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Abstract

Background: Shotgun metagenomic sequencing reveals the potential in microbial communities. However, lower-
cost 16S ribosomal RNA (rRNA) gene sequencing provides taxonomic, not functional, observations. To remedy this,
we previously introduced Piphillin, a software package that predicts functional metagenomic content based on the
frequency of detected 16S rRNA gene sequences corresponding to genomes in regularly updated, functionally
annotated genome databases. Piphillin (and similar tools) have previously been evaluated on 16S rRNA data
processed by the clustering of sequences into operational taxonomic units (OTUs). New techniques such as
amplicon sequence variant error correction are in increased use, but it is unknown if these techniques perform
better in metagenomic content prediction pipelines, or if they should be treated the same as OTU data in respect
to optimal pipeline parameters.

Results: To evaluate the effect of 16S rRNA sequence analysis method (clustering sequences into OTUs vs amplicon
sequence variant error correction into amplicon sequence variants (ASVs)) on the ability of Piphillin to predict
functional metagenomic content, we evaluated Piphillin-predicted functional content from 16S rRNA sequence data
processed through OTU clustering and error correction into ASVs compared to corresponding shotgun
metagenomic data. We show a strong correlation between metagenomic data and Piphillin-predicted functional
content resulting from both 16S rRNA sequence analysis methods. Differential abundance testing with Piphillin-
predicted functional content exhibited a low false positive rate (< 0.05) while capturing a large fraction of the
differentially abundant features resulting from corresponding metagenomic data. However, Piphillin prediction
performance was optimal at different cutoff parameters depending on 16S rRNA sequence analysis method. Using
data analyzed with amplicon sequence variant error correction, Piphillin outperformed comparable tools, for
instance exhibiting 19% greater balanced accuracy and 54% greater precision compared to PICRUSt2.

Conclusions: Our results demonstrate that raw Illumina sequences should be processed for subsequent Piphillin
analysis using amplicon sequence variant error correction (with DADA2 or similar methods) and run using a 99% ID
cutoff for Piphillin, while sequences generated on platforms other than Illumina should be processed via OTU
clustering (e.g., UPARSE) and run using a 96% ID cutoff for Piphillin. Piphillin is publicly available for academic users
(Piphillin server. http://piphillin.secondgenome.com/.)
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Background
Several recently published reports on studies of the micro-
biome have utilized 16S rRNA gene sequencing to investi-
gate the taxonomic composition of bacterial communities
and link the abundance of certain microbial taxa to host
characteristics, such as inflammation or fluctuations in
metabolism [1, 2]. However, many associations between
the microbiome and symptoms of clinical disease might
stem from the microbiome’s breadth of microbial meta-
bolic functions, not from its taxonomic content. Unlike
shotgun metagenomic sequencing, which surveys entire
genomes within a microbial sample, 16S rRNA gene se-
quencing provides no data regarding the functional cap-
acity of a microbial community. While metagenomics
approaches are oftentimes ideal, they require extremely
deep sequencing to adequately profile the functional con-
tent of a bacterial community [3], are prohibitively expen-
sive, and are simply impractical for many researchers.
Predicting microbial functional content from 16S

rRNA gene sequencing data is a popular alternative to
shotgun metagenomic approaches. In 2016, Piphillin was
introduced: a publicly available software capable of pre-
dicting microbial functional content from the presence
of detected 16S rRNA genes. With Piphillin, representa-
tive nucleic acid sequences from candidate operational
taxonomic units (OTU) are compared directly with 16S
rRNA gene sequences from genomes in the database to
infer genome content, and thus functional potential [4].
After having corrected for copy number, Piphillin uses
direct nearest-neighbor matching of 16S rRNA gene
amplicons with genomes from reference databases (e.g.,
Kyoto Encyclopedia of Genes and Genomes (KEGG),
BioCyc) to predict metagenomic content. Piphillin has
been broadly used by more than 350 researchers world-
wide to study a wide array of microbial environments:
including skin [5] and soil microbiomes [6]. Piphillin has
distinct advantages over competing tools: Piphillin does
not rely on phylogenetic trees to infer metagenomic data
and is amenable to frequent database changes (having
been updated with six new databases since its inception).
Both the KEGG and BioCyc databases have substantially
expanded since Piphillin’s initial release, the former hav-
ing gained 1346 genomes and the latter 3038 genomes
(36 and 69% increases in overall database size, respect-
ively). Since Piphillin exploits nearest-neighbor matching
of 16S rRNA gene sequences to genomic sequence data
held in these databases, the significant expansion ob-
served in both collections increases the likelihood of
matched candidates. Therefore, these expansions en-
hance the integrity and accuracy of predicted genome
contents. Considering these significant changes to refer-
ence sequence databases, it is necessary to re-assess
Piphillin using the same metrics and criteria described
in the original paper.

In 2016, Piphillin-predicted gene abundance data had
significantly higher correlation with metagenomic data
compared to PICRUSt-(Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States)
generated data. Furthermore, when compared directly to
the results of PICRUSt, differential abundance analyses
of Piphillin-predicted data yielded a 15% increase in bal-
anced accuracy [4, 7]. In the original publication Piphil-
lin also compared favorably against Tax4Fun, another
package predicting functional profiles from 16S rRNA
sequence data.
In 2018, the beta version of PICRUSt2 was released as

a successor of PICRUSt. The original PICRUSt was
bound by limitations, including the requirement for
QIIME for 16S rRNA sequence analysis and dependence
on reference phylogenetic trees, which hindered refer-
ence database updates [4]. Despite its newer, updated
database, PICRUSt2 continues to use a reference phylo-
genetic tree. While PICRUSt2 overcame some of these
limitations (i.e., a substantial update to its reference
database), the platform still relies heavily on phylogen-
etic trees (the utility of which in this context has been
debated [8]). PICRUSt2 also requires a significantly lar-
ger computational investment than Piphillin: requiring a
minimum of 16 GB of RAM. Currently, Piphillin is avail-
able through a web application, so users have no compu-
tational hurdle for use. Ribosomal RNA gene sequence
data can be imported into both Piphillin and PICRUSt2
in multiple formats, including clustering into OTU and
DADA2-corrected amplicon sequence variants (ASV).
Traditionally, 16S rRNA gene sequence analyses have

