Illumina library combined

with the previous mate-pair library reduced this to only
6 scaffolds (5.88 Mbp), showing the improved second-
generation sequencing results in only 10 years’ time. The
presence of four copies of 16S-like genes was the main
reason for the assembly to break into 6 scaffolds. Using
third generation sequencing (Nanopore), this problem
was overcome, and the genome could be fully assembled.
Hence, we see second generation sequencing evolving to
produce higher quality assemblies, but the combination
with 3rd generation sequencing was necessary to obtain
the full-length closed bacterial genome.
It has been assumed that the annotation of prokaryotic

genomes is simpler than that of the intron-containing
genomes of eukaryotes. However, annotation has been
shown to be problematic, especially with over- or under-
prediction of small genes where the criterion used to de-
cide the size of an open reading frame (ORF) can sys-
tematically exclude annotation of small proteins [77].
Warren et al. 2010, used high performance computa-
tional methods to show that current annotated prokary-
otic genomes are missing 1153 candidate genes that
have been excluded from annotations based on their size
[77]. These missing genes do not show strong similar-
ities to gene sequences in public databases, indicating
that they may belong to gene families which are not cur-
rently annotated in genomes. Furthermore, they uncov-
ered ~ 38,895 intergenic ORFs, currently labelled as
‘putative’ genes only by similarity to annotated genes,
meaning that the annotations are absent. Therefore, pro-
karyotic gene finding and annotation programs do not
accurately predict small genes, and are limited to the ac-
curacy of existing database annotations. Hypothetical
genes (genes without any functional assignment), genes
that are assigned too generally to be of use, misanno-
tated genes and undetected real genes remain the biggest
challenges in assigning annotations to new genome data
[78–81]. As such, there is the possibility that we are
under-estimating the number of genes present on this
genome.
Apart from possible misannotation, the algorithm or

software used for the annotation plays a huge role in the
outcome. In this research both BASys (Fig. 2) and RAST
(Fig. 4) were used as annotation tools, resulting in 7548
and 5535 predicted genes respectively. BASys annotation
may provide an overprediction of gene numbers, due to
sensitive GLIMMER ab initio gene prediction methods
that can give false positives for higher GC content se-
quences [82]. This shows the importance of the bioinfor-
matics tool used, which makes comparison to other
genomes more difficult.

Size and content of the genome
The genomic content of R. rhodochrous ATCC BAA-870
was outlined and compared to other rhodococcal
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genomes. Sequences of other Rhodococcus genomes were
obtained from the Genome database at NCBI [83] and
show a large variation in genome size between 4 and 10
Mbp (Additional file 1: Table S1), with an average of
6.1 ± 1.6 Mbp. The apparent total genome size of R. rho-
dochrous ATCC BAA-870, 5.9 Mbp (consisting of a 5.37
Mbp genome and a 0.53 Mbp plasmid), is close to the
average. From the well-described rhodococci (Table 1),
the genome of R. jostii RHA1 is the largest rhodococcal
genome sequenced to date (9.7 Mbp), but only 7.8 Mbp
is chromosomal, while the pathogenic R. hoagii genomes
are the smallest at ~ 5 Mbp. All rhodococcal genomes
have a high GC content, ranging from 62 to 71%. The
average GC content of the R. rhodochrous ATCC BAA-
870 chromosome and plasmid is 68.2 and 63.8%, re-
spectively. R. jostii RHA1 has the lowest percentage cod-
ing DNA (87%), which is predictable given its large
overall genome size, while R. rhodochrous ATCC BAA-
870 has a 90.6% coding ratio, which is in line with its
smaller total size. Interestingly, the distribution of pro-
tein lengths on the chromosome is different from those
on the plasmid. Together with the lower GC content,
this shows that the plasmid content was probably ac-
quired over different occasions [84].

