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Abstract

Background: Haplotypes, the ordered lists of single nucleotide variations that distinguish chromosomal sequences
from their homologous pairs, may reveal an individual’s susceptibility to hereditary and complex diseases and affect
how our bodies respond to therapeutic drugs. Reconstructing haplotypes of an individual from short sequencing
reads is an NP-hard problem that becomes even more challenging in the case of polyploids. While increasing lengths
of sequencing reads and insert sizes helps improve accuracy of reconstruction, it also exacerbates computational
complexity of the haplotype assembly task. This has motivated the pursuit of algorithmic frameworks capable of
accurate yet efficient assembly of haplotypes from high-throughput sequencing data.

Results: We propose a novel graphical representation of sequencing reads and pose the haplotype assembly
problem as an instance of community detection on a spatial random graph. To this end, we construct a graph where
each read is a node with an unknown community label associating the read with the haplotype it samples. Haplotype
reconstruction can then be thought of as a two-step procedure: first, one recovers the community labels on the
nodes (i.e., the reads), and then uses the estimated labels to assemble the haplotypes. Based on this observation, we
propose ComHapDet – a novel assembly algorithm for diploid and ployploid haplotypes which allows both bialleleic
and multi-allelic variants.

Conclusions: Performance of the proposed algorithm is benchmarked on simulated as well as experimental data
obtained by sequencing Chromosome 5 of tetraploid biallelic Solanum-Tuberosum (Potato). The results demonstrate
the efficacy of the proposed method and that it compares favorably with the existing techniques.
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Background
Technological advancements in DNA sequencing have
enabled unprecedented studies of genetic blueprints and
variations between individual genomes. An individual
genome of a eukaryotic organism is organized in K-tuples
of homologous chromosomes; diploids (K = 2), including
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humans, have genomes organized in pairs of homolo-
gous chromosomes where the chromosomes in a pair
differ from each other at a small fraction of positions.
The ordered lists of such variants – the so-called sin-
gle nucleotide polymorphisms (SNPs) – are referred to as
haplotypes. Many plants are polyploid, i.e., have genomes
organized in K-tuples, K > 2, of homologous chromo-
somes; for instance, the most commonly grown potato
crop (Solanum Tubersoum) is a tetraploid organism with
a total of 48 chromosomes (i.e., 12 distinct quadruplets).
Haplotype information of an individual is useful in a wide
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range of applications. For instance, in humans, the hap-
lotype information contains indicators to the individual’s
susceptibility to diseases and expected responses to cer-
tain classes of drugs [1]. Haplotype sequences are also
used to infer recombination patterns and identify genes
under positive section [2]. In the case of agricultural crops
such as the tuber family, the haplotypes provide insight
into developing disease and pest resistant variety of crops
[3]. Thus, fast and accurate algorithms for both poly-
ploid and diploid haplotype reconstruction (or also known
as phasing) from high throughput sequencing reads are
highly desirable.

Recent advancements in DNA sequencing technolo-
gies have dramatically improved affordability and speed
of sequencing; the most widely used are high-throughput
sequencing devices (e.g., the Illumina’s platforms). Infor-
mation provided by such platforms typically comes in
form of paired-end reads, each consisting of two short
contiguous samples of the chromosome (separated by a
few hundred bases). Typical reference-guided data pro-
cessing pipeline starts by determining the relative order-
ing of the reads via mapping them to a reference genome;
this step is followed by the detection of variant positions
and SNP calling. To perform haplotype assembly, exist-
ing methods typically retain only the reads that cover
variant positions; parts of the retained reads that cover
homozygous sites are also discarded. Then the remain-
ing information needs to be used to identify K distinct
haplotype sequences S1, · · · , SK , of same length. From the
previous discussion, it is clear that there is no position in
these K strings where all the alleles are identical (such a
position would be homozygous and therefore discarded
in the pre-processing step). While the relative positions
of reads are revealed by mapping them onto a reference,
their origin remains unknown, i.e., it is not known which
among the K chromosomes a given read samples. In the
absence of sequencing errors, grouping reads according
to their origin is rather straightforward and based on
the disagreement regarding the allele information that
the reads provide for each variant site. Unfortunately,
however, sequencing is erroneous with state-of-the-art
sequencing platforms achieving sequencing errors in the
range of 10−3 − 10−2. In the presence of errors, it is no
longer obvious how to decide whether a read originates
from a particular haplotype; to this end, one needs to rely
on a computational framework for haplotype assembly –
the central focus of the present paper.

Existing work formulates haplotype assembly as a com-
binatorial optimization problem where one seeks to
reconstruct the haplotype sequence by judiciously mak-
ing as few modifications of the data as possible in order
to remove read membership ambiguities arising due to
sequencing errors. This has led to optimization crite-
ria such as minimal fragment removal, minimum SNP

removal [4], maximum fragments cut [5] and minimum
error correction (MEC) [6]. Motivated by the observation
that the MEC score optimization is NP-hard [4, 7], a con-
siderable amount of recent work studied relaxations of the
underlying combinatorial optimization problem [7–10].
In a pioneering work, [11] proposed a greedy algorithm
aimed at assembling most-likely haplotype sequences
given the observations. This line of thought of using
Bayesian methods to reconstruct the most likely haplo-
type sequence was carried out further in [12] and [13]
using MCMC and Gibbs sampling, respectively. However,
these methods are usually slow as the associated Markov
chains have large mixing times, thereby making their prac-
tical applicability limited. HapCUT [14] makes a connec-
tion between haplotype assembly and graph-clustering,
and solves it by identifying a maximum cut in an appro-
priately constructed graph. This method was shown to
be superior to [11] and is widely used in benchmarking.
HapCUT algorithm was then significantly outperformed
by HapCompass [15]. However, apart from HapCom-
pass, all of these methods are restricted to the diploid
case. To address both the diploid and polyploid scenar-
ios, SDhaP [16] relaxes the MEC minimization problem
to a convex optimization program and solves it efficiently
by exploiting the underlying data structure. More recently,
AltHap [17] casts haplotype assembly as a low-rank ten-
sor factorization problem and solves it via fast alternating
optimization heuristics. The connection to matrix factor-
ization was previously exploited in [18] and [19], but those
methods were incapable of handling polyploids or polyal-
lelic assembly problem. Prior to the current paper, AltHap
[17] is the only algorithm capable of solving the assembly
problem in the polyploids/polyallelic scenario.