been performed by first trimming reads and then clus-
tering sequences to (i) an external reference (closed-ref-
erence OTU picking), (ii) de novo OTUs based on 97%
similarity, or (iii) an external reference followed by de
novo OTU clustering on remaining reads (open-refer-
ence OTU picking [9, 10]). Pipelines like DADA2 use se-
quence error models to correct amplicon errors into
ASVs. These techniques, capable of identifying denoised
sequence variants while minimizing the identification of
spurious sequences, are becoming a popular approach
for analyzing 16S rRNA gene sequence data [11, 12].
Like PICRUSt2, Piphillin is capable of predicting meta-
genomic content from DADA2-corrected ASVs. How-
ever, while ASV-based sequence error correction and
similar methods have gained in popularity for analyzing
16S rRNA gene sequence data, it remains unclear how
these techniques perform in metagenomic functional
content prediction pipelines like Piphillin and
PICRUSt2.
Here we show that Piphillin, equipped with the most

up-to-date database, still shows high correlation to cor-
responding metagenomic data, using either 97% de novo
clustered OTUs or DADA2-corrected ASVs as input
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data. In differential abundance testing, Piphillin from
DADA2-corrected ASVs is also shown to yield 19%
greater balanced accuracy than PICRUSt2. Additionally,
updates of the Piphillin reference database allow for
more sequences to be identified during Piphillin analysis.
We also show the capacity of BioCyc as a reference to
provide metagenomic predictions better correlated to
shotgun metagenomics results in an environmental data-
set. Finally, we introduce the new release of Piphillin,
v7.0, which includes additional features such as tables
showing the contribution of each individual genome to
metagenomic predictions.

Results
16S rRNA sequence analysis approach impacts the
quantity of sequences kept for processing, correlation to
metagenomic data, and detection of differentially
abundant features
Traditionally, 16S rRNA gene sequence data has been
analyzed via either clustering sequences to an external
reference (closed-reference OTU picking), clustering

sequences to an external reference then de novo OTU
clustering on remaining reads (open-reference OTU
picking), or de novo OTU clustering on all reads. Other
approaches, such as DADA2, correct exact amplicon se-
quence variants by modeling and correcting sequence
errors. We studied the impact of 16S rRNA gene se-
quence analysis method (ASV error correction with
DADA2 (ASVs) versus 97% de novo OTU clustering
using UPARSE (OTUs)) on Piphillin results at varying
identity cutoffs. We predicted corresponding metagen-
omes using three datasets: human feces, human oral bi-
opsy, and rat fecal samples. The hypersaline microbial
mat dataset used later in this analysis was not processed
with DADA2 as only fasta files without quality scores
were available. For Piphillin predictions using the KEGG
database using either ASVs or OTUs, a similar propor-
tion of sequences matched to the KEGG database and
were subsequently used for metagenomic prediction
(Fig. 1a). When using the BioCyc database, OTUs and
ASVs input yielded similar results with regard to se-
quences used in analysis (Fig. 2a).

Fig. 1 Piphillin results comparing 16S rRNA sequence analysis approaches using the KEGG database. a 16S rRNA gene amplicon sequences
passing the identity threshold to the reference genomes. Percentage of amplicon sequences from two datasets using two different 16S rRNA
sequence analysis approaches passing identity cutoffs from 75 to 100% against 16S rRNA gene sequences in the KEGG genome database.
b Spearman’s correlation coefficient between Piphillin results and shotgun metagenomics at ten different identity cutoffs tested in Piphillin.
Spearman’s correlation coefficient was calculated for each sample and mean, 1st and 3rd quartiles are depicted by the boxes. Whiskers extend to
the furthest points within 150% of the interquartile range. c Balanced accuracy in identifying differentially abundant KOs from Piphillin against
corresponding metagenomics at each identity cutoff. * indicates p < 0.05, ** indicates p < 0.001, *** indicates p < 0.0001
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To examine how different 16S rRNA gene sequence
analysis approaches impact Piphillin metagenomic con-
tent prediction, we calculated the Spearman’s correlation
coefficient between Piphillin results and corresponding
shotgun metagenomics data from the three datasets.
When querying the Piphillin KEGG database, outputs
from ASVs and OTUs correlated to corresponding
shotgun metagenomics data in similar fashion when
sequence identity cutoffs ranged from 75 to 97% (Fig.
1b). However, at 100 and 99% identity cutoffs for the
human oral dataset, correlations were significantly
stronger from ASVs than from OTUs. For the human
feces dataset, Piphillin data from ASVs had a signifi-
cantly stronger correlation than Piphillin data stem-
ming from OTUs at 100% ID cutoff, but the opposite was
true at 98%. When using the BioCyc database, Piphillin
outputs from ASVs and from OTUs correlated similarly
in the human oral biopsy dataset (Fig. 2b). However,
Piphillin outputs from ASVs for rat feces yielded signifi-
cantly stronger correlation values to metagenomics results
than OTUs-based Piphillin results for identity cutoffs 80,

85, 90, 95, 97, and 99% (Fig. 2b). The same was also true
for the human feces at 75, 80, 85, 90, 98, and 100% (Fig.
2b).
Most microbiome studies are predicated on the at-

tempt at identifying differentially abundant characteris-
tics between two groups (e.g., treatment versus control).
We examined the impact of two different 16S rRNA
gene sequence analysis strategies on the ability of
Piphillin-predicted functional content to approximate
differential abundance patterns in corresponding meta-
genomic data. Corresponding KEGG-reference aligned
metagenomic and Piphillin-predicted data were used at
various identity cutoffs from human oral biopsies to as-
sess differential abundance. When comparing results
from the Piphillin-predicted data to the metagenomic
data, balanced accuracy of differential abundance ana-
lysis ranged from 0.61–0.68 and 0.50–0.68 for ASVs and
OTUs, respectively (BA = TPR / 2 + (1-FPR) / 2, TPR =
true positive rate, FPR = false positive rate). Peak bal-
anced accuracy for Piphillin using ASVs was at 99%, and
was 96% for OTUs, with a balanced accuracy of 0.68 for