Fundamental and applicable biocatalytic properties of
rhodococci
Catabolism typically involves oxidative enzymes. The
presence of multiple homologs of catabolic genes in all
Rhodococcus species suggests that they may provide a
comprehensive biocatalytic profile [1]. R. rhodochrous
ATCC BAA-870 combines this with multiple transport
systems (44% of total COG annotated genes), highlight-
ing the metabolic versatility of this Rhodococcus, which
facilitates the use of whole cells in biotechnological
applications.
McLeod et al. reported that R. jostii RHA1 contains

genes for the Entner-Doudoroff pathway (which requires
6-phosphogluconate dehydratase and 2-keto-3-deoxy-
phosphogluconate aldolase to create pyruvate from glu-
cose) [10]. The Entner-Doudoroff pathway is, however,
rare in Gram positive organisms which preferably use
glycolysis for a richer ATP yield. There is no evidence of
this pathway existing in R. rhodochrous ATCC BAA-870,
indicating that it is not a typical rhodococcal trait, but
the RHA1 strain must have acquired it rather recently.
Analysis of the R. rhodochrous ATCC BAA-870

genome suggests that at least four major pathways
exist for the catabolism of central aromatic intermedi-
ates, comparable to the well-defined aromatic metab-
olism of Pseudomonas putida KT2440 strain [85]. In
R. rhodochrous ATCC BAA-870 the dominant portion
of annotated enzymes are involved in oxidation and
reduction. There are about 500 oxidoreductase related

genes, which is quite a high number compared to
other bacteria of the same size, but in line with most
other (sequenced) rhodococci [86]. Rhodococcus ge-
nomes usually encode large numbers of oxygenases
[1], which is also true for strain BAA-870 (71). Some
of these are flavonoid proteins with diverse useful ac-
tivities [87], which includes monooxygenases capable
of catalysing Baeyer–Villiger oxidations wherein a ke-
tone is converted to an ester [88, 89].
The 14 cytochrome P450 genes in R. rhodochrous

ATCC BAA-870 reflects a fundamental aspect of rhodo-
coccal physiology. Similarly, the number of cytochrome
P450 genes in R. jostii RHA1 is 25 (proportionate to the
larger genome) which is typical of actinomycetes. Al-
though it is unclear which oxygenases in R. rhodochrous
ATCC BAA-870 are catabolic and which are involved in
secondary metabolism, their abundance is consistent
with a potential ability to degrade an exceptional range
of aromatic compounds (oxygenases catalyse the hydrox-
ylation and cleavage of these compounds). Rhodococci
are well known to have the capacity to catabolise hydro-
phobic compounds, including hydrocarbons and poly-
chlorinated biphenyls (PCBs), mediated by a cytochrome
P450 system [90–93]. Cytochrome P450 oxygenase is
often found fused with a reductase, as in Rhodococcus
sp. NCIMB 9784 [94]. Genes associated with biphenyl
and PCB degradation are found in multiple sites on the
R. jostii RHA1 genome, both on the chromosome as well
as on linear plasmids [1]. R. jostii RHA1 was also found
to show lignin-degrading activity, possibly based on the
same oxidative capacity as that used to degrade biphenyl
compounds [95].
The oxygenases found in rhodococci include multiple

alkane monooxygenases (genes alkB1–alkB4) [96], ster-
oid monooxygenase [97], styrene monooxygenase [98],
peroxidase [99] and alkane hydroxylase homologs [100].
R. rhodochrous ATCC BAA-870 has 87 oxygenase genes
while the PCB degrading R. jostii RHA1 has 203 oxyge-
nases, including 19 cyclohexanone monooxygenases (EC
1.14.13.22), implying that of the two, strain BAA-870 is
less adept at oxidative catabolism. Rhodococcal cyclo-
hexanone monooxygenases can be used in the synthesis
of industrially interesting compounds from cyclohexanol
and cyclohexanone. These include adipic acid, caprolac-
tone (for polyol polymers) and 6-hydroxyhexanoic acid
(for coating applications) [65]. Chiral lactones can also
be used as intermediates in the production of prosta-
glandins [101]. The same oxidative pathway can be used
to biotransform cyclododecanone to lauryl lactone or
12-hydroxydodecanoic acid [102, 103]. Cyclododecanone
monooxygenase of Rhodococcus SC1 was used in the
kinetic resolution of 2-substituted cycloketones for the
synthesis of aroma lactones in good yields and high en-
antiomeric excess [104]. Similar to R. jostii RHA1, R.
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rhodochrous ATCC BAA-870 encodes several monooxy-
genases. All these redox enzymes could be interesting
for synthetic purposes in industrial biotechnological
applications.
The presence of an ectoine biosynthesis cluster sug-