Main contributions
In this paper, we propose a novel formulation of hap-
lotype assembly as a spatial graph clustering problem.
This formulation is based on spatial point process rep-
resentation of paired-end reads; in particular, we argue
that assigning to each paired-end read spatial coordinates
corresponding to the starting indices of the reads in the
pair represents valuable augmentation of the information.
Equipped with such a representation of the data, we con-
struct a graph whose nodes represent the reads, and place
a weighted edge between two reads if they overlap in at
least one position. The edge weights are formed using
the scoring function adopted from [16]; this weighting
mechanism ensures that if two reads belong to the same
haplotype, then the edge connecting them will likely be
assigned a large positive weight, while if they belong to dif-
ferent haplotypes, then the edge between them will likely
be assigned a large negative weight. We then cast the
haplotype assembly problem as an Euclidean community
detection problem [20], where the community label of a
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node (i.e., a read) indicates the haplotype it comes from.
We find in our experiments that such a ‘spatial’ embedding
of the problem greatly improves both the accuracy and the
run time complexity of polyploid phasing. The improve-
ment in accuracy stems from the fact that our algorithm
naturally enforces a regularizing constraint that the under-
lying sampling process is in a sense uniformly distributed
in space. In other words, we know that in every ‘location’
of space, the total number reads covering the given SNP
location belonging to the various haplotypes are identical.
Having a spatial representation of the data allows one to
incorporate this prior knowledge about the sampling pro-
cess and leads to dramatically higher accuracy, especially
in the polyploid case. The spatial representation is also
crucial in reducing run times, as this exposes the prob-
lem’s inherent ‘locality’ condition in space. More precisely,
observe that if two reads are ‘far away’ in this embedding
(i.e, they do not overlap), there will be no edge connecting
them in the corresponding graph. This allows us to nat-
urally ‘decompose’ the haplotype assembly problem using
a divide-and-conquer paradigm, where we can perform
assembly on smaller spatially localized sets of reads –
which is computationally very efficient – and then per-
form a synchronization step to combine the local haplo-
type assemblies into a single global solution. This algorith-
mic framework is robust to inaccuracies in the individual
local instances of phasing since the synchronization or the
combining step has a natural error-correction mechanism
due to a single location being phased in multiple local
instances. Thus, we can employ faster but less accurate
local phasing methods while still achieving high global
accuracy and good run-time performance. Further techni-
cal aspects of these ideas are elaborated in “The haplotype
assembly algorithm” section.

Methods
Problem formulation
We formally state the problem before describing our
methods.

Setup and notation
Let m and n denote the length of the haplotype sequences
and the total number of paired-end read measurements,
respectively. Let k denote the ploidy, i.e., the number of
haplotype sequences and a be the cardinality of the alpha-
bet set. If the variant sites are polyallelic, then a = 4
(i.e., all 4 alleles A, C, G, T are possible); in diploid and
polyploid bi-allelic case, a = 2. The haplotype sequences
are denoted by sl[ i], where for each i ∈ {1, · · · , m} and
l ∈ {1, · · · , k}, we have sl[ i] ∈ {1, · · · , a}. As an exam-
ple, in the poly-allelic case, we have sl[ i] ∈ {A, C, G, T}. In
the rest of the paper, we refer to the haplotype positions
{1, · · · , m} as sites.

Each read ru, u ∈ {1, · · · , n}, is formed by first sampling
a haplotype indexed by vu ∈ {1, · · · , k} and then sampling
a sequence of alleles

{
s̃(u)[ i]

}
i∈Iu

at sites Iu ⊂ {1, · · · , m},
where for each i ∈ Iu, s̃(u)[ i] ∈ {A, C, G, T} is a “noisy”
(due to sequencing errors) version of the underlying
ground truth svu [ i]. For each measurement u ∈ {1, · · · , n},
we observe the set of positions Iu and the noisy values{

s̃(u)[ i]
}

i∈Iu
but not the index vu of the haplotype from

which the read originates. Thus, using the above notation,
the total dataset is denoted as

({
s̃(u)[ i]

}
i∈Iu

)

u∈{1,··· ,n}.
The goal of assembly is to infer origins of the reads and
recover haplotype sequences.

In this paper, we consider the case where the data is
in form of paired-ended reads. Formally, this implies that
each measurement u ∈ {1, · · · , n} is such that the set of
sites covered by read u has two contiguous blocks. More
precisely, we assume that each read u ∈ {1, · · · , n} is
such that there exists i(u)

1 , j(u)
1 , i(u)

2 , j(u)
2 ∈ {1, · · · , m}, such

that the set of sites covered by u, which was denoted
by Iu satisfies, Iu = {i(u)

1 , i(u)
1 + 1, · · · , i(u)

1 + j(u)
1 } ∪{

i(u)
2 , i(u)

2 + 1, · · · , i(u)
2 + j(u)

2

}
. See Fig. 1 for an illustration.

We further assume that the set of m sites and n reads
forms a single connected component. In particular, if we
draw a graph Q on the vertex set {1, · · · , m}, where for
any two a, b ∈ {1, · · · , n}, there is an edge in Q if and
only if there is a read u ∈ {1, · · · , n}, that covers both
sites a and b. We say that our data set consisting of the m
sites and n reads is connected, if the graph Q has a single
connected component. Refer to Fig. 2 for an illustration.
Notice that since the problem definition is agnostic to how
we label the strings from {1, · · · , k}, any haplotype phas-
ing algorithm can only hope to recover the k strings up
to a permutation of the string label (which takes values in
{1, · · · , k}). For two disjoint blocks of a haplotype that are
not bridged by a read, there is no way to ascertain how
to phase fragments of the k haplotypes locally recovered
inside the blocks. For this reason (and without the loss
of generality of the proposed assembly framework), we
assume that the set of haplotypes form a contiguous block
of reads. If this were not the case, we could pre-process the
reads and split the problem into many smaller instances,
where each instance consists of a single contiguous hap-
lotype block that needs to be assembled independently of
other blocks.