Fig. 2 Piphillin results comparing 16S rRNA sequence analysis approaches using the BioCyc database. a 16S rRNA gene amplicon sequences
passing the identity threshold to the reference genomes. Percentage of amplicon sequences from two datasets using two different 16S rRNA
sequence analysis approaches passing identity cutoffs from 75 to 100% against 16S rRNA gene sequences in the BioCyc genome database. b
Spearman’s correlation coefficient between Piphillin results and shotgun metagenomics at ten different identity cutoffs tested in Piphillin.
Spearman’s correlation coefficient was calculated for each sample and mean, 1st and 3rd quartiles are depicted by the boxes. Whiskers extend to
the furthest points within 150% of the interquartile range. c Balanced accuracy in identifying differentially abundant features from Piphillin against
corresponding metagenomics at each identity cutoff. * indicates p < 0.05, ** indicates p < 0.001, *** indicates p < 0.0001
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both (Fig. 1c). For OTUs input, the balanced accuracy at
96% identity was only 0.02 higher than the balanced ac-
curacy at 97% identity, which was the recommended
identity cutoff in our original paper. When the same
analysis was conducted using BioCyc as a reference data-
base, results were not as promising. Piphillin-predicted
metagenomes yielded lower balanced accuracy (0.53–
0.58), irrespective of 16S rRNA gene sequence analysis
approach employed or Piphillin identity cutoff instated
(Fig. 2c).

Piphillin yields greater balanced accuracy than PICRUSt2
in differential abundance analysis
There are several bioinformatic tools available for pre-
dicting functional content from 16S rRNA gene se-
quence data, although many are not currently being
maintained. We previously compared Piphillin to
PICRUSt, which uses phylogeny to predict genomic con-
tent. Its successor, PICRUSt2, is publicly available and in
beta testing as of 2018. To compare performance be-
tween Piphillin and PICRUSt2, we employed both util-
ities to predict functional content from DADA2-
corrected ASVs from human feces, human oral biopsies,
and rat feces using KEGG reference databases available
for each pipeline. Since Piphillin results from ASVs
yielded the greatest balanced accuracy at the 99% se-
quence identity cutoff, we used these results in the direct
comparison. For the human feces and human oral biopsy
datasets, there was no statistical difference in correlation
between Piphillin- and PICRUSt2- predicted functional
content and corresponding metagenomic data (Fig. 3a).
However, PICRUSt2- predicted functional content corre-
lated more strongly with corresponding metagenomic
data than Piphillin (p < 0.05) for the rat feces dataset.
We then examined the ability to detect differential abun-

dances between predicted genomic content and corre-
sponding metagenomic data. Using the human oral biopsy
dataset, we compared paired cancer and healthy tissue.
Piphillin predicted more true positives than PICRUSt2 (339
vs 148; Fig. 3b and c). While Piphillin exhibited a slightly
greater FPR (FPR = False positives / (False positives + True
negatives)) than PICRUSt2, both pipelines yielded compar-
ably low FPRs (both < 0.05; Fig. 3d). Piphillin yielded a TPR
of 0.391, which was 129% greater than that of PICRUSt2
(TPR =True Positive / (True Positive + False Negative); Fig.
3d). Piphillin’s elevated TPR coincided with 19% greater
balanced accuracy (BA) and 54% greater precision than
PICRUSt2 (BA =TPR / 2 + (1-FPR) / 2, Precision = True
positives / (True positives + False positives)); Fig. 3d).
One of the notable differences between ASVs and

OTUs techniques is the denoising process, which is only
available with ASVs. In addition, the ASV analysis ap-
proach can yield ASVs with strain level annotation. This
method of sequence filtering by modeling oftentimes

precludes a large fraction of reads from consideration in
downstream analyses. After having analyzed sequences
via either ASV and OTU techniques, 47 and 84% of the
raw sequences were retained, respectively, for the human
oral biopsy dataset. Upon executing Piphillin with ASVs
at the recommended 99% cutoff, 990,327 sequences
(18% of the total unprocessed reads) were able to be
considered. Upon executing Piphillin with OTUs at the
recommended 96% cutoff, 3,926,405 sequences (72% of
the total unprocessed reads) were able to be considered.
Even with the relatively low fraction of adequate initial
sequences, Piphillin had similar balanced accuracy for
ASV as for OTUs.

Reference database updates increase the quantity of
sequences assessed per analysis
One advantage of Piphillin over other functional pre-
diction pipelines is that the software structure allows
for frequent database updates. Piphillin was initially
released using the Kegg (Jan2015) and Biocyc18.5 ref-
erence databases, which contained 3036 and 4382 ge-
nomes respectively. The current Piphillin database
utilizes Kegg (Dec2017) and BioCyc21.5, which con-
tain 4132 (36% increase) and 7420 (69% increase) ge-
nomes, respectively. We hypothesized that Piphillin
executed with a later version of the database would
be capable of interrogating a greater number of se-
quences after searching nearest-neighbor genomes of
candidate sequences due to the drastic increase in
genome numbers in each database. Compared to the
original KEGG and BioCyc reference databases avail-
able for Piphillin (Kegg (Jan2015) and Biocyc18.5),
later collections provide more sequences to be com-
pared per analysis regardless of the 16S rRNA gene
sequence evaluation method performed (ASVs, Fig. 4a;
OTUs, Fig. 4b). For the ASVs, datasets sequenced
with the Illumina platform and analyzed with Piphillin
at 99% sequence ID cutoff (the ID for peak balanced
accuracy for Piphillin performed on ASVs), the up-
dated databases resulted in the ability of up to 1.81%
more sequences to be compared in the Piphillin ana-
lysis against the KEGG database, and up to 8.38%
more sequences to be compared in Piphillin analysis
against the BioCyc database (both from the human
stool dataset; Fig. 4a).
Similar to Piphillin performed from ASVs, Piphillin per-

