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Abstract

Background: It was demonstrated in our previous research that trypsin scavenges superoxide anions. In this study,
the mechanisms of storage quality improvement by trypsin were evaluated in H. undatus.

Results: Trypsin significantly delayed the weight loss and decreased the levels of ROS and membrane lipid
peroxidation. Transcriptome profiles of H. undatus treated with trypsin revealed the pathways and regulatory
mechanisms of ROS genes that were up- or downregulated following trypsin treatment by gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses. The current results showed that
through the regulation of the expression of hub redox enzymes, especially thioredoxin-related proteins, trypsin can
maintain low levels of endogenous active oxygen species, reduce malondialdehyde content and delay fruit aging.
In addition, the results of protein-protein interaction networks suggested that the downregulated NAD(P) H and
lignin pathways might be the key regulatory mechanisms governed by trypsin.

Conclusions: Trypsin significantly prolonged the storage life of H. undatus through regulatory on the endogenous
ROS metabolism. As a new biopreservative, trypsin is highly efficient, safe and economical. Therefore, trypsin
possesses technical feasibility for the quality control of fruit storage.
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Background

Hylocereus undatus (H. undatus) is a perennial climbing
cactus plant that is native to tropical areas of Mexico
and Central and South America [1]. H. undatus is a non-
climacteric fruit that reaches its best edible quality when
harvested ripe, and its quality decreases during storage.
The shelf life of fresh H. undatus is short. As a newly
cultivated crop, few studies have aimed to extend the
postharvest quality of this fruit [2].

Disorder of reactive oxygen species (ROS) metabolism
and excessive accumulation of ROS causes an increase
of membrane lipid peroxidation and leads to fruit spoil-
age during the process of fruit ripening and decay [3, 4].
Trypsin is a serine protease and is used as a proteolytic
enzyme. It was shown that the presence of trypsin sig-
nificantly affects the activity of flavonoids in scavenging
2,2-diphenyl-1- picrylhydrazyl (DPPH), 2, 2-azinobis (3-
ethylbenzo- thiazoline-6-sulphonic acid; ABTS) and hy-
droxyl radicals [5]. We also reported that trypsin can
protect cells by scavenging superoxide anions (O,") [6].
The function and mechanisms of the impact of trypsin
on the quality of H. undatus during storage have not
been determined to date.

RNA-seq is a highly efficient technology for gene ex-
pression analysis [7, 8]. For plants, RNA-seq has been
widely used to identify regulatory mechanisms and
screen target genes in the area of phytopathology [9, 10].
However, few such studies have been performed with re-
spect to gene expression related to postharvest technol-
ogy of fruits and vegetables. Although the hub genes
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involved in the biosynthesis of betalain have been identi-
fied in H. undatus [11], the regulatory mechanisms of
postharvest quality of fruits and vegetables have not
been elucidated to date.

The analysis of protein-protein interactions (PPI) en-
ables us to further elucidate the biological processes,
organization, and action mechanisms of proteins [12].
Cytoscape is an open platform with a series of plugins to
make it more visualized and able to perform deep net-
work analysis. A number of the plugins of Cytoscape,
such as NetworkAnalyzer, MCODE, or cytoHubba,
could be employed to score and rank the nodes or
screen modules in the PPI network [13].

In the current study, we investigated the impact of
trypsin on the quality and shelf life of H. undatus by
regulating active oxygen metabolism. The differentially
expressed ROS genes (DERGS) of H. undatus peel sam-
ples were obtained. GO and KEGG enrichment analyses
of DERGs were applied, and the PPI network of ROS re-
lated genes and subnetwork of DERGs were constructed.
The hub genes related to ROS mechanisms of fruit qual-
ity improvement by trypsin during storage were further
analyzed by Cytoscape with such plugins as cytoHubba
and MCODE.

Results

Effect on storage quality of H. undatus

The H. undatus fruits of both groups were in excellent
condition at the beginning of storage (Fig. 1). After 159
h of storage, the squamas of the fruits in the control
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Fig. 1 Effect of trypsin treatment on the storage quality or ROS levels of H. undatus. Values are the mean + SE of triplicate samples. Symbols “**"
represent p < 0.01. a-d, Fruits of H. undatus stored at 25 °C for 159 h with and without trypsin treatment. a and ¢, Control fruits; b and d, trypsin-
treated fruits; 0 h or 159 h represent that fruits were stored for 0 or 159 h, respectively. e, Weight loss of H. undatus fruit stored with or without
trypsin for 9 days; f, MDA contents of H. undatus fruit stored with or without trypsin for 7 days; g or h, Superoxide anion production rates, or
H,O, concentrations in H. undatus peel with or without trypsin for 7 days
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group were completely dry and brittle, the color was
dim and the fruit bodies were significantly corrupted
with plaque and were inedible (Fig. 1c). In the trypsin
group, the squamas were partly dry; however, the peel
was bright and clean, and the flesh was edible (Fig. 1d).
The weight loss rate of each group showed a significant
upward trend with increasing storage time (Fig. le). The
fruit in the control group exhibited a relatively large mean
decrease in fresh weight of 1.15% weight loss per day,
while the trypsin group showed only a 0.81% (trypsin)
weight loss per day (Fig. 1e). There was a significant differ-
ence between the trypsin and control groups (p < 0.01).