gests that R. rhodochrous ATCC BAA-870 has effective
osmoregulation and enzyme protection capabilities. R.
rhodochrous ATCC BAA-870, together with other Rho-
dococcus strains, is able to support diverse environments
and can tolerate harsh chemical reactions when used as
whole cell biocatalysts, and it is likely that ectoine bio-
synthesis plays a role in this. Regulation of cytoplasmic
solute concentration through modulation of compounds
such as inorganic ions, sugars, amino acids and polyols
provides a versatile and effective osmo-adaptation strat-
egy for bacteria in general. Ectoine and hydroxyectoine
are common alternate osmoregulation solutes found es-
pecially in halophilic and halotolerant microorganisms
[105, 106], and hydroxyectoine has been shown to confer
heat stress protection in vivo [107]. Ectoines provide a
variety of useful biotechnological and biomedical appli-
cations [108], and strains engineered for improved
ectoine synthesis have been used for the industrial pro-
duction of hydroxyectoine as a solute and enzyme stabil-
iser [109, 110]. The special cell-wall structure of
rhodococci might make these organisms a better choice
as production organism.
Terpenes and isoprenoids provide a rich pool of

natural compounds with applications in synthetic
chemistry, pharmaceutical, flavour, and even biofuel
industries. The structures, functions and chemistries
employed by the enzymes involved in terpene biosyn-
thesis are well known, especially for plants and fungi
[71, 111]. However, it is only recently that bacterial

terpenoids have been considered as a possible source
of new natural product wealth [112, 113], largely fa-
cilitated by the explosion of available bacterial
genome sequences. Interestingly, bacterial terpene
synthases have low sequence similarities, and show
no significant overall amino acid identities compared
to their plant and fungal counterparts. Yamada et al.
used a genome mining strategy to identify 262 bac-
terial synthases, and subsequent isolation and expres-
sion of genes in a Streptomyces host confirmed the
activities of these predicted genes and led to the
identification of 13 previously unknown terpene
structures [112]. The three biosynthetic clusters an-
notated in strain BAA-870 may therefore be an un-
derrepresentation of possible pathways for these
valuable compounds.
A total of five NRPS genes for secondary metabolite

synthesis can be found on the chromosome, which is
not much compared to R. jostii RHA1 that contains 24
NRPS and seven PKS genes [10]. Like strain ATCC
BAA-870, R. jostii RHA1 was also found to possess a
pathway for the synthesis of a siderophore [114]. The
multiple PKS and NRPS clusters suggest that R. rhodo-
chrous ATCC BAA-870 may host a significant potential
source of molecules with immunosuppressing, antifun-
gal, antibiotic and siderophore activities [115].

Nitrile conversion
Many rhodococci can hydrolyse a wide range of ni-
triles [116–119]. The locations and numbers of nitrile
converting enzymes in the available genomes of Rho-
dococcus were identified and compared to R. rhodo-
chrous ATCC BAA-870 (Table 2). R. rhodochrous

Table 2 Comparison of nitrile converting enzymes in different Rhodococcus species

Organism Nitrilase Nitrile
Hydratase

NHase
regulators

Amidase Amidase
Regulators

NCBI Assembly Reference

R. rhodochrous ATCC BAA-870 2 (pl) 1 (pl) 4 (pl) 7 (chr)
2 (pl)

2 (pl) this study

R. erythropolis PR4 – 1 4 12 1 GCF_000010105 [18]

R. erythropolis SK121 – 1 – 2 – GCF_000174835 (no reference)

R. hoagii 103S – – – 11 – GCF_000196695 [17]

R. hoagii ATCC 33707 – – – 11 – GCF_000164155 (no reference)

R. jostii RHA1 1 1 – 14 (chr)
1 (pl)

– GCF_000014565 [10]