formed from OTUs had more sequences considered with
database updates. At 96% ID (the Piphillin sequence ID
cutoff that had peak balanced accuracy when performed
from OTUs), updated collections enabled up to 10.64%
more sequences to be considered in Piphillin analysis
against the KEGG database (in the human oral biopsy
dataset), and up to 10.77% more sequences against the
BioCyc database (in the rat feces dataset; Fig. 4b).
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Fig. 3 (See legend on next page.)
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Piphillin results generated with updated BioCyc database
show significantly stronger correlation to corresponding
metagenomic data in environmental samples
In the original manuscript, we reported that for an en-
vironmental dataset (hypersaline microbial mats), Piphil-
lin-predicted genomic content exhibited low correlation
(mean rho = 0.28 at any identity cutoff for KEGG database
and 0.27 at any identity cutoff for BioCyc database) to cor-
responding metagenomics results. In addition, there was

no significant difference between KEGG and BioCyc-
derived correlation results. To evaluate improvements to
Piphillin stemming from updated databases, we re-
analyzed the same hypersaline microbial mat samples
against both KEGG and BioCyc reference databases. Since
the data available for testing did not contain base quality
values, only results from OTUs were compared. Mean
resulting Spearman’s correlation coefficients ranged from
0.04 to 0.28 for KEGG and 0.26 to 0.39 for BioCyc. The

(See figure on previous page.)
Fig. 3 Comparison between Piphillin and PICRUSt2 using DADA2-corrected ASV data. a Spearman’s correlation coefficient against corresponding
shotgun metagenomics results were compared for two datasets. Spearman’s correlation coefficient was calculated for each sample and ranges
are depicted as box and whisker plots as described in Fig. 1. b Comparison of log2FC in differential abundance analysis of KOs between
metagenomic and Piphillin-predicted data. Color based on comparison to metagenomics results, in which the adjusted p-value cutoff was 0.2 for
significance. c Comparison of log2FC in differential abundance analysis of KOs between metagenomic and PICRUSt2-predicted data. Color based
on metagenomics results, in which the adjusted p-value cutoff was 0.2 for significance. d False positive rate, true positive rate/recall, balanced
accuracy, and precision of detecting significant differences between cancer and healthy human oral biopsy samples were compared. * indicates p
< 0.05, ** indicates p < 0.001, *** indicates p < 0.0001

Fig. 4 Updated references results in more sequences considered in Piphillin analysis. Comparison of 16S rRNA gene amplicon sequences passing the
identity threshold to the reference genomes based on database version for Piphillin results from (a) DADA2-corrected ASVs and (b) 97% de novo OTUs
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BioCyc reference database yielded significantly greater
correlation coefficients at all identity cutoffs (75 to 97%)
than its KEGG counterpart (p < 0.05; Fig. 5).

Discussion
Since the original publication introducing Piphillin in
2016, the tool has been continuously updated in part
through active dialogue with more than 350 users. We
previously tested the ability of Piphillin to predict gen-
omic content from de novo OTUs and found its bal-
anced accuracy to be higher than other pipelines (e.g.,
PICRUSt, Tax4Fun) [7, 13]. However, little was known
regarding Piphillin’s compatibility with other 16S rRNA
gene sequencing strategies, such as amplicon sequence
variant error correction with DADA2. Moreover, Piphil-
lin had not been directly compared to contemporary
comparable pipelines, such as PICRUSt2.
Metagenomic functional prediction derived from em-

pirical 16S rRNA gene sequence data is a possible alter-
native to metagenomic shotgun sequencing. This
capability, however, is not without limitations and is
predicated on the assumption that bioinformatic utilities
like Piphillin can adequately reconstruct metagenomic
data, regardless of the method by which 16S rRNA gene
sequences were generated and processed. To test this as-
sumption, we directly compared Piphillin results origin-
ating from both ASVs and OTUs at varying sequence
identity cutoffs to corresponding metagenomic samples.
Two previously examined datasets were assessed (human
oral biopsies and rat fecal samples), along with a
recently-collected human feces dataset. For all datasets,

Piphillin results correlated strongly with metagenomic
data using the KEGG reference, with ASVs yielding sig-
nificantly higher correlation values than Piphillin data
from OTUs at high identity (99 and 100%) for the hu-
man oral biopsy dataset and 100% for the human feces
dataset (Fig. 1b). This is likely due to the nature of ASVs
corrected by DADA2, whereby modeling is used to cor-
rect sequence errors and thus preclude spurious se-
quences. Since these sequences reflect the real variant,
remaining equivocally strict with Piphillin parameters
(i.e., requiring sequences to be > 99% identical to a refer-
ence genome) maintains the necessary fidelity and leads
to stronger correlation results.
The primary goal of numerous microbiome experi-

ments is to elucidate the differential abundances of fea-
tures between two candidate groups. For ASVs as input,
Piphillin exhibited its best true positive rate and bal-
anced accuracy at 99% sequence identity cutoff. This
identity threshold rendered more sequences available for
subsequent analyses when Piphillin was performed with
ASVs as input vs OTUs. Conversely: for execution with
OTUs, Piphillin exhibited its best true positive rate and
balanced accuracy at 96% identity cutoff. Based on the
results of our analyses, we recommend that sequence
data arising from the Illumina platform be processed
with DADA2 (ASVs) prior to Piphillin analysis, and that
a 99% identity cutoff for Piphillin be applied downstream
in the interest of maximum accuracy. For sequence
reads generated using non-Illumina technologies, we still
recommend processing with the OTU approach in prep-
aration for Piphillin, with an identity threshold set to
96% for Piphillin analysis.
We then compared Piphillin performance to that of

PICRUSt2, a contemporary competing bioinformatics
tool. Piphillin predicts metagenomic content via direct
nearest-neighbor matching between 16S rRNA gene
amplicons and genomes from reference databases (i.e.,
KEGG or BioCyc), whereas PICRUSt2 uses hidden state
prediction to infer genomic content based on genome
position in a reference phylogenetic tree. To compare
the accuracy of Piphillin at a 99% identity threshold to
that of PICRUSt2, we executed both pipelines in parallel
with DADA2-corrected ASVs from human oral biopsy
samples against KEGG references. Differential abun-
dance testing was then carried out with DESeq2, and re-
sults were compared to those arising from
corresponding metagenomics techniques. While the cor-
relation between predicted metagenomes and actual
metagenomic data was not significantly different for the
two different analyses of the human feces or human oral
biopsy datasets, PICRUSt2 did correlate more strongly
with actual metagenomics results for rat feces samples.
This suggested that Piphillin and PICRUSt2 predict
metagenomic functional content to an equivalent extent