Impact on the level of cell injury

To further investigate the preservation mechanism of
trypsin, the difference of injury on cells between control
and trypsin group was evaluated in H. undatus. Figure 1f
showed that the membrane lipid peroxidation in the
control group sharply increased by fourfold after 7 days
of storage. The increase of malondialdehyde (MDA) was
fully impeded by trypsin. There was a highly significant
difference between the two groups by the end of the
storage period (Day 7) (p <0.01).

Impact on the ROS metabolisms of H. undatus

Excess ROS was the major source of cell injury during
storage of fruit. Results showed that the levels of Oy~
and H,0, in the fruits of the control group increased
with storage (Fig. 1 g and h), exhibiting similar trends as
did the MDA content. Trypsin entirely inhibited the ac-
cumulation of ROS, especially O,~ (Fig. 1g and h).

Transcriptomic analysis

Sequencing and de novo assembly of Transcriptome

To further reveal the hub genes and key pathway of
ROS regulation by trypsin, transcriptomic data was ana-
lyzed in H. undatus. The two libraries of the control and
trypsin groups produced 50,236,685 and 44,897,144 raw
reads, respectively (Table 1). The length of a single read
was 150 bp. From control and trypsin group libraries, 48,
702,393 and 43,456,887 high quality reads were ob-
tained, respectively. Q20 values were 98.31 and 98.33%,
respectively. Q30 values were 94.80 and 94.90%, respect-
ively. Also, 224,395 transcripts were composed by high-
quality reads using Trinity software. The average length
was 1086 bp. N50 value was 1982. The length of tran-
scripts ranged from 201 to 15,462 bp. BUSCO score was
64.8%. Figure S1 showed the length distribution of these

Table 1 Summary of the sequencing data of H. undatus
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transcripts. In fact, 78.63 and 72.92% of transcripts have
been mapped, respectively.

Functional annotation and analyses
Since there was still no reference genome for H. unda-
tus, a total of 131,559 transcripts and 86,808 unigenes
were blasted against six public databases (Swiss-Prot,
NR, COG, Pfam, GO and KEGG) (E value <le-4). 67,506
(51.31% of all) transcripts and 31,756 (36.58% of all) uni-
genes were annotated using these databases (Fig. S2,
Table S1 and S2). Based on COG and NOG classifica-
tions, 3191 or 2755 unigenes and 8288 or 6677 tran-
scripts were assigned into 24 functional groups,
respectively (Fig. S3 and Table S3). The number of tran-
scripts was much higher than that of unigenes. Each uni-
gene was spliced by one or more transcripts. All of these
unigenes belonging to three different categories, includ-
ing biological process (BP), molecular function (MF), or
cellular component (CC), have been classified (Fig. S4a).
The main functions were gathered in “binding” and
“catalytic activity” on level 2 of molecular function clas-
sification (Fig. S4b). In the category of biological pro-
cesses, they were focused on “organic substance
metabolic process” (7758 unigenes, 15.98%), “primary
metabolic process” (5442 unigenes, 15.12%) and “cellular
metabolic process” (5247 unigenes, 14.54%) (Fig. S4c). In
the cellular component, cell part (13.01%) and mem-
brane part (12.35%) were the major parts (Fig. S4d).
7943 unigenes were assigned to 20 s categories belonging
to 6 first categories of KEGG pathways (E-value: le-4;
Identity: 0; Similarity: 0) (Fig. S5 and Table S4).