R. opacus B4 – – – 13 – GCF_000010805 (no reference)

R. opacus PD630 – 2 – 13 2 GCF_000599555 GCF_000234335 [15, 16]

Rhodococcus sp. M8 – 2 1 9 – GCF_001890475 [120]

Rhodococcus sp. YH3–3 1 2 1 13 1 GCF_001653035 [121]

Number of enzymes on the chromosome. If multiple enzymes are present on different genomic elements, the location is mentioned: chr chromosome or
pl plasmids
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ATCC BAA-870 contains several nitrile converting
enzymes which is in line with previous activity assays
using this Rhodococcus strain [34, 35]. However, in
most R. rhodochrous strains these enzymes are on the
chromosome, while in R. rhodochrous ATCC BAA-
870, they are found on a plasmid. In R. rhodochrous
ATCC BAA-870 the nitrile hydratase is expressed
constitutively, explaining why this strain is an excep-
tional nitrile biocatalyst [37]. Environmental pressure
through chemical challenge by nitriles may have
caused the elimination of regulation of the nitrile bio-
catalyst by transferring it to a plasmid.
The R. jostii RHA1 16S RNA sequence indicates that it

is closely related to R. opacus [10] according to the tax-
onomy of Gürtler et al. (Fig. 1) [122]. R. jostii RHA1 ex-
presses a nitrile hydratase (an acetonitrile hydratase) and
utilises nitriles such as acetonitrile, acrylonitrile, propio-
nitrile and butyronitrile [123], while R. opacus expresses
nitrile hydrolysis activity [116]. R. erythropolis PR4 ex-
presses a Fe-type nitrile hydratase [124], and R. erythro-
polis strains are well known for expressing this enzyme
[116, 125, 126] as part of a nitrile metabolism gene clus-
ter [122]. This enzyme has been repeatedly determined
in this species from isolated diverse locations [127], ex-
pressing broad substrate profiles, including acetonitrile,
propionitrile, acrylonitrile, butyronitrile, succinonitrile,
valeronitrile, isovaleronitrile and benzonitrile [116].
The nitrile hydratase enzymes of R. rhodochrous

have to date been shown to be of the Co-type [6,
126, 128], which are usually more stable than the Fe-
type nitrile hydratases. They have activity against a
broad range of nitriles, including phenylacetonitrile, 2-
phenylpropionitrile, 2-phenylglycinonitrile, mandelonitrile,
2-phenylbutyronitrile, 3-phenylpropionitrile, N-phenylgly-
cinonitrile, p-toluonitrile and 3-hydroxy-3-phenylpropio-
nitrile [33]. R. ruber CGMCC3090 and other strains
express nitrile hydratases [116, 129] while the nitrile hy-
drolysis activity of R. hoagii [116] is also attributed to a ni-
trile hydratase [130].
The alternative nitrile hydrolysis enzyme, nitrilase,

is also common in rhodococci (Table 2), including R.
erythropolis [131], R. rhodochrous [132–135], R. opa-
cus B4 [136] and R. ruber [137, 138]. The nitrilase
from R. ruber can hydrolyse acetonitrile, acrylonitrile,
succinonitrile, fumaronitrile, adiponitrile, 2-cyanopyridine,
3-cyanopyridine, indole-3-acetonitrile and mandelonitrile
[138]. The nitrilases from multiple R. erythropolis
strains were active towards phenylacetonitrile [139]. R.
rhodochrous nitrilase substrates include (among many
others) benzonitrile for R. rhodochrous J1 [140] and
crotononitrile and acrylonitrile for R. rhodochrous K22
[141]. R. rhodochrous ATCC BAA-870 expresses an
enantioselective aliphatic nitrilase encoded on the plas-
mid, which is induced by dimethylformamide [37].