Fig. 5 Piphillin executed with BioCyc vs KEGG reference on
environmental samples. Spearman’s correlation coefficient against
corresponding shotgun metagenomics results were compared the
hypersaline microbial mat dataset using either KEGG and BioCyc
references. Spearman’s correlation coefficient was calculated for
each sample and ranges are depicted as box and whisker plots as
described in Fig. 1. * indicates p < 0.05, ** indicates p < 0.001, ***
indicates p < 0.0001
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in many microbial samples. When comparing perform-
ance in differential abundance testing, Piphillin and
PICRUSt2 exhibited comparable false positive rates, and
a greater true positive rate, which in turn led to 19%
greater balanced accuracy. This trend is consistent with
our previous report [4]. When comparing the fold
changes of individual features, both Piphillin- and
PICRUSt2-predicted abundance exhibited greater fold
changes than their corresponding metagenomics results,
with PICRUSt2-predicted abundance change being the
more extreme. This is likely due to the fact that KEGG
references predict a larger number of counts of a given
gene, based on taxonomy. Ultimately, Piphillin enables a
user to identify more true positive features than
PICRUSt2 while still minimizing false positives.
A noteworthy limitation of Piphillin is that it requires

the leveraging of a robust database containing a large
number of the reads relevant to a given sample, which
hinders its usefulness for lesser studied samples and en-
vironments. However, as databases such as KEGG and
BioCyc continue to expand, the extent of this limitation
will lessen. Compared to the original KEGG database,
the most recent Piphillin reference database using OTUs
yielded up to 10.64% more matched reads at the recom-
mended 96% identity threshold (Human oral biopsy; Fig.
4b). We also investigated the impact of updated refer-
ences to Piphillin using ASVs with two different data-
bases (Fig. 4a). As was observed for the OTUs, the
newer KEGG database enabled many more sequences to
be maintained for subsequent analysis. Similar improve-
ments were noted in the updated BioCyc reference. As
databases continue to expand, Piphillin’s prowess in pre-
dicting metagenomic functional content will continue to
evolve.
Ultimately, Piphillin executed against the KEGG data-

base yielded much greater correlation values for host-
associated microbial samples than environmental sam-
ples, such as hypersaline microbial mats. This trend is
consistent with our previous results. This suggests that
despite remarkable advances in molecular environmental
microbiology, the highly complex and reticulated nature
of environmental samples is still not represented enough
in reference databases. This renders them currently un-
able to provide the resolution required to characterize
the diversity of these microbiomes. Nevertheless, Piphil-
lin executed against the updated BioCyc database on en-
vironmental samples yielded greater correlation values
to corresponding metagenomic data (Fig. 4b). This is
likely due to BioCyc’s inherent emphasis placed on
small-molecule metabolism from all domains of life, ra-
ther than organismal functions and human disease, as is
the case with KEGG [14, 15].
Piphillin continues to be the simplest method for pre-

dicting metagenomic functional content, requiring only

the input of an abundance table in csv format and a fasta
file containing representative sequences or ASVs. Piphil-
lin’s core infrastructure facilitates frequent database up-
dates, thereby fostering continuous improvement in the
utility’s resolution and robustness as new genomes are
considered. Piphillin does not rely on multiple sequence
alignment or phylogenetic trees, a nuance now being ad-
vocated for in other proposed tools [16]. In response to a
number of requests from users, the latest release of Piphil-
lin (i.e., v7.0) outputs a tabular presentation depicting the
contribution of each genome, in addition to feature and
pathway abundance summary tables. Future releases will
continue to integrate feedback from users, continue to up-
date current reference databases, and may also include the
addition of other reference databases. The latest release of
Piphillin is available to the public [17].

Conclusions
Here, we demonstrate Piphillin’s compatibility with 16S
rRNA gene sequence data processed by both amplicon
sequence variant error correction and clustering se-
quences into operational taxonomic units and provide
detailed Piphillin parameters for data processed via each
of these techniques. We also show that differential abun-
dance testing of Piphillin-predicted metagenomic abun-
dance data results in a larger number of true positives
compared to PICRUSt2 while still minimizing false nega-
tives. Piphillin is publicly available and provides a flex-
ible means of leveraging 16S rRNA sequence data to
predict microbial functional breadth.

Methods
Human oral biopsy and rat feces data
The human oral biopsy and rat feces samples were ex-
tracted and sequenced from our previous publication
[4].

Human feces data: subjects
The study subjects included in the analysis are described
in [18]. Ethical approval was granted by the Cork clinical
research ethics committee (APC-022 and APC-046).

Human feces dataset: DNA extraction
An aliquot of approximately 0.2 g of feces was trans-
ferred into a tube with one 3.5 mm glass bead, 0.1 mL of
1.0 mm zirconia/silica beads and 0.1 mL of 0.1 mm glass
beads (Biospec, Bartlesville, OK, USA). QIAamp Fast
DNA stool kit (Qiagen GmbH, Hilden, Germany) was
used for DNA extraction. First, 1 mL of InhibitEX buffer
was added to the fecal samples, which were disrupted by
bead-beating in a Mini-Beadbeater-24 (Biospec) for 30 s
three times at maximum speed (3450 strokes/min). Sam-
ples were then heated at 95 °C for 5 mins and following
this were processed according to the kit manufacturer’s
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instructions, resulting in genomic DNA eluted in 200 μL
of ATE buffer.