Analysis of differentially expressed genes with trypsin
treatment

A total of 31,756 unigenes were identified and quantified
from 86,808 genes (Table S1). The expression levels of
these genes have been concluded by using a volcano plot
(Fig. 2a and Table S5). The total number of different
unigenes identified was 1703, including 934 upregulated
unigenes (red points) and 769 downregulated unigenes
(green points), (p<0.05, fold change (FC)>1) in the
control and treatment groups (Table S5). On the other
hand, a total of 1117 ROS related genes (orange circle)
were determined, including 434 upregulated unigenes
(yellow circle) and 465 downregulated unigenes (purple
circle). Among the 1117 ROS related genes, 85 genes
(green circle) involved in 1703 genes (blue circle) were

Sample  Raw reads  Raw bases Clean reads  Clean bases Error rate (%) Q20 (%) Q30 (%) GC content (%)  Mapped ratio (%)
Control 50,236,685  7,535,502,700 48,702,393 6,604,345,574 0013 9831 94.80 46.87 7863
Trypsin 44,897,144 6,734,571,600 43,456,887 5,841,023,572 0012 98.33 94.90 4519 7292
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Fig. 2 Analysis of differentially expressed genes with trypsin. a Volcano plot of significant differences in gene expression between control and
trypsin groups; b Venn diagram representation of all 1703 differentially expressed genes (DEGs), upregulated genes, downregulated genes, and all
of the 1117 ROS related genes (ROSup, ROSdown, and ROS), and 85 DERGs identified in the trypsin treatment group
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expressed to a significantly different extent (Fig. 2b and
Table S6).

GO enrichment analyses

The biological functions of the patterns up- or downreg-
ulated by trypsin treatment were analyzed by gene ontol-
ogy (GO)-based enrichment. The top 10 GO terms in
the two expression patterns were shown in Table 2
(FDR <10 °). The upregulated enriched GO terms were
“oxidoreductase activity, acting on single donors with in-
corporation of molecular oxygen (GO: 0016701)” and
“oxidoreductase activity (GO:0016491).” On the other

hand, besides more oxidation/reduction GO terms,
“hydrogen peroxide catabolic process (GO: 0042744),”
“peroxidase activity (GO: 0004601),” “oxidoreductase ac-
tivity, acting on NAD(P) H, oxygen as acceptor (GO:
0050664),” and so on, antioxidant or catabolic GO
terms, including “peroxidase activity,” “antioxidant activ-
ity” or “catalytic activity” were presented in the downreg-
ulated pattern (Table S7).

The major ROS related pathways involved in trypsin
regulation can be summarized into a schematic repre-
sentation (Fig. 3). GO terms are related to one another
in a directed acyclic graph (DAG), where more detailed

Table 2 Top 10 GO terms related to ROS enriched (FDR < 107°) by trypsin

Pattern Number GO ID Term Description p—value* FDR?
Type
Upregulation 8 GO:0016701 MF oxidoreductase activity, acting on single donors with incorporation of 201E-12 1.11E-08
molecular oxygen

25 GO:0016491 MF oxidoreductase activity 3.79E-11 1.05E-07

Downregulation 6 GO:0042744 BP hydrogen peroxide catabolic process 7.85E-10 6.07E-07
6 GO:0042743 BP hydrogen peroxide metabolic process 8.80E-10 6.07E-07
11 GO:0004601 MF peroxidase activity 4.05E-12 1.77E-08
11 GO:0016684 MF oxidoreductase activity, acting on peroxide as acceptor 6.40E-12 1.77E-08
1 GO:0016209 MF antioxidant activity 2.75E-11 5.07E-08
5 GO:0050664 MF oxidoreductase activity, acting on NAD(P) H, oxygen as acceptor 5.88E-11 8.06E-08
28 GO:0016491 MF oxidoreductase activity 7.30E-11 8.06E-08
31 GO:0003824 MF catalytic activity 1.80E-10 1.65E-07

“p-values were calculated using Fisher’s test

FDR corrections were calculated using the Benjamini-Hochberg procedure
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Fig. 3 Relationships between GO terms in a Directed Acyclic Graph (DAG). Red to white colors represent decreasing significance levels (Red is the
most, while white is the least significant). The figure illustrates a subset of the molecular function DAGs for the oxylipin biosynthetic process
(GO:0031408), hydrogen peroxide catabolic process (GO:0042744) and response to oxidative stress (GO:0006979). Arrows indicate relationships of
the is_a type. The ancestors of GO:0031408, GO:0042744 or GO:0006979 are highlighted back to the root of the biological process ontology

via arrows

terms are described as children of more general terms.
For example, the GO biological process “hydrogen per-
oxide catabolic process (GO:0042744)” is a child of four
terms: “single-organism cellular process (GO:0044763),”
“hydrogen peroxide metabolic process (GO:0042743),”
“cellular catabolic process (GO:0044248),” and “single-
organism catabolic process (GO:0044712).” The GO bio-
logical process “oxylipin biosynthetic process (GO:
0031408)” is a child of two terms: “oxylipin metabolic
process (G0O:0031407)” and “fatty acid biosynthetic
process (GO:0006633).” These in turn have parent
terms, as shown in Figure 3, tracing back to the ultimate
ancestor, biological process (GO:0008150), the root of
the molecular function ontology. In addition, H,O, cata-
bolic metabolism was only downregulated (Fig. S6). Cell
redox homeostasis was shown to be an upregulated GO
process (Fig. S7).