Another nitrilase/cyanide hydratase family protein is
also annotated on the plasmid (this study) but has not
been characterised. The diverse, yet sometimes very
specific and enantioselective substrate specificities of
all these rhodococci gives rise to an almost plug-and-
play system for many different synthetic applications.
Combined with their high solvent tolerance, rhodo-
cocci are very well suited as biocatalysts to produce
amides for both bulk chemicals and pharmaceutical
ingredients.
The large percentage of possible mobile genomic re-

gion making up the plasmid, together with the high
number of transposon genes and the fact that the
plasmid contains the machinery for nitrile degrad-
ation, strongly support our theory that R. rhodochrous
ATCC BAA-870 has adapted its genome recently in
response to the selective pressure of routine culturing
in nitrile media in the laboratory. Even though iso-
lated from contaminated soil, the much larger
chromosome of R. jostii RHA1 in comparison has
undergone relatively little recent genetic flux as sup-
ported by the presence of only two intact insertion
sequences, relatively few transposase genes, and only
one identified pseudogene [10]. The smaller R. rhodo-
chrous ATCC BAA-870 genome, still has the genetic
space and tools to adapt relatively easily in response
to environmental selection.

CRISPR
CRISPRs are unusual finds in rhodococcal genomes.
Based on literature searches to date, only two other se-
quenced Rhodococcus strains were reported to contain
potential CRISPRs. R. opacus strain M213, isolated from
fuel-oil contaminated soil, has one confirmed and 14
potential CRISPRs [142], identified using the CRISPR-
Finder tool [143]. Pathak et al. also surveyed several
other Rhodococcus sequences and found no other
CRISPRs. Zhao and co-workers state that Rhodococcus
strain sp. DSSKP-R-001, interesting for its beta-
estradiol-degrading potential, contains 8 CRISPRs [144].
However, the authors do not state how these were iden-
tified. Pathak et al. highlight the possibility that the
CRISPR in R. opacus strain M213 may have been re-
cruited from R. opacus R7 (isolated from polycyclic aro-
matic hydrocarbon contaminated soil [145]), based on
matching BLASTs of the flanking regions.
The R. rhodochrous ATCC BAA-870 CRISPR up-

stream and downstream regions (based on a 270- and
718 nucleotide length BLAST, respectively) showed
significant, but not matching, alignment with several
other Rhodococcus strains. The region upstream of
the BAA-870 CRISPR showed a maximum 95% iden-
tity with that from R. rhodochrous strains EP4 and
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NCTC10210, while the downstream region showed
97% identities to R. pyridinovorans strains GF3 and
SB3094, R. biphenylivorans strain TG9, and Rhodococ-
cus sp. P52 and 2G. Analysis by PHAST phage search
tool [146] identified the presence of 6 potential, but
incomplete, prophage regions on the chromosome,
and one prophage region on the plasmid, suggesting
that the CRISPR acquisition in R. rhodochrous ATCC
BAA-870 could also have arisen from bacteriophage
infection during its evolutionary history.

Identification of target genes for future biotechnology
applications
An estimated 150 biocatalytic processes are currently be-
ing applied in industry [147–149]. The generally large
and complex genomes of Rhodococcus species afford a
wide range of genes attributed to extensive secondary
metabolic pathways that are presumably responsible for
an array of biotransformations and bioremediations.
These secondary metabolic pathways have yet to be
characterised and offer numerous targets for drug design
as well as synthetic chemistry applications, especially
since enzymes in secondary pathways are usually more
promiscuous than enzymes in the primary pathways.
A number of potential genes which could be used

for further biocatalyses have been identified in the
genome of R. rhodochrous ATCC BAA-870. A sub-
stantial fraction of the genes have unknown func-
tions, and these could be important reservoirs for
novel gene and protein discovery. Most of the bioca-
talytically useful classes of enzyme suggested by Pol-
lard and Woodley [150] are present on the genome:
proteases, lipases, esterases, reductases, nitrilase/cya-
nohydrolase/nitrile hydratases and amidases, trans-
aminase, epoxide hydrolase, monooxygenases and
cytochrome P450s. Only oxynitrilases (hydroxynitrile
lyases) and halohydrin dehalogenase were not de-
tected, although a haloacid dehalogenase is present.
Rhodococci are robust industrial biocatalysts, and the
metabolic abilities of the Rhodococcus genus will con-
tinue to attract attention for industrial uses as further
bio-degradative [6] and biopharmaceutical [151] ap-
plications of the organism are identified. Preventative
and remediative biotechnologies will become increas-
ingly popular as the demand for alternative means of
curbing pollution increases and the need for new
antimicrobial compounds and pharmaceuticals be-
comes a priority.