Human feces dataset: 16S rRNA PCR and sequencing
Library preparation for 16S rRNA gene amplicon sequen-
cing was performed following the Illumina (San Diego, CA,
USA) recommendations with some modifications. Briefly,
aliquots of 15 ng of extracted DNA were subjected to PCR
amplification of the V3-V4 hypervariable region of the 16S
rRNA gene in a total volume of 30 μL. The primers used
(final concentration 0.2 μM) were selected from [19] and
contained the Illumina sequencing adapters (overhang nu-
cleotide sequences) added to the gene-specific sequences
(forward TCGTCGGCAGCGTCAGATGTGTATAAGA
GACAGCCTACGGGNGGCWGCAG; reverse GTCTCG
TGGGCTCGGAGATGTGTATAAGAGACAGGACTAC
HVGGGTATCTAATCC) (Eurofins Genomics, Ebersberg,
Germany). PCR amplification was performed with the Phu-
sion High-Fidelity DNA polymerase (Thermo Scientific,
Wilmington, DE, USA) in a 2720 Thermal Cycler (Applied
Biosystems, Foster City, CA,USA) under the following con-
ditions: 98 °C for 30 s, followed by 25 cycles of 98 °C for 10
s, 55 °C for 15 s, 72 °C for 20 s and a final cycle of 72 °C for
5min. The presence of the amplified 16S rRNA gene band
was verified in agarose gels. PCR products were purified
using Agencourt AMPure XP magnetic beads (Beckman-
Coulter, Brea, CA, USA) and eluted in 52.5 μL of EB Buffer
(Qiagen). After purification, 5 μL of DNA was amplified in
a second PCR employing Nextera XT Index primers (Illu-
mina). This PCR was run at 98 °C for 30 s, followed by 8 cy-
cles of 98 °C for 10 s, 55 °C for 15 s, 72 °C for 20 s and a
final cycle of 72 °C for 5min. A second purification step
with Agencourt AMPure XP magnetic beads was carried
out after the Nextera PCR. The 16S V3-V4 rRNA gene
amplicons containing the Nextera indexes were finally
eluted in 27.5 μL of EB Buffer, and DNA concentrations
were measured using the dsDNA high sensitivity assay and
Qubit 3.0 fluorimeter (Thermo Scientific). Libraries were
created by pooling 40 ng of each sample. Finally, the librar-
ies were sent for sequencing at the Teagasc NGS facility
(Moorepark, Cork, Ireland) on an Illumina MiSeq, utilizing
a MiSeq v3 reagent kit for 2x300bp paired-end reads.

Human feces dataset: shotgun metagenomics sequencing
Metagenomic shotgun library preparation and sequencing
steps were performed using methods developed and vali-
dated by GATC Biotech (Konstanz, Germany). Briefly,
after shipment in dry ice, genomic DNA integrity and
quantity for quality purposes were determined by agarose
gel electrophoresis, microfluidic capillary electrophoresis
in a 2100 Bioanalyzer system (Agilent Technologies, Santa
Clara, CA, USA) and fluorimeter measurement (Qubit).
Library preparation steps included: DNA fragmentation,
adapter ligation, amplification and size selection.

Sequencing was performed on an Illumina HiSeq4000 in
2 × 150 bp mode.

Reference databases
Gene copy numbers were retrieved from the Kyoto
Encyclopedia of Genes and Genomes (commercial ver-
sion of KEGG [20];) release 84.1 (December 2017) to
create a gene feature table. From each genome sequence,
16S rRNA gene IDs were extracted using keyword
“K01977” (16S ribosomal RNA) in xxx_genes.txt files
(xxx represents the genome id). Corresponding fasta for-
mat 16S rRNA sequences were retrieved and filtered
using a min-length of 1400 bp and a max-length of 1600
bp. The number of 16S rRNA sequences passing the
length filter in each genome was recorded.
Gene copy numbers were retrieved from the commer-

cial version of BioCyc 21.5 to create a gene feature table.
From each genome sequence, 16S rRNA gene IDs were
extracted using keyword “16S ribosomal RNA” as a
“COMMON-NAME” in rnas.dat file in each BioCyc
PGDB. Corresponding fasta format 16S rRNA sequences
were retrieved and filtered using length cutoff of > 1400
bp and < 1600 bp. The number of 16S rRNA gene se-
quences passing the length filter in each genome was
used to normalize 16S rRNA copy numbers. Gene copy
numbers for each genome were retrieved, summarized
by BioCyc reactions (RXNs), and formatted using a cus-
tom script for the database.

16S rRNA sequence processing for Piphillin
To pre-process 16S rRNA gene libraries for Piphillin
functional inference, sequences were processed via one
or more 16S sequence analysis methods: amplicon se-
quence variant error correction with DADA2 (ASVs)
and/or 97% de novo OTU clustering with UPARSE
(OTUs) [10, 11]. The human feces, human oral biopsy
and rat feces datasets were analyzed with both methods,
while hypersaline microbial mats dataset was only ana-
lyzed using OTUs as only fasta formatted files without
quality scores were available for analysis.
Default settings were used to correct sequence errors

into ASVs with DADA2. Trim parameters were as fol-
lows: human feces (trim left 10 bases and truncate at
base 290 for both forward and reverse reads), human
oral biopsy (forward read: trim left 10 bases and trun-
cate at base 240, reverse read: trim left 10 bases and
truncate at base 200) and rat feces (forward read: trim
left 10 bases and truncate at base 240, reverse read:
trim left 10 bases and truncate at base 225). For OTU
analysis, sequences were binned into OTUs at 97%
identity, a representative sequence from each OTU was
selected, and the count of sequences in each OTU from
each sample was tallied as previously described [21].
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Shotgun metagenomics analyses
Reads were first processed with Trimmomatic [22] to
trim adapter sequences and low-quality ends (<Q20).
Reads shorter than 35 bp after trimming were dis-
carded. Contaminant sequences, like PhiX174 and se-
quencing primers, were removed with Bowtie2 [23].
rRNA sequences from all three domains of life were
identified and removed with SortMeRNA 2.0 [24].
Host sequences were removed with Kraken [25],
which used exact alignments of raw shotgun se-
quences to k-mers derived from the human reference
genome. Filtered and translated DNA sequences were
mapped separately against reference databases of all
proteins within the KEGG (version 84.1) and BioCyc
(version 21.5) databases using Diamond [26], where
hits spanning > = 20 amino acids with > = 80% simi-
larity were collected. In cases where one read
matched these criteria against multiple proteins, only
the protein or proteins (in the event of a tie) with
the maximum bit score were collected.