KEGG pathway analyses

The top 9 enriched pathways were shown in Table 3 (FDR
<0.05). With trypsin, downregulated ROS related genes
were enriched in several pathways, including the “phenyl-
propanoid biosynthesis pathway (map 00940),” which is
associated with fatty acid biosynthesis, as shown in the
GO analysis section, “MAPK signaling pathway - plant
(map 04016),” which involves a series of defense responses
induced by ROS, and “Plant-pathogen interaction (map
04626),” which highly focus on the hypersensitive re-
sponse (HR) induced by ROS. On the other hand, “Lino-
leic acid metabolism (map 00591),” “Photosynthesis (map
00195),” “Ascorbate and aldarate metabolism (map

00053),” and “Porphyrin and chlorophyll metabolism
(map 00860)” were significantly upregulated.

PPI networks of DERGs

In total, we obtained 85 DERGs (FDR < 0.01, 40 upregu-
lated and 45 downregulated) among 1117 ROS related
genes, including 434 upregulated genes and 465 down-
regulated genes (Table S8).

The PPI subnetwork of total ROS genes was composed
of 404 nodes and the first 2000 edges, containing 40
DERGs (Fig. 4 and Table S9). The upregulated ROS gene
PPI subnetwork contained 278 nodes and the first 2000
edges, including 29 upregulated DERGs (Fig. S8a and
Table S10). The downregulated antioxidant gene PPI
subnetwork contained 288 nodes and the first 2000
edges (interactions), including 10 downregulated DERGs
(Fig. S8b and Table S11).

Further, the Cytoscape plugin “MCODE” was layered
on the PPI network. Twenty clusters were obtained
(Table S12). Nodes belonging to the top 6 clusters were
labeled by different colors in the PPI network (Fig. 4).
The top 6 clusters analyzed by the CytoHubba plugin of
Cytoscape were then shown in Figure 5. The central
nodes of each cluster were shown in Table 4.

Furthermore, all of the DERGs were selected to con-
struct 3 new PPI networks, including total (60 nodes,
255 edges) (Fig. 6a), upregulated (30 nodes, 81 edges)
(Fig. S9a), and downregulated (28 nodes, 62 edges)
DERGs subnetworks (Fig. S9b). Three clusters were con-
structed by MCODE as shown in Figure 6 ¢, d and e.

Based on the calculation of CytoHubba plugin, because
the screen results of either Density of Maximum
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Table 3 Pathways related to ROS enriched (FDR < 0.05) by trypsin
Pattern Number KO ID Term p-value” FDR®
Upregulation 3 map 00591 Linoleic acid metabolism 1.56E-05 0.00034
3 map 00195 Photosynthesis 0.00017 0.0018
2 map 00053 Ascorbate and aldarate metabolism 0.0084 0.046
2 map 00860 Porphyrin and chlorophyll metabolism 0.0065 0.047
Downregulation 9 map 00940 Phenylpropanoid biosynthesis 1.29E-10 2.06E-09
6 map 04016 MAPK signaling pathway - plant 5.52E-06 441E-05
6 map 04626 Plant-pathogen interaction 1.34E-05 7.15E-05
2 map 00073 Cutin, suberin and wax biosynthesis 0.0020 0.0080
2 map 00592 alpha-Linolenic acid metabolism 0.010 0.033
“p-values were calculated using Fisher's test
®FDR corrections were calculated using the Benjamini-Hochberg procedure
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Fig. 4 ROS related PPI networks induced by trypsin were constructed by Cytoscape software. Rectangle nodes represent proteins encoded by
downregulated genes; Round nodes represent proteins encoded by upregulated genes. Triangle-shaped nodes represent the last interacting
proteins without significantly different expression. The top 6 clusters calculated by MCODE were colored as shown in the legend
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Fig. 5 Top 6 clusters of ROS related PPI network calculated by MCODE. a-f represent clusters 1-6, respectively

P5GS1

Psgs2

Neighborhood Component (DMNC) or Maximum
Neighborhood Component (MNC) did not match well
to the other methods, hub genes were determined by
overlapping the genes according to 4 ranked methods,
including Maximal Clique Centrality (MCC), Degree,
Closeness and Betweenness in cytoHubba (Table S13).
Ten hub genes were discovered, including 7 upregulated
and 3 downregulated genes (Fig. 6 b and f).