Recovery goals and performance metrics
In this subsection, we formalize the main performance
metrics used to benchmark haplotype assembly algo-
rithms, namely the Correct Phasing Rate (CPR) and the
Minimum Error Correction (MEC) score (see eg. ([21–
23])). The CPR measures the discrepancy between the
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Fig. 1 A pictorial description of a paired end read on an example with m = 9

reconstructed haplotypes ŝ1, · · · , ŝk and the ground truth
s1, · · · , sk ,

CPR = 1
m

m∑

i=1
max
π∈Sk

k∏

l=1
1ŝl[i]=sπ(l)[i], (1)

where Sk is the set of all permutations of {1, · · · , k}. Note
that this is a more demanding notion of recovery com-
pared to that used in [17] and [24]; the metric used there,
so-called Reconstruction Rate, we for convenience denote
by M-CPR (abbreviating “Modified CPR”). This metric is
defined as

M-CPR = max
π∈Sk

1
mk

m∑

i=1

k∑

l=1
1ŝl[i]=sπ(l)[i]. (2)

In the case of assembly of diploid haplotypes (i.e., k =
2), CPR and M-CPR are identical. However, in the poly-
ploid case where the size of the alphabet is generally 4, it
holds that CPR ≤ M-CPR since for all sets X1, · · · , Xk ,∏k

j=1 1Xj ≤ ∑k
j=1 1Xj . We adopt CPR in Eq. (1) since it

reflects the fraction of sites where the haplotype phasing
algorithm correctly recovers all the haplotypes. Unfortu-
nately, the design of algorithms for direct minimization
of this objective is infeasible since the ground truth is
unknown. A commonly used proxy metric in practice
is the MEC which can be computed directly from the
observed data and the reconstructed output. The MEC
score is defined as

MEC =
n∑

u=1
min

l∈{1,··· ,k}

m∑

i=1
1Read u covers site i1ŝ(u)[i] �=sl[j].

A number of existing haplotype assembly schemes such as
[14, 17], attempt to directly minimize the MEC score by
solving relaxations of the underlying combinatorial opti-
mization problem that is known to be NP-hard [4, 7].
Contrary to this common approach, in this paper we do
not attempt to directly minimize the MEC but rather
leverage inherent structural properties of the data and the

Fig. 2 A pictorial description of a connected block of sites. There are 4 reads in the figure corresponding to the green bars. They set of sites covered
by them are {1, 2}, {2, 3}, {3, 4, 5, 6} and {6, 7, 8, 9} respectively. The bottom figure is the graph Q on m = 9 vertices constructed by the 4 reads
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fact that the noise in measurements is introduced ran-
domly, rather than by an adversarial source, to design a
randomized assembly algorithm. Specifically, we rely on
the above observations to provide a solution to haplotype
assembly by posing it as a clustering problem on a random
graph.

The key parameters that impact the performance of
assembly are coverage, error rate and effective read length.
Formally, effective read-length R is defined to be the
average of j(l)1 and j(l)2 , i.e.,

R = 1
2n

n∑

u=1

(
j(u)
1 + j(u)

2

)
.

We define the coverage C as the average number of reads
that cover a single base in a haplotype, i.e., C = 2nR

km .
Since there are n reads, each covering on average 2R hap-
lotype alleles, the total average number of bases being
read is 2nr. The error-rate p is the average error rate of
the data acquisition process, i.e., the fraction of alleles
incorrectly represented by the reads; this rate is aggre-
gate of the sequencing and SNP calling errors. We adopt
the standard practice of characterizing and benchmark-
ing the performance of haplotype assembly algorithms
using either the achieved MEC in practical settings where
the ground truth is unknown, and the CPR in simulation
studies where the ground truth is known. We will charac-
terize the performance of our algorithm in settings with
varied ploidy, alphabet size, coverage, read-lengths and
error-rates.

The haplotype assembly algorithm
The algorithm we propose is based on identifying a simple
connection between the aforementioned haplotype recon-
struction problem and Euclidean community detection.
Although such a connection was previously noted in the
special case of single-ended reads and the diploid haplo-
type phasing problem [25], no prior work explored this
connection in the case of paired-end reads and phasing
polyploids. For the first time, we provide a unified frame-
work based on Euclidean community detection (e.g., [20,
26]) for both diploid and polyploid haplotype phasing
problems.

Pre-processing the data
In order to invoke a connection to spatial community
detection, we pre-process the n paired-end reads into a
graph G with n nodes, where each node represents a
paired-end read. This pre-processing has two steps - (i)
Constructing weights between pairs of nodes (reads), (ii)
Placing labels on the nodes.

1. Weights between nodes - For any two reads u, v ∈
[ n] with u �= v, denote the intersection of sites at which
the two measurements occur by Iu ∩ Iv := {

l1, · · · , lq
}

,

where q = 0 implies empty set. More precisely, each li, for
i ∈ {1, · · · , q}, is a position along the haplotype covered by
both u and v. If q = 0, reads u and v cover disjoint set of
sites; in this case, there is no edge between u and v in the
graph G. If on the other hand q > 0, then we place an edge
between them and assign it weight wuv given by

wuv := 1
q

q∑

h=1

(
1s̃(u)[lh]=s̃(v)[lh] − 1s̃(u)[lh] �=s̃(v)[lh]

)
. (3)

In words, the weight of an edge between any two
overlapping reads u and v is the difference between the
number of positions (sites) where u and v agree and
the number where they disagree, divided by the total
number of sites in common. Observe in the definition
that the weights wuv ∈[ −1, 1] for all u, v ∈[ n]. Such
a weighting scheme ensures that if wuv is positive and
large, then it is likely that the reads u and v are gener-
ated from the same string, while if wuv is negative and
large in magnitude, then it is likely that the reads u and
v are generated from different strings. This bias in the
weights wuv can be understood by examining the typi-
cal structure of the polyploid phasing problem. Note that
if the SNP positions were called accurately, i.e., all of
the m haplotypes to be phased were ‘true’, then it would
hold that in any location i ∈ {1, · · · , m}, not all strings
s1, · · · , sk have identical bases, i.e., the set of locations
{i ∈ {1, · · · , m} : s1[ i] = · · · = sk[ i] } = ∅. Since sequenc-
ing errors are ‘typically’ small, it is thus the case that if two
reads covering the same site have different values, then it
is likely that they come from different haplotypes.

2. Node Labels - To each node u ∈[ Nn] of the graph we
assign two labels: (i) - a community label Zu ∈[ k] and (ii) -
a spatial label Xu ∈[ m]2. The community label of a node
indicates origin of the corresponding read (i.e., which hap-
lotype the read samples), while the spatial label of a node
u ∈[ n] is

(
i(u)
1 , i(u)

2

)
, i.e., the locations along the haplotype

where the two contiguous substrings of the paired-end
read start. See Fig. 3 for an illustration of the data pre-
processing. This definition of spatial labels assumes that
the reads consist of precisely two contiguous substrings;
however, experimental data show that this may be violated
due to various practicalities in base-calling, read map-
ping and variant calling steps (e.g., due to omitting bases
with confidence scores below a threshold); consequently,
in practice a read (more precisely, the parts of a read cov-
ering heterogeneous variant positions that are being used
in haplotype assembly) may consist of either a single or
more than 2 contiguous fragments. If a read is only a sin-
gle contiguous string of alleles, the spatial location of that
read is placed on the diagonal in [ n]2, i.e., the spatial label
assigned to the read is a pair of identical numbers (each
being the starting position of the single read). If a read
happens to consist of more than 2 contiguous fragments,
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Fig. 3 An illustration of our pre-processing the set of reads into a spatial random graph. The starting indices of the two contiguous blocks of a read
forms its spatial coordinate and the weight is computed using Eq. 3. In this example, the shaded sites contribute to the weight wuv

there are several possibilities when it comes to assigning
it a spatial label. For instance, we may split the read into
multiple reads such that each one has at most two con-
tiguous fragments; alternatively, we may choose two of the
multiple starting contiguous points in a suitable fashion
to form the spatial label. Further details regarding assign-
ment of spatial labels are discussed in “Performance on
real data” section.