Conclusions
The genome sequence of R. rhodochrous ATCC BAA-
870 is one of 353 Rhodococcus genomes that are se-
quenced to date, but it is only the 4th sequence that

has been fully characterised on a biotechnological
level. Therefore, the sequence of the R. rhodochrous
ATCC BAA-870 genome will facilitate the further ex-
ploitation of rhodococci for biotechnology applica-
tions, as well as enable further characterisation of a
biotechnologically relevant organism. The genome has
at least 1481 enzyme encoding genes, many of which
have potential application in industrial biotechnology.
Based on comparative annotation of the genome, up
to 50% of annotated genes are hypothetical, while as
much as 74% of genes may have unknown metabolic
functions, indicating there is still a lot to learn about
rhodococci.

Methods
Strain and culture conditions
R. rhodochrous ATCC BAA-870, isolated from indus-
trial soil in Modderfontein, Johannesburg, South Af-
rica, was grown routinely on Tryptone Soya Agar
medium. For genomic DNA preparation, the strain
was grown in 50 mL Tryptone Soya Broth overnight
at 37 °C. Cells were centrifuged and the DNA purified
using a Wizard® Genomic DNA Purification Kit
(Promega, Madison, WI) or Ultraclean microbial
DNA extraction kit (MoBio, Carlsbad, CA). DNA
concentrations were measured spectrophotometrically
by absorbance readings at 260 nm using a NanoDrop-
1000 (Thermo Scientific, Wilmington, DE).

Illumina sequencing
Genomic DNA of R. rhodochrous BAA-870 was used
to obtain two libraries with different insert sizes. One
300 cycle paired-end library with insert-size of 550 bp
was sequenced in-house on a MiSeq sequencer (Illu-
mina, San Diego, CA) using TruSeq PCR-free library
preparation. The second, a 50 cycle mate pair library
with 5 kb insert-size, was performed at BaseClear
(Leiden, The Netherlands). Data is available at NCBI
under Bioproject accession number PRJNA487734.

MinION sequencing
For Nanopore sequencing a 1D sequencing library
(SQK-LSK108) was loaded onto a FLO-MIN106 (R9.4)
flowcell, connected to the MinION Mk1B (Oxford
Nanopore Technology, Oxford, United Kingdom). Min-
KNOW software (version 1.11.5; Oxford Nanopore) was
used for quality control of active pores and for sequen-
cing. Raw files generated by MinKNOW were base
called, on a local compute server (HP ProLiant DL360
G9, 2x XEON E5-2695v3 14 Cores and 256 RAM), using
Albacore (version 1.2.5; Oxford Nanopore). Reads, in
fastq format, with a minimum length of 1000 bps were
extracted, yielding 5.45 Gigabase sequence with an aver-
age read length of 9.09 kb.
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De novo assembly
De novo assembly was performed using Canu (v1.4, set-
tings: genomesize = 6m) [152] producing a 5.88 Mbp
genome consisting of two contigs. One chromosome
with a length of 5.35 Mbp, while the second covers a size
of 0.531 Mbp which, based on the Canu assembly graph,
is a linear plasmid. The paired-end Illumina library was
aligned, using BWA [153], to the assembly and the
resulting Binary Alignment Map file was processed by
Pilon [154] for polishing the assembly (correcting assem-
bly errors), using correction of only SNPs and short
indels (−fix bases parameter).

Annotation
The assembled genome sequence of R. rhodochrous
ATCC BAA-870 was submitted to the Bacterial An-
notation System web server, BASys, for automated,
in-depth annotation of the chromosomal and plasmid
sequences [51]. BASys annotates based on microbial
ab initio gene prediction using GLIMMER [82]. The
genome sequence was also run on the RAST (Rapid
Annotation using Subsystem Technology) server using
the default RASTtk annotation pipeline for compari-
son [155, 156]. RAST annotation uses the manually
curated SEED database to infer gene annotations
based on protein functional roles within families
[157]. The two annotation pipelines offered different
but useful and complimentary input formats and re-
sults, and gene annotations of interest could be
manually compared and confirmed.
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