Topological properties of networks

The node degree distributions of the total, upregulated,
and downregulated ROS related gene subnetworks
followed power law fit distributions (R*=0.798, 0.765,
and 0.762, respectively) (Fig. S10). The subnetwork

topological parameters, including network centralization
clustering coefficient, and so on, were shown in Table 5.

The subnetworks of DERGs, except the downregulated
DERGs subnetwork (R*=0.001), were characterized as
scale-free networks, even though they were much
weaker than ROS related genes networks, which ap-
proximately followed power law fit distributions, with
R*=0.412 and 0.422, respectively (Fig. S10 and Table 5).
Since the DERGs were chosen from the ROS related
genes network, either the centralization or the density of
the total DERGs network was much higher (0.395 and
0.144, respectively) than that of the total ROS related
genes network (0.150 and 0.025, respectively). Finally,
the correlation of hub network was decreased to 0.499
(R*=0.268).

Table 4 Central nodes of top 6 clusters of ROS related PPI subnetwork of H. undatus

Cluster Central nodes

Score of clusters Score of each node

1 AT1G16700; NAD7; EMB1467; AT5G11770; CI51

2 PKT3; ECHIA; MFP2; AIM1; ECH2
3 GR

4 PEX5

5 At5g06290; PERT; NTRC

6 APR1

10.533 322,680
8.600 2280
7.750 344
7.571 171,362
6.000 72
5.385 42
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Table 5 Topological parameters of the ROS related genes, DERGs and Hub genes of the PPI subnetwork of H. undatus impacted by

trypsin
PPI subnetwork y=pBx" R Correlation  Clustering Network Network Num. of Characteristic path
coefficient centralization density nodes length

ROS related genes network
Total ROS y=137.73x"2"% 0798 0891 0.381 0.150 0.025 404 3.920
Upregulated ROS  y=52493x°% 0765 0853 0413 0.286 0.052 278 2.839
Downregulated  y=60805x°%" 0762 0733 0353 0.299 0048 288 2748
ROS

DERGs of ROS subnetwork
Total DERGs y=7431x%2" 0412 0582 0361 0.395 0.144 60 2397
Upregulated y=4697x°>2 0422 0807 0354 0.355 0.186 30 2448
DERGs
Downregulated  y=3289%%°%% 0001 —0.021 0.239 0222 0.164 28 2437
DERGs

Hubs subnetwork
Total 10 hubs y=0688x %% 0268 0499 0.849 0333 0733 10 1267
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Accuracy of RNA-Seq data verification by RT-qPCR

The accuracy of the RNA-Seq data of ten hub genes of
DERGs involved in ROS metabolism were verified by re-
verse transcription quantitative PCR (RT-qPCR) (Fig.
S11). The IDs, NR description, Log,FC(E/C), p value,
EDR, and primers of the 10 hub genes are shown in
Table 6 and Table S16.

Discussion

Trypsin treatment alone can already significantly reduce
the loss of water, impede the dehydration and improve
the fruit quality. MDA is considered to represent the de-
gree of cell membrane lipid peroxidation, since it is a
marker of membrane lipid peroxidation [14]. The result
of MDA indicates that trypsin can significantly decrease
the MDA content, which represents the lipid peroxida-
tion of the cell membrane, thereby significantly slowing
the cell damage.

In the process of maturity or decline, the disruption of
balance between the generation and scavenging of ROS
causes the accumulation of ROS. A high concentration
of ROS such as O,” and H,O, can cause lipid peroxida-
tion, which is the main cause of membrane damage [15].
As expected, the novel superoxide scavenger trypsin en-
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However, how can trypsin perform ROS regulation? Which
genes were impacted by trypsin during storage? The tran-
scriptomic analysis was used to reveal the hub genes regu-
lating ROS metabolism through trypsin treatment.

Analyzed from transcriptomic profile, a total of 1117
ROS related genes were determined, including 434 up-
regulated unigenes and 465 downregulated unigenes.
Among the 1117 ROS related genes, 85 genes were
expressed to a significantly different extent.

The biological functions of the patterns up- or down-
regulated by trypsin treatment were analyzed by gene
ontology (GO)-based enrichment. Lots of oxidation/re-
duction GO terms were enriched. The major ROS re-
lated pathways involved in trypsin regulation were
summarized by DAGs (Fig. 3). The DAGs indicated that
the H,O, catabolic metabolism and oxylipin biosynthesis
are key processes of trypsin regulatory mechanisms dur-
ing H. undatus storage.