Summary of the algorithmic pipeline
Our algorithm takes the spatial graph G as input, and pro-
duces the reconstructed haplotypes. After pre-processing
the sequencing data, we may form the graph G and assign
spatial labels (Xu)u∈[n] to its nodes. However, the com-
munity labels (Zu)u∈[n] are unknown at this point. We
defer a detailed discussion of the computational complex-
ity involved in the pre-processing needed to construct G
to the end of this section, where we show that one can
exploit the structure in the data to reduce complexity of
this pre-processing step from the naive O

(
n2) to roughly

O(n). Given the representation of the data by the graph
G, and having assigned spatial labeling to its nodes, our
algorithm has two main components - (i) - a community
detection on G to discover origin of each read and thus
effectively group the reads into k different clusters and (ii)
- Subsequently, for all i ∈[ m] and l ∈[ k], we estimate ŝl[ i]
by a simple majority rule as described in the sequel.

1. Euclidean Community Detection - This part of the
algorithm is where we take as input the graph G along with
the spatial labels (Xu)u∈[n] and estimate for each u ∈[ n], a
community label Ẑu ∈[ k], denoting which of the k haplo-
type, a read is likely originating from. We summarize the
key steps in this task. The formal pseudo code is given in
Algorithm 1.

1 We first tessellate the grid [ n]2 into smaller
overlapping boxes, denoted by

(
Bx,y

)
1≤x≤ñ,1≤y≤ñ.

Here ñ < n is a parameter which we choose and each

Bx,y ⊂[ n]2. The tessellation is such that each grid
point u ∈[ n]2 belongs to multiple boxes Bx,y since
the boxes overlap.

2 For each box Bx,y, let Hx,y denote the subgraph of G
containing nodes whose spatial locations lie in Bx,y.
The nodes of Hx,y are all clustered independently
into k communities.

3 The community estimates in different boxes are
synchronized to obtain a global clustering estimate
from spatially-local clustering estimates. Since each
grid point is present in multiple boxes, a read gets
many estimates for its community, each of which
adds an ‘evidence’ to the label of the node. This
scheme has a natural ‘error-correcting’ mechanism,
since it is less likely for a node to be misclassified in
the majority of the boxes it lies in, as opposed to any
one particular box.

2. Reduce by Majority - After estimating for each
node (read), the likely haplotype from which it origi-
nates

(
Ẑu

)
u∈[n], we reconstruct the haplotypes by a simple

majority vote. For all j ∈[ k] and i ∈[ m], we estimate ŝj[ i]
to be the majority among the 4 letters in the alphabet as
indicated by the reads that cover site i and are estimated
to belong to string j in the above clustering step.

Intuition behind the algorithm
Observe that for any two reads u and v that overlap, if
the weight wuv is positive and large, then they are likely
from the same haplotype while if negative and large, they
are likely from different haplotypes. Consider a subset of
reads such that the absolute value of the weights on the
edges that connect them in graph G are ‘large’. This sub-
set of reads can readily be grouped into up to k different
clusters using standard techniques such as the spectral
method. Such simple schemes will be successful in this
scenario since the ‘signal’ for clustering in the subgraph is
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high due to strong interaction between the corresponding
reads, i.e., the adjacency matrix of the subgraph is dense.

However, the entire set of reads does not posses the
aforementioned property – in particular, it has a large
diameter (of order n). Thus, standard spectral methods
applied to graph G are both computationally impractical
as well as statistically sub-optimal for recovery. The com-
putational impracticality is easy to observe; indeed, any
clustering scheme will be super-linear in the number of
nodes Nn, which renders them extremely slow on large
problem instances that are typical in practice. Further-
more, even the pre-processing of reads to construct graph
G is of order N2

n , which makes it computationally chal-
lenging in practical settings. The statistical sub-optimality
is more subtle and stems from the fluctuations in the den-
sity of reads in space; in many problem instances, the
density of reads varies across space due to randomness
in the read generation process. For instance, in Fig. 4, we
see an example where the density of reads captured by the
spectral algorithm is highly imbalanced due to the fluc-
tuations of the nodes in space. However, in the ground
truth set, the statistical distribution of reads across space
is the same for all communities. Therefore, to improve
performance, one would need an additional ‘constraint’ in
the reconstruction algorithm to enforce the fact that the
spatial distribution of reads across all communities is the
same.

Our strategy in this paper is to first partition the set
of reads into subsets wherein the reads interact strongly.
Since the reads have spatial locality, we partition the
set of reads into boxes as illustrated in Fig. 5. In each
box, we consider the subgraph of G with nodes having
spatial labels lying in that box and then cluster this sub-
graph independently of other subgraphs in other boxes.
The partition of space into boxes is fixed a priori and
is data independent. The box size and how much they
overlap are hyper-parameters that can be tuned. In each
box, we run a clustering algorithm and then combine the

estimates from different boxes to form a final global par-
titioning of the nodes of G. The partitioning based on
spatial locality automatically ensures that the spatial den-
sity of the estimated communities are roughly identical.
The intuition for this stems from the fact that the reads
will be roughly uniformly distributed within a box since
the box is ‘small’ in size. More importantly, by requiring
that the boxes overlap, a single read will be present in
multiple boxes. This further boosts statistical accuracy of
clustering by embedding natural error-correction scheme;
since a single read is processed multiple times, there are
multiple instances of ‘evidence’ for the community label of
a node. From a computational complexity viewpoint, par-
titioning the set of nodes and clustering smaller instances
dramatically reduces run-time as a majority of clustering
algorithms are super-linear in the number of data points
and hence reducing the sizes of the graphs to be clustered
has a significant beneficial impact. Therefore, our algo-
rithm is both computationally feasible on large instances
and is statistically superior compared to standard graph
clustering algorithms directly applied on G.