Inference of metagenomics by Piphillin
Piphillin was developed to utilize the most up-to-date
genome databases to infer metagenomics content from
16S rRNA sequenced samples. The web version of
Piphillin [17] currently supports different releases of
KEGG and BioCyc. Specific details about methods in
which Piphillin predicts metagenomic content is de-
scribed in [4], with the only change being an update to
use USEARCH version 10.0.240. Briefly, sequences
(ASVs or OTUs) are searched against a database using
USEARCH at a user-specified sequence identity cutoff.
The genome that is the closest match to a particular 16S
rRNA sequence above the identity cutoff is considered
as the inferred genome for that ASV/OTU. The resulting
genome abundance table is then normalized by 16S
rRNA copy number of each genome before genome con-
tent is summarized at KO or RXN level for each sample.

PICRUSt2 analysis
Unprocessed 16S rRNA gene fastq sequence data were
fed to QIIME2 (Amazon EC2 image AMI 2018.2, [27])
and PICRUSt2 pipeline ([28], commit 16f29b9) to obtain
functional count tables [29–32]. After import, reads
were processed through QIIME2 using qiime dada2
denoise-paired, with the same trim parameters as used
in DADA2 analysis described above. The ASV abun-
dance table and representative sequences were then fed
through PICRUSt2 using the KEGG database with the
commands place_seqs.py, hsp.py, and metagenome_
pipeline.py with default settings to create the predicted
metagenomics table.

Statistical analysis
Statistical analyses were performed in the R environment
[33]. For correlation of predicted metagenomics to shot-
gun metagenomics, any missing values (e.g. KOs found
in shotgun metagenomics but not in Piphillin-predicted
results) were considered a 0 abundance before spearman
correlation calculations. The DESeq2 package was used
to detect differentially abundant KEGG orthologs (KO)
in cancer and healthy paired human oral biopsy samples
from datasets resulting from shotgun metagenomics,
Piphillin, and PICRUSt2, as described previously [4].

Abbreviations
ASV: Amplicon sequence variant; BA: Balanced accuracy; FPR: False positive
rate; KEGG: Kyoto Encyclopedia of Genes and Genomes; OTU: Operational
taxonomic unit; rRNA: Ribosomal RNA; TPR: True positive rate

Acknowledgements
We thank Myron LeDuc for editorial suggestions as well as Anh Vu and Sunit
Jain for their help in implementing the new Piphillin website. We also thank
Carthage Moran, Dona Sheehan, Margot Hurley and Catherine O’Riordan
from Cork University Hospital for assisting patient recruitment.

Authors’ contributions
MJC, EJLM and FS designed human feces study, collected the human fecal
samples, and facilitated 16S rRNA sequencing. NRN, KD, SI, and TZD
designed study analysis. NRN performed 16S rRNA sequence processing,
Piphillin and PICRUSt2, and statistical analysis. NRN, TW, KD, SI, and TZD
wrote the manuscript. All authors have read and approved this manuscript.

Funding
This work was supported by Second Genome Inc. in the form of salaries for
authors (N.R.N, T.W., K.D., S.I., & T.Z.D.), with the financial support of Science
Foundation Ireland (grant numbers 11/SIRG/B2162 and SFI/12/RC/2273). The
funding bodies played no role in the design of the study and collection,
analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
Paired cancer and anatomically matched contralateral clinically normal
human oral biopsy samples are described in Schmidt et al. [16S rRNA
accession number, EMBL PRJEB4953; metagenomics accession numbers,
SRR3586059—SRR3586070] [34]. Hypersaline microbial mat data is described
in [35, 36] [16S rRNA accession numbers, JN427016–JN539989;
metagenomics accession numbers, ABPP00000000—ABPY00000000]. Human
feces data is available is deposited under accession PRJNA398187 (16S rRNA
accession number: SAMN11885751, shotgun accession number
SAMN11885869).

Ethics approval and consent to participate
Three datasets considered in this study were also examined in our previous
study [4, 34]. The stool data collection was approved by the Cork hospital
ethics committee (APC-022 and APC-046).

Consent for publication
Not applicable.

Competing interests
The authors declare a conflict of interest. We have the following competing
interests: this work was supported by Second Genome Inc. which employs
and provides stock options to N.R.N, T.W., K.D., S.I., & T.Z.D.. Second Genome
Inc. is an independent therapeutics company with products in development
to treat liver disorders and other human diseases. A publication announcing
the availability of Piphillin analysis for academic use will not affect the value
of our therapeutic products. There are no Piphillin patents, products in
development, or marketed products to declare.

Narayan et al. BMC Genomics           (2020) 21:56 Page 11 of 12



Author details
1Informatics Department, Second Genome Inc., South San Francisco,
California, USA. 2APC Microbiome Ireland, University College Cork, Co., Cork,
Ireland. 3School of Microbiology, University College Cork, Co., Cork, Ireland.
4Department of Medicine, University College Cork, Co., Cork, Ireland.

Received: 12 June 2019 Accepted: 24 December 2019

References
1. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction

of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:
485–98. https://doi.org/10.1016/j.cell.2009.09.033.

2. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Ley RE, Sogin ML,
et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:
480–4.

3. Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, et al. Unlocking
the potential of metagenomics through replicated experimental design. Nat
Biotechnol. 2012;30:513–20. https://doi.org/10.1038/nbt.2235.

4. Iwai S, Weinmaier T, Schmidt BL, Albertson DG, Poloso NJ, Dabbagh K, et al.
Piphillin: improved prediction of metagenomic content by direct inference
from human microbiomes. PLoS One. 2016;11:1–18.

5. Bates KA, Clare FC, O’Hanlon S, Bosch J, Brookes L, Hopkins K, et al.
Amphibian chytridiomycosis outbreak dynamics are linked with host skin
bacterial community structure. Nat Commun. 2018;9:1–11. https://doi.org/
10.1038/s41467-018-02967-w.

6. Mise K, Fujita K, Kunito T, Senoo K, Otsuka S. Phosphorus-mineralizing
communities reflect nutrient-rich characteristics in Japanese arable Andisols.
Microbes Environ. 2018;33:282–9. https://doi.org/10.1264/jsme2.ME18043.

7. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA,
et al. Predictive functional profiling of microbial communities using 16S
rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–21. https://doi.
org/10.1038/nbt.2676.

8. Cunningham CW. Some limitations of ancestral character-state
reconstruction when testing evolutionary hypotheses. Syst Biol. 1999;48:
665–74. https://doi.org/10.1080/106351599260238.