Next, to illustrate the pathways involved in the trypsin
responsive patterns, the KEGG pathways were enriched.
Important physiological metabolic processes, such as
photosynthesis, porphyrin and chlorophyll metabolism,
were induced, while defense responses were impeded by
trypsin. In the top 2 pathways regulated by trypsin, 11

tirely inhibited the accumulation of ROS, especially O,". and 7 genes were involved in “Phenylpropanoid

Table 6 Primer sequences used in RT-gPCR

Name Gene ID Primer

B-actin Forward: 5-TCTGCTGAGCGAGAAAT-3'
Reward: 5-AGCCACCACTAAGAACAAT-3'

HCF164 TRINITY_DN39264_c0_g2 Forward: 5-GCGAATGATAATCCAAGCCAAGC -3’
Reward: 5-TATGATACCGCCAAGGCAGACAG -3’

CDSP32 TRINITY_DN42075_c0_g1 Forward: 5-TTCGCTTCTCCTTTCTCCCTTGC-3'
Reward: 5-TGCTGTGGACTTTCTGGACCCTC-3'

AOR TRINITY_DN44827_c0_g2 Forward: 5-GAGTACACGGCTGCTGAAGAAAG-3'
Reward: 5-GGCACCACCAAGAATAAGGATAG-3'

CH1 TRINITY_DN40044_c0_g1 Forward: 5-AGGTTAGAGGCAACATTGGAGTC-3"
Reward: 5~ATGGAGCATCATTATGGTGAGAA-3'

PETC TRINITY_DN41555_c0_g1 Forward: 5-CCCATCAACAGCGGTGGCTAAAC-3'
Reward: 5-GGGACGAAGAAGGCAGCGTAAGG-3'

AT4G35090 TRINITY_DN52071_c2_g1 Forward: 5-GCAGCCCTGAAACCATCCGTGAC-3'
Reward: 5-CCCACATCGTCGAAGAGCCAACC-3'

NDA1 TRINITY_DN41480_c0_g1 Forward: 5-GAGAGAGAGCCAATATCCTATGAAGCATCC-3'
Reward: 5-GGATGCTTCATAGGATATTGGCTCTCTCTC-3'

AT5G06060 TRINITY_DN39500_c0_g1 Forward: 5-GGGTCTCAGGAAAGAAACAGTAA-3'
Reward: 5-GCTCCATAAATAGGACCAGCATTA-3"

AT1G15950 TRINITY_DN6609_c0_g1 Forward: 5-AAAGAATGCCCATTTGAGGGAGC-3'
Reward: 5-TTTGTGCCGTTTACTGCTGGTTC-3'

GRX480 TRINITY_DN13090_c0_g1 Forward: 5-AACCACCTTACCAAGAGCTTCCC-3'

Reward: 5-CCAATAACAAACGCCTGACAACAT-3"
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biosynthesis (map 00940)” and “MAPK signaling path-
way- plant (map 04016)”. As we know, peroxidase
(POD) is the key enzyme of the last process of lignin
synthesis [16, 17]. In map 00940, Guaiacyl lignin, 5-
hydroxy-gualacyl lignin, syringyl lignin and p-hydroxy-
phenyl lignin were regulated by POD (Fig. S12). In map
04016, results showed that respiratory burst oxidase
(RbohD) was regulated to maintenance the homeostacis
of ROS, and stress-tolerant response was also induced
which due to the significantly activated catalase (CAT)
(Fig. S13). These observations were consistent with our
previous results [18]. The results of KEGG indicated
that, as a novel superoxide scavenger, trypsin regulated
antioxidant system of pitaya and exhibited protection of
pitaya during storage.

It is essential to explore the potential ROS regulatory
mechanisms of trypsin by the exposition of the DERGs; the
investigation on the PPI networks would promote the func-
tional research on DERGs induced by trypsin. The PPI net-
work of total, upregulated, or downregulated ROS genes
were constructed. These three subnetworks indicated that
trypsin treatment greatly disturbed the PPI network in H.
undatus. The biological consequences were magnified by
hundreds of proteins interacting with DERGs.

Further, the Cytoscape plugin “MCODE” and “Cyto-
Hubba” were layered on the PPI network to illustrate sub-
networks and screen hub genes. Among the obtained 10
hub nodes, 7 nodes, including HCF164 (Thioredoxin-like
protein), AT4G35090 (Catalase), PETC, and so on, were
clustered in module 1 of the DERGs PPI network; the
other 3 nodes including AT5G06060 (NAD(P)-binding
Rossmann-fold superfamily protein), GRX480 (Thiore-
doxin superfamily protein), and AT1G15950 (Cinnamoyl-
CoA reductase) were clustered in module 2 of the DERGs
PPI network (Table S14 and S15). In addition, only
HCF164 was clustered in the top 6 modules (cluster 3) of
all ROS related PPI networks (Figs. 5 and 6). Most of the
hubs were thioredoxin related proteins. This result indi-
cated that the mechanisms of trypsin regulation of ROS
are closely associated with sulfur metabolism.