Pseudo code

Let us start by introducing the notation needed to formal-
ize the algorithm. The algorithm has hyper-parameters
A, B, iter, M ∈ N and α ∈[ 0, 1]. For x, y ∈

[
	 ñ

A

]
, we

define Bx,y ⊂[ n]2 as Bx,y := [
Ax, min(Ax + B, ñ)

] ×[
Ay, min(Ay + B, ñ)

]
, the box indexed by (x, y). Thus,

the parameters A and B dictate how large a box is
and how many boxes cover a read. In the course of
the algorithm, we maintain a dictionary of lists C,
where for each node u ∈[ Nn], C[ u] denotes the list
of community estimates for node u. Each node has
more than one estimate as it belongs to more than
one box. The estimates from clustering in each box
are added as ‘evidence’ of the community estimate for
the nodes in the box. Having multiple estimates for

Fig. 4 An instance with three strings (haplotypes) of length 1000 where spectral clustering on G fails. The coverage is 10, the effective read lengths
r = 2 and R = 250. The error probability p = 0.05. The figure on the left is the union of the three figures on the right. The three colored plots are the
spatial locations of the recovered communities by the spectral algorithm applied on G. The density of the recovered blue estimates is 0.0995, while
that of red is 0.33 and of green is 0.57. The total overlap achieved by the spectral method is 0.1. Note that in the ground truth all three colors are
equal in intensity, which is not captured by the spectral method. However, our correctly algorithm predicts approximately equal-sized communities,
achieves an overlap of 0.98 and runs 4 times faster
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Fig. 5 This is an example with ñ = 7. The parameters A = 1 and
B = 3. The red and green boxes are examples of Bx,y

a node helps in combating clustering errors in certain
boxes.
Main Routine - We now describe the algorithm in detail.
The first step consists of partitioning the space [ n]2 into
multiple overlapping boxes as shown in Fig. 5. Recall that
the hyper-parameters A and B allow one to tune both the
size of a box and the number of boxes that will cover a
given location of [ n]2. In each box indexed by (x, y) for
x, y ∈

[
	 ñ

A

]
, we identify the nodes of G having their spa-

tial label in that box; let us denote the collection of such
nodes by Hx,y. If the number of nodes in Hx,y is small
(e.g., smaller than a certain hyper-parameter M), then we
do not attempt to cluster these nodes. We need to set
such a minimum size of Hx,y or the output of clustering
may turn out to be noisy and non-informative. In addi-
tion, if more than an α < 1 fraction of nodes in Hx,y
have at least one community estimate, then again we do
not cluster Hx,y. The reason for doing so is to decrease
the running time by ensuring we only perform the cluster-
ing step when there are sufficiently many new unexplored
nodes. In each remaining box (x, y) (i.e., each box with at
least M nodes where at most an α fraction of them have
prior estimates) we apply a fast and simple local cluster-
ing algorithm. In particular, we generate an approximate
clustering of the nodes in Hx,y by directly running a stan-
dard k-means algorithm [27] on the adjacency matrix of
Hx,y. We then iteratively improve upon this initial guess
by reassigning each node to the most likely cluster while
keeping the assignment of other nodes fixed. This iterative
update rule is reminiscent of the class of Expectation Max-
imization algorithms, although our method is fast and
non-parametric. We run the iterative clean-up procedure

for iter number of iterations. Once the nodes of Hx,y are
clustered, we append the result to the dictionary of lists
C after appropriately synchronizing the community esti-
mates of each node. Once we have iterated over all boxes,
we assign a single community estimate to each node based
on the majority in the list of estimates in C. The algorithm
is formalized as the following pseudo-code.

Local Clustering Step - This step is described in Algo-
rithm 2. We follow a two step-procedure. In the first
step, we get an approximate clustering of the graph H
by applying the standard k-means algorithm on the adja-
cency matrix H. We then one-hot encode this clustering
result. One hot encoding is one where for each read we
associate a k × 1 vector in which all entries re 0 except for
a single entry corresponding to the estimated community
label of that read to be 1. More formally, if r denotes the
number of nodes of H, then the one-hot encoding result

Algorithm 1 Main Routine
1: procedure MAIN(G, k, (Xi)i∈[1,Nn], A, B, iter, M) �

A, B, iter, M, α are hyper-parameters
2: for i ∈ {1, · · · , n} do � For every node(read)
3: C[ i] ←[ ] � Initialize to empty
4: end for
5: for 1 ≤ x ≤ [	 n

A
] do
6: for 1 ≤ y ≤ [	 n

A
] do
7: Bx,y ←[ Ax, min(Ax +

B, n)] ×[ Ay, min(Ay + B, n)]
8: Hx,y ← Subgraph of G with spatial labels in

Bx,y

9: f ← |{l∈Hx,y :|C[l]|>0|
|Hx,y| � Fraction of nodes

with a community estimate
10: if |Hx,y| ≥ M AND f ≥ 1 − α then
11: e ← LOCAL-CLUSTER(Hx,y, k, iter)
12: C ← SYNCHRONIZE(C, e)
13: end if
14: end for
15: end for
16: return REDUCE-BY-MAJORITY(C)
17: end procedure

Algorithm 2 Small Graph Clustering
1: procedure LOCAL-CLUSTER(H , k, iter)
2: ẽ := k-means-cluster(H , k) � k-means Algorithm

of [27]
3: e0 = One-Hot-Encoding(ẽ).
4: for 1 ≤ i ≤ iter do
5: ei = arg max Hei−1 � row wise argmax
6: end for
7: return eiter.
8: end procedure
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is a matrix e0 of size r × k. Each entry of e0 is either 0 or
1; the entry in the ith row and jth column being 1 implies
that the ith node is classified as belonging to community j.
Thus, each row of e0 contains exactly one 1 while the rest
of the entries are all 0. We then run a ‘clean-up’ procedure
by iteratively updating the estimate as follows.

et+1 = T (Het). (4)

The function T is applied row-wise; for matrix A, it
sets the ith row and jth column of T (A) to 1 if j =
arg max A[ i], else the ith row and jth column of T (A) is
set to 0. If a row has more than one column where the
maximum is attained, the first column where the maxi-
mum occurs is assigned value 1 while the other columns
are assigned value 0. Hence the dimensions of A and T (A)

are the same. Furthermore, for any matrix A, the matrix
T (A) is such that its entries are either 0 or 1, with each
row having exactly one entry valued 1.