9. Jervis-Bardy J, Leong LEX, Marri S, Smith RJ, Choo JM, Smith-Vaughan HC,
et al. Deriving accurate microbiota profiles from human samples with low
bacterial content through post-sequencing processing of Illumina MiSeq
data. Microbiome. 2015;3:19. https://doi.org/10.1186/s40168-015-0083-8.

10. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon
reads. Nat Methods. 2013;10:996–8. https://doi.org/10.1038/nmeth.2604.

11. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP.
DADA2: high-resolution sample inference from Illumina amplicon data. Nat
Methods. 2016;13:581–3.

12. Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should
replace operational taxonomic units in marker-gene data analysis. ISME J.
2017;11:2639–43. https://doi.org/10.1038/ismej.2017.119.

13. Aßhauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting
functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;
31:2882–4.

14. Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, et al. The
MetaCyc database of metabolic pathways and enzymes and the BioCyc
collection of pathway/genome databases. Nucleic Acids Res. 2014;
38(Database issue):459–71.

15. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res.
2017;45:D353–61.

16. Edgar RC. SINAPS: Prediction of microbial traits from marker gene
sequences. bioRxiv. 2017; Moran 2015:124156. doi:https://doi.org/10.1101/
124156.

17. Piphillin server. http://piphillin.secondgenome.com/ .
18. Laserna-mendieta EJ, Clooney AG, Carretero-gomez JF, Moran C, Sheehan D,

Nolan JA, et al. Determinants of reduced genetic capacity for butyrate
synthesis by the gut microbiome in crohn’ s disease and ulcerative colitis. J
Crohns Colitis. 2018;12:204–16.

19. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al.
Evaluation of general 16S ribosomal RNA gene PCR primers for classical and
next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;
41:1–11.

20. KEGG: Kyoto Encyclopedia of Genes and Genomes. https://www.genome.
jp/kegg/ . Accessed 13 Dec 2017.

21. Avilés-Jiménez F, Guitron A, Segura-López F, Méndez-Tenorio A, Iwai S,
Hernández-Guerrero A, et al. Microbiota studies in the bile duct strongly
suggest a role for Helicobacter pylori in extrahepatic cholangiocarcinoma.
Clin Microbiol Infect. 2016;22:178.e11–22. https://doi.org/10.1016/j.cmi.2015.
10.008.

22. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30:2114–20.

23. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat
Methods. 2013;9:357–9.

24. Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of
ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.

25. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 2014;15:R46.

26. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nat Methods. 2015;12:59. https://doi.org/10.1038/nmeth.3176.

27. QIIME2. https://qiime2.org/ . Accessed 26 Apr 26 2018.
28. PICRUSt2. https://github.com/picrust/picrust2 . Accessed 21 May 2018.
29. Berger SA, Stamatakis A. Aligning short reads to reference alignments and

trees. Bioinformatics. 2011;27:2068–75.
30. Ye Y, Doak TG. A parsimony approach to biological pathway reconstruction/

inference for metagenomes. Handb Mol Microb Ecol I Metagenom
Complem Approach. 2011;5:453–60.

31. Barbera P, Kozlov AM, Czech L, Morel B, Darriba D, Flouri T, et al. EPA-ng:
massively parallel evolutionary placement of genetic sequences. Syst Biol
2018;0. doi:https://doi.org/10.1093/sysbio/syy054.

32. Louca S, Doebeli M. Efficient comparative phylogenetics on large trees.
Bioinformatics. 2018;34:1053–5.

33. R project. https://www.r-project.org/.
34. Schmidt BL, Kuczynski J, Bhattacharya A, Huey B, Corby PM, Queiroz ELS,

et al. Changes in abundance of oral microbiota associated with oral cancer.
PLoS One. 2014;9:e98741.

35. Kunin V, Raes J, Harris JK, Spear JR, Walker JJ, Ivanova N, et al. Millimeter-
scale genetic gradients and community-level molecular convergence in a
hypersaline microbial mat. Mol Syst Biol. 2008;4:1–6.

36. Kirk Harris J, Gregory Caporaso J, Walker JJ, Spear JR, Gold NJ, Robertson CE,
et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial
mat. ISME J. 2013;7:50–60. https://doi.org/10.1038/ismej.2012.79.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Narayan et al. BMC Genomics           (2020) 21:56 Page 12 of 12

https://doi.org/10.1016/j.cell.2009.09.033
https://doi.org/10.1038/nbt.2235
https://doi.org/10.1038/s41467-018-02967-w
https://doi.org/10.1038/s41467-018-02967-w
https://doi.org/10.1264/jsme2.ME18043
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1080/106351599260238
https://doi.org/10.1186/s40168-015-0083-8
https://doi.org/10.1038/nmeth.2604
https://doi.org/10.1038/ismej.2017.119
https://doi.org/10.1101/124156
https://doi.org/10.1101/124156
http://piphillin.secondgenome.com/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
https://doi.org/10.1016/j.cmi.2015.10.008
https://doi.org/10.1016/j.cmi.2015.10.008
https://doi.org/10.1038/nmeth.3176
https://qiime2.org/
https://github.com/picrust/picrust2
https://doi.org/10.1093/sysbio/syy054
https://www.r-project.org/
https://doi.org/10.1038/ismej.2012.79

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	16S rRNA sequence analysis approach impacts the quantity of sequences kept for processing, correlation to metagenomic data, and detection of differentially abundant features
	Piphillin yields greater balanced accuracy than PICRUSt2 in differential abundance analysis
	Reference database updates increase the quantity of sequences assessed per analysis
	Piphillin results generated with updated BioCyc database show significantly stronger correlation to corresponding metagenomic data in environmental samples

	Discussion
	Conclusions
	Methods
	Human oral biopsy and rat feces data
	Human feces data: subjects
	Human feces dataset: DNA extraction
	Human feces dataset: 16S rRNA PCR and sequencing
	Human feces dataset: shotgun metagenomics sequencing
	Reference databases
	16S rRNA sequence processing for Piphillin
	Shotgun metagenomics analyses
	Inference of metagenomics by Piphillin
	PICRUSt2 analysis
	Statistical analysis
	Abbreviations

	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