Furthermore, the hub of AT1G15950 (Cinnamoyl-
CoA reductase) suggested that the quality of H. undatus
storage was associated with lignin metabolism, which
was also shown in the DAG of GO analysis (Fig. 3).
From the information of the arrow directions, either
NDA1 (Internal NAD(P) H dehydrogenase in mitochon-
dria) or AOR (NADPH-dependent alkenal/one oxidore-
ductase, chloroplastic) is the upstream gene of
AT5G06060 (Fig. 6). This pathway is dependent on the
redox of NAD(P) H, which is the main source of O,".
These results strongly indicated that the downregulated
NAD(P) H and lignin pathways might be the key regula-
tory mechanisms of trypsin, the superoxide scavenger,
on the quality improvement of H. wundatus during
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storage. While, there still lots of question unclear. For
example, who is the transcriptional regulation factor
primarily induced by trypsin? Further works are needed
to investigate the regulatory mechanisms of trypsin on
lignin synthesis.

The correlation of the distribution of node degrees of
a PPI network to the power law distribution is a judg-
ment standard for scale-free networks. This property
distinguishes the PPI network from random networks
[19]. The node degree distributions of the total, upregu-
lated, and downregulated ROS related gene subnetworks
followed power law fit distributions. This suggested that
these three PPI subnetworks were true cellular complex
biological scale-free networks. These results also showed
that a few protein nodes serve as hubs with links to
other protein nodes [19].

As expected, the correlation of hub network was de-
creased with the decrease of nodes of total ROS, DERGs,
and hub networks (Table 5). This indicates that the hub
genes are highlighted in a larger network and that our
PPI networks are reliable.

The accuracy of the RNA-Seq data of these hub genes
were verified by RT-qPCR. Expression changes of these
10 genes were consistent with the RNA-Seq data. This
showed that RNA-Seq data are credible.

Conclusions

Trypsin treatment significantly reduced the accumula-
tion of ROS, including O,” and H,O,, in H. undatus
during storage, impeded membrane lipid peroxidation,
and prolonged the storage life of H. undatus. Transcrip-
tomic analysis revealed 10 hub genes regulated by tryp-
sin involved in H. undatus quality improvement during
storage. PPI network analysis suggested that the down-
regulated NAD(P) H and lignin pathways might repre-
sent the key regulatory mechanisms of trypsin. As a new
biopreservative, trypsin is highly efficient, safe and eco-
nomical. Therefore, trypsin possesses technical feasibility
for the quality control of fruit storage.

Methods

Main materials

H. undatus (Vietnam No. 1 cultivar, white pulp) was
harvested from Ruyang county in Henan Province,
China. The plant was identified by Prof. Zhaoyong Shi
(College of Agriculture, Henan University of Science and
Technology, Luoyang, China) and the voucher speci-
mens (No. Hu-20,160,923) have been deposited in our
laboratory. Fruits without mechanical damage and with
uniform color, size and number of scales were chosen
for the study. Trypsin (bovine, 500 units/mg, crystalline)
was purchased from Ameresco (Solon, OH, USA).
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H. undatus treatment methods

Trypsin was brushed evenly for 80 s onto the peels of 15
H. undatus fruits as the trypsin group. The fruits of H.
undatus of the control group were treated in the same
conditions with PBS buffer. The fruits were then placed
in an incubator (25 °C, 85% relative humidity), and their
physical and chemical indices (weight loss, MDA, etc.)
were periodically measured. The optimal concentration
of trypsin (2.41 x 10" ®mol/L) was determined in our
pre-experiment and used for the current study.

Library construction and Illumina RNA-sequencing

Total RNA was extracted from two groups of H. unda-
tus peels (with or without trypsin). The peels of each
group were taken from 15 fruits. Transcriptome libraries
for RNA-seq were constructed from 5pg samples of
RNA (= 100ng/pL) using the Truseq™ RNA sample
preparation kit from Illumina (San Diego, CA). Libraries
were constructed and sequenced with the Illumina
HiSeq xten (2 x 150 bp read length) by the Tolo Biotech
company of China. All data were uploaded to the I-
Sanger cloud platform and analyzed as described below.