The iterative update is based on the following intuition.
Let the clustering be encoded by matrix et for some t ∈ N,
and consider a tagged node u ∈[ n]. The new updated
value of the community label of node u is then the ‘most-
likely’ label given the estimates of the community labels
of the rest of the nodes. More precisely, the ‘weight’ that
a node u is in a community l ∈[ k] is the sum of the
weights along the edges connecting u to v ∈[ n] in G such
that the estimate of node v is l. The new community label
of node u is the one having the largest weight. By per-
forming this operation simultaneously for all nodes, one
obtains the representation in Eq. (4). The intuition for
reassigning the node to the community with the maxi-
mum weight stems from the observation that if a weight
along an edge is positive and large, then it is likely that
the end nodes of the edge share the origin, i.e., the cor-
responding reads sample the same haplotype. Likewise,
if the weight along an edge is negative and large, then it
is likely that the end nodes represent reads that sample
different haplotypes. Therefore, for the iterative update
to perform well, the initial estimate e0 must be ‘good
enough’; we achieve this by applying the k-means cluster-
ing algorithm on the adjacency matrix H. In principle, one
can obtain somewhat better initial guess for e0 by apply-
ing the k-means algorithm to the eigenvectors of H, but
the marginal gains in statistical accuracy does not warrant
the enormous increase in computation needed to perform
such a spectral clustering.

The clean-up method, at first glance, seems to bear sim-
ilarities to other dynamical algorithms such as expectation
maximization, Belief Propagation (BP) and tensor factor-
ization based methods of [17]. Unlike BP, however, we do
not iterate the beliefs or probabilities of a node belong-
ing to various communities; instead, we make a hard
assignment at each update step. While for standard BP
algorithms it is desirable that a graph is tree-structured,

Algorithm 3 Synchronization Step
1: procedure SYNCHRONIZE(C, e)
2: Ŵ ← 0
3: π̂ ← id � The identity permutation
4: for All permutations π of [ k] do
5: local-weight ← 0
6: for All nodes in e do
7: Wπ ← ∑

i∈Nx,y 1C[i] �=empty

∑
j∈C[i] 1π(σ [i])=C[i][j]∑

j∈C[i] 1
8: end for
9: if Wπ > Ŵ then

10: Ŵ ← Wπ

11: π̂ ← π .
12: end if
13: end for
14: for nodes in e do
15: Append π̂(e[ nodes] ) to C[ nodes].
16: end for
17: return C.
18: end procedure

our graph contains a lot of triangles and loops due to
the spatial embeddings. Therefore, it would be insuffi-
cient to keep track of the node marginals – instead, BP
would need the entire joint distribution which is not
tractable. Despite the undesirable properties of G, bench-
marking results demonstrate that our algorithm performs
community detection on the graph very well.

Synchronization Step - The main routine in Algo-
rithm 1 considers the boxes sequentially and performs
local clustering steps. Once the local clustering is per-
formed, a key component is to synchronize the estimates
of the current box with the estimates of the boxes that
are already clustered. The synchronization is essential
since the problem is a permutation invariant to the labels.
Formally, the statistical distribution of the data remains
unchanged if the true underlying labels of the [ k] strings

Algorithm 4 Reduce by Majority
1: procedure REDUCE-MAJORITY(C)
2: for node in C.keys do
3: C[ node] ← Majority(C[ node] ).
4: end for
5: � Estimate haplotype by majority
6: for l ∈ {1, · · · , k} do
7: for i ∈ {1. · · · , m} do
8: ŝl[ i] ← majority of alphabets among reads

j with C[ j] = l and covering site i.
9: end for

10: end for
11: return (̂sl[ i] )l∈{1,··· ,k},i∈{1,··· ,m}
12: end procedure
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are permuted. Hence, the best hope for any recovery algo-
rithm is to reconstruct the k strings upto a permutation
of labels. Thus, if any clustering algorithm is run on two
different subsets of nodes, the corresponding haplotype
estimates need to be synchronized to produce a cluster-
ing of the nodes in the union of the sets. We perform this
clustering in line 8 of the main routine Algorithm 1 by
invoking the sub-routine 3.

In sub-routine 3, we decide on how to permute the com-
munity label output of the local clustering estimate of
Hx,y that best ‘synchronizes’ with the label estimates of
the other nodes of G at that instance. Observe that at the
instant of synchronizing the output of Hx,y, other nodes
of G have either none or multiple label estimates. There
is a possibility that more than one label estimate per node
is present in multiple boxes, each adding an ‘evidence’ for
a node’s cluster. We select a permutation of the labels by
sequentially going over all permutations of [ k] and select-
ing the one that has the highest ‘synchronization-weight’.
More formally, let Nx,y ⊂[ n] denote the indices of the
nodes in Hx,y; for all u ∈ Nx,y, denote by σ [ u] ∈[ k] the
label estimates formed by the local clustering on Hx,y.
The synchronization weight for a permutation π of [ k] is
defined as

Wπ :=
∑

i∈Nx,y

1C[i] �=empty

∑
j∈C[i] 1π(σ [i])=C[i][j]

∑
j∈C[i] 1

.

In words, we go over all nodes in Hx,y that have at least
one prior estimate and sum the fraction of the previous
estimate equaling the label assigned by the local clustering
Hx,y after applying the permutation π to the local clus-
tering’s output. Among all permutations, we select the π∗
having the highest synchronization weight (ties are bro-
ken arbitrarily). After doing so, for each node u of Hx,y
we append the label π∗(σ (u)) to the list C[ u]. The key

feature of the above procedure is consideration of the frac-
tion, which is a proxy for the ‘belief ’ of the community
label of a node, rather than just a count; this is mean-
ingful because the counts across different nodes can be
significantly skewed by the order in which the boxes are
clustered and synchronized.

Computational complexity
In this section, we discuss the computational complexity
of implementing our algorithm and the effect of various
hyper-parameters on runtimes. A naive implementation
of the algorithm would incur a cost of the order n2 just
to construct the graph G from the reads. This step itself
may be infeasible in practical scenarios where the num-
ber of reads will be on the order of millions. However, our
algorithm only needs the subgraphs Hx,y instead of the full
graph G. Therefore, we pre-process the reads and create
a hash-map where for each location in [ n]2, we store the
list of reads that have spatial label in that location. This
requires one pass through the list of reads, i.e., has com-
putational complexity of order n and storage complexity
of order n. Now, creating the adjacency matrix Hx,y is
quadratic in only the number of nodes in Hx,y. The syn-
chronization step requires time complexity of the order of
the number of nodes in Hx,y times the number of distinct
permutations of [ k].

Choosing the parameters of our algorithm
Our algorithm has an inherent trade-off between com-
putational complexity and statistical accuracy that can be
achieved by varying the hyper-parameters. For instance, if
we decrease A while keeping B fixed, the number of boxes
and therefore the computational time are increased. How-
ever, the statistical accuracy would improve since each
node would now be present in many boxes and hence the
error-correction scheme performs more accurately. Simi-
larly, increasing the parameter M can reduce the run-time

Table 1 Simulated diploid biallelic data

Cov Err
ComHapDet AltHap HPoP

CPR MEC t(s) σ CPR MEC t(s) σ CPR MEC t(s) σ

7

0.05 99.2 662.7 18.3 0.2 99.9 960.7 13.4 0 99.8 961.5 3.1 0.1

0.1 98.2 1289.1 18.8 0.4 99.8 1871.2 13.8 0.1 99.4 1868.5 3.4 0.3

0.2 80.5 2640 18.2 1.6 85.9 4844.1 13.7 1.3 84.8 3862.7 3.5 8.6

10

0.05 99.9 923.4 29.2 0.1 99.9 1352.9 15.43 0 99.9 1354.9 1.7 0

0.1 99.5 1831.1 27.1 5.3 98.1 3132.3 15.5 0.8 99.8 2667.5 3.1 0.4

0.2 91.9 3575.9 27.9 1.3 92.8 5231.9 24.2 1.3 88.3 5488.2 3.3 11.5

15

0.05 100 1382.7 52.1 0 100 2034.5 30 0.1 100 2022.5 8 0

0.1 99.9 2772.9 56.4 0.1 99.9 3989.7 39.1 0 99.9 3986.5 7.3 0

0.2 97.9 5283.6 50 0.4 96.8 7646.3 39.2 0.6 96.7 7789 7 1.8
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Table 2 Simulated Triploid Tetraallelic Data

Cov Err
ComHapDet AltHap

CPR MEC t(s) σ M-CPR CPR MEC t(s) σ M-CPR

7

0.002 98.6 97 76.7 0.9 99.5 89 687 295.2 14 93

0.01 93.8 662.1 81.2 10.8 97 88.7 966.2 289.8 17.5 92.4

0.05 97.1 1504.7 75.5 1.6 98.9 80.1 2887.4 332.1 20.2 86.3

10

0.002 99.8 93.7 137.5 0.17 99.9 83.7 1215.4 593.2 20.7 88.4

0.01 99.7 413.1 135.9 0.2 99.9 92.7 1029.1 592.7 14.6 95.4

0.05 99.4 2021.9 139.8 0.3 99.8 92.7 3632.0 592.4 14.6 95.4

15

0.002 99.9 124.6 300.4 0.1 99.9 89.9 1725 708.5 16.1 94

0.01 99.9 611.1 307.9 0.1 99.9 96 1628.6 781 9.82 97.6

0.05 99.9 2981.5 297.2 0.2 99.9 87.4 6721.3 713.3 20.4 92.1

by considering fewer boxes to perform local clustering,
while potentially decreasing statistical accuracy because
there is less evidence for determining community label of
each node.

Results
We evaluate the performance of our proposed algorithm
on both simulated and experimental data. We imple-
mented our algorithm in Python. The simulations, as well
as the experimental evaluations were conducted on a sin-
gle core Intel I5 Processor with 2.3Ghz processor and 8
GB 2133 MHz LPDDR3 RAM.

Performance on simulated data
We first test the performance of our algorithm in simula-
tions for both the diploid biallelic case as well as the more
challenging polyploid polyallelic case. Since the ground
truth in simulations is known, we use CPR, MEC and M-
CPR as the primary performance benchmarks. The CPR
and M-CPR are reported as percentages, for ease of pre-
sentation. We compare the performance over a range of
problem parameters, namely the ploidy and alphabet size,
as well as the measurement parameters, in particular the

coverage, average read length and error rates. In each case,
the hyper-parameters were set to A = 15 and B = 4. The
parameter α = 0.95, for all polyploid cases and α = 0.85
in the diploid case. Recall that the parameter α allows one
to control the trade-off between the run time and statis-
tical accuracy; specifically, a lower value of α results in
faster run times at the cost of reduced CPR. The column
σ displays the standard deviation of CPR (after being mul-
tiplied by 100, for consistency). In each table and metric,
the boldfaced entry represents the algorithm with the best
performance for that entry.

Simulated data - diploid biallelic case
In the diploid case, we rely on the synthetic paired-
end read data used in [17]. The average length of the
effective (i.e., haplotype-informative) paired-end read 4
with an insert gap in a paired end reads being uni-
formly sampled between 50 to 150. We use a haplotype
length (m in our notation) of 700 in all case to be con-
sistent with prior literature. As an example [23], which
is often used to benchmark haplotype assembly meth-
ods. The results are reported in Table 1. We simulate 15
instances for each configuration of coverage and error

Table 3 Simulated Tetraploid Tetraallelic Data

Cov Err
ComHapDet AltHap

CPR MEC t(s) σ M-CPR CPR MEC t(s) σ M-CPR

7

0.002 80 1316.3 143.5 20.3 91.8 76.1 1388.6 521.4 20.8 87.5

0.01 79.1 1640.0 118.5 17.8 91.8 79.9 1812.8 515.8 20.5 88.1

0.05 68.3 3722.8 129.7 14 87.3 83.6 3481.9 503.1 20.2 92

10

0.002 98.9 193.1 253.3 1.4 99.6 71.9 1979.7 594.3 15.5 85.6

0.01 99.1 585.9 261.8 0.4 99.8 85.4 1779.4 585 18.5 92.1

0.05 98.2 2727.7 238.6 0.6 99.5 78.6 5331.4 667.5 15.6 89.7

15

0.002 99.8 182.7 487.0 0.2 99.9 85.2 2614.6 684.5 18.4 92

0.01 99.8 806.5 482.7 0.2 99.9 83.5 3973.7 684.1 17.4 92.6

0.05 99 4101.4 523.8 298.9 99.7 95.1 6397.6 682.5 14.5 97.4
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Table 4 Simulated Hexaploid Tetraallelic Data