De novo assembly and annotation

The raw paired end reads were trimmed and quality
controlled by SeqPrep (https://github.com/jstjohn/Seq-
Prep) and Sickle (https://github.com/najoshi/sickle) with
default parameters. Then clean data from the samples
were used to do de novo assembly with Trinity (http://
trinityrnaseq.sourceforge.net/) [20]. All the assembled
transcripts were searched against the NCBI protein non-
redundant (NR), String, and KEGG databases using
BLASTX to identify the proteins that had the highest se-
quence similarity with the given transcripts to retrieve
their function annotations and a typical cut-off E-values
less than 1.0 x 107> was set. BLAST2GO (http://www.
blast2go.com/b2ghome) program was used to get GO
annotations of unique assembled transcripts for describ-
ing biological processes, molecular functions and cellular
components. Metabolic pathway analysis was performed
using the Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www.genome.jp/kegg/).

Identification of differentially expressed genes

To identify differentially expressed ROS genes (DERGS)
between control and samples treated with trypsin, the
expression level of each transcript was calculated ac-
cording to the fragments per kilobase of exon per mil-
lion mapped reads (FRKM) method. Differential
expression analysis was performed by EdgeR software
from the R statistical package. The false discovery rate
(FDR) was used to adjust the resulting P-values using
the Benjamini and Hochberg approach.
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GO and KEGG enrichment for differentially expressed
genes

Functional-enrichment analyses including GO and
KEGG were performed as reported by Candar-Cakir
et al. [21]. The enriched GO terms were shown with
DAGs (directed acyclic hierarchical graph) and bar
charts [21].

Gene expression analysis by reverse transcription-qPCR
Total RNA was extracted as described above. Reverse
Transcription-qPCR was performed as reported by Yang
et al. [22]. The information of primers is listed in Table 6.
B-actin was used as internal control. The relative copy
numbers of the genes were obtained by the 272" method
(10, 22].

Protein-protein interaction (PPI) analyses

PPI network generation

The ROS related proteins were screened from the I-
Sanger cloud platform and imported into Cytoscape
software. The relationship between ROS related proteins
and their putative targets was visualized through PPI
networks of ROS, DERGs, or Hubs of H. undatus in-
duced by trypsin using Cytoscape [19].

Network topological parameters

Several network topological parameters could compare
and characterize the complex networks. The primary
topological parameters of networks were calculated by
NetworkAnalyzer [19]. Here, the edges were considered
as undirected. The equation y=px® and parameters R
and correlation described the fit to the power line [23].

Module

A Molecular Complex Detection (MCODE) analysis was
performed to identify the clusters in the entire ROS re-
lated network (Degree cutoff: 2; Node score cutoff: 0.2; K-
Core: 2; Max depth: 100) [24]. Here, the edges were
treated as directed for MCODE or next hub node analysis.

Analysis of hubs

The key genes in the PPI network were investigated
topologically by NetworkAnalyzer. The cytoHubba plu-
gin of Cytoscape further analyzed the network, and the
high degree nodes were identified [25]. Through the
cytoHubba plugin, 11 topological analysis methods were
obtained. To increase the sensitivity and specificity, be-
sides three centrality methods including degree, close-
ness, and betweenness centrality, the top 20 hub-
forming proteins were also identified based on local
method, including MCC, MNC and DMNC, respectively.
Then, the overlapping proteins were considered as the
hubs. Finally, we found the common nodes using Venn
diagrams [26].
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Determination of the weight loss rate

The weight loss rates for each group were determined
using 3 replicates (n=6) and were recorded at the same
time every day for 9 days as the fruit was stored at 25 °C.
The replicate information, including recording time
point or temperature, among others, was identical to
that of other index determinations, including browning
index and electrical conductivity. The percentage of
weight loss was calculated after days of storage.

Quantification of lipid peroxides in H. undatus peel

MDA contents were measured using the thiobarbituric
acid reactive substrates (TBARS) assay as reported by
Zhou et al. (2014) [27].

Determination of superoxide and hydrogen peroxide
content of H. undatus peel

First, 2g of H. undatus peel was ground with 6 ml 50
mM PBS (pH =7.8) and 1% (w/v) PVP at 0°C. The sam-
ple was obtained by 12,000g centrifugation (4°C, 15
min). The production of O,  and hydrogen peroxide
(HyO,) was as described by Schneider et al. [28] or Li
and Imlay in 2018 [29], respectively.

Statistical analyses

The SPSS statistical software package (11.0.1) (15 No-
vember 2001, SPSS Inc., Chicago, IL) was used for data
analyses. Our results were obtained by 3 independent
experiments. A paired sample t-test was used to analyze
the differences between samples. Significant difference
was estimated by p < 0.05. Highly significant means p <
0.01.
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