Cov Err
ComHapDet AltHap

CPR MEC t(s) σ M-CPR CPR MEC t(s) σ M-CPR

10

0.002 78.9 2256.6 551.1 15.6 94.1 76 2022.9 977.9 20 90.6

0.01 84.1 2250.4 563.2 14 95.8 70.4 3533.7 919.9 19.9 86.8

0.05 48.8 9578.4 526.3 25.6 81.9 75.8 7440.7 1222.1 17.9 90

15

0.002 99.3 308.2 1295.6 0.3 99.9 70.4 4960.6 1780.4 25.2 87.3

0.01 97.4 1528.5 1359.1 5.4 99.4 77.7 5493.4 1624.6 23.2 89.9

0.05 94.7 6554.2 1207.5 11.7 98.7 65.9 13751.6 2406.3 19 87.2

20

0.002 99.5 382.8 2097.1 0.2 99.9 77.1 7095.1 7561.2 19.3 91.9

0.01 99.5 1654.3 2116.5 0.2 99.9 87.3 5905.4 6862.1 18 96.1

0.05 99.6 7912.8 2298.9 0.2 99.9 65.1 23381.8 8563.4 24.5 86.9

probability and report the average in Table 1. We com-
pare our methods against AltHap [17], a sparse tensor
factorization method, and HPop [8], a state-of-the-art
dynamic programming approach to haplotype assem-
bly. Since for diplod case CPR and M-CPR are iden-
tical, we only report the CPR. We restrict our atten-
tion to these methods since it is already established in
[8, 17, 28], that they are superior, both in terms of accuracy
and run times, as compared to various other approaches
including SDHaP [16], an approach inspired by semi-
definite programming relaxations of the max-cut prob-
lem, BP [29], a communications system design inspired
belief propagation algorithm, HapTree [30], an algorithm
inspired by a Bayesian reformulation of the problem,
and HapCompass [15], an algorithm focused on finding
cycle basis in a graphical representation of the haplotype
assembly problem.

Simulated data - polyploid polyallelic case
We report the results in Tables 2, 3 and 4 for the cases
of triploid, tetraploid and hexaploid, respectively. In all
cases, we considered the tetra-allelic case, i.e., the case of
alphabets of size 4, and the average length of the effective
(i.e., haplotype-informative) paired-end read 4. The aver-
age insert size between the paired end reads was chosen
to be 200 with a minimum gap of 50. The benchmarking
algorithm we consider is that of [17], the state-of-the-
art algorithm capable of polyploid polyallelic phasing;
all other methods are restricted to biallelic variants. In
each case, we test our algorithm on 10 different problem
instances, where in each instance, a haplotype sequence
of length 1000 was phased. We use the same method and
the publicly available code from [17] to generate the syn-
thetic data for the various instances. For the hexaploid
case, we do not report performances on coverage smaller
than 10, since the performance of both algorithms
are poor.

Performance on real data
Tetraploid potato data set
We test our algorithm on a tetraploid real data set of Chro-
mosome 5 of Potato species Solanum Tuberosum, whose
reference genome is available publicly1. We considered a
set of paired-end sequence reads reported in experiment
SRX3284127 available in the NCBI database2. We then
mapped the reads to the reference genome using the BWA
software of [31]. Subsequently, we use the FreeBayes
software [32] for SNP calling and create the vcf file. We
then extracted out connected components of reads and
considered the haplotype assembly on instances that were
at-least 20 haplotypes long. The data set of reads after
SNP calling is available in the Github link provided in
Abstract. We compare the performance of our algorithm
with AltHap, HapCompass [33], HPoP [8] and HapTree
[30], and report the results in Table 5. We use the recom-
mended hyper parameters of A = 20, B = 5, α = 0.85 and
the minimum problem size as 20. We chose these set of
parameters to minimize run time, while at the same time
ensuring that all reads in a data set are covered by at-least
one community estimate.

Table 5 compares MEC scores achieved by our method
with those achieved by competing techniques. Note that
the true accuracy is captured by the correct phasing rate
but the ground truth data in this set is not available and
thus CPR cannot be computed. While being a convenient
surrogate metric, the MEC score may be misleading since
e.g. a very low MEC score does not necessarily imply high
CPR (see Table 1 of [17] for an illustrative example). Note
that the task of tetraploid phasing presents a challenge to
our scheme because the weight of an edge in the spatial
graph (see Eq. (3) is biased towards being positive, even

1ftp://ftp.ensemblgenomes.org/pub/plants/release-47/
fasta/solanum_tuberosum/dna//
2https://www.ncbi.nlm.nih.gov/Traces/study/?acc=
SRP119957

https//:ftp://ftp.ensemblgenomes.org/pub/plants/release-47/fasta/solanum_tuberosum/dna/
https//:ftp://ftp.ensemblgenomes.org/pub/plants/release-47/fasta/solanum_tuberosum/dna/
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP119957
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP119957
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Table 5 The performance comparison of the various algorithms
on the biallelic tetraploid Potato dataset

Method MEC Score t(secs)

ComHapDet 17738 207

AltHap 14580 105

HPoP 10596 102

HapCompass 12497 375

HapTree 46617 215

if the reads on the end points of an edge originate from
different strings; this limits accuracy of assembly schemes
that rely on read clustering. Finally, as illustrated by sim-
ulations, our methodology is suitable to settings where
sequencing coverage exceeds ∼ 10× (both in diploid and
polyploid setting). At the time of writing this paper we do
not have access to data sets with coverage beyond 10× and
thus do not perform further experiments on real data.

Discussions
The results indicate that our method is comparable to the
state of the art, both in the diploid as well as the more
challenging polyploid polyallelic scenario. In the diploid
biallelic case, we see in Table 1 that our method performs
comparable to both AltHap and HPoP in terms of recon-
struction accuracy as measured by CPR and MEC scores.
In the polyploid polyallelic scenario however, Tables 2, 3
and 4 indicate that our algorithm is superior in terms of
both CPR and MEC compared to the state of art, namely
AltHap, which is the only methodology prior to our work
that is capable of handling polyploid polyallelic data. In
terms of experiment on a real data ployploid experiment,
we see in Table 5, that our method performs comparably
both in terms of reconstruction accuracy as measured by
MEC score and runtime complexity as compared to other
state of art methods. The results demonstrate that our
methodology has significantly higher reconstruction at
higher coverages as compared to lower coverages. This is
unsurprising, as at higher coverages, there are more reads
and hence more data to recover the haplotypes. More-
over, the runtime complexity of our method scales very
gracefully with increasing coverage, making it attractive
for many practical high coverage scenarios.

Conclusions
In this paper, we propose a novel methodology to assem-
ble both diploid and ployploid haplotypes. The main
observation we make is that, by a spatial representation of
the paired-end reads, we can effectively convert the prob-
lem about haplotype assembly into a community detec-
tion task on a spatial graph. Our algorithm assigns to each
paired end read, a spatial label corresponding to the start-
ing indices of the two read fragments. We then divide the

problem into overlapping instances, each of which consid-
ers the set of reads located nearby in this embedding and
performs a community clustering, where the community
label of a read (node) is the haplotype from which it orig-
inates from. Finally, for each read, we take the majority of
the estimated communities from the various instances as
the final community estimate of that read. We then use
this estimated community labels for the reads to output
the reconstructed haplotype.

Abbreviations
BP: Belief propagation; CPR: Correct phasing rate; M-CPR: Modified Correct
phasing rate; MEC: Minimum error correction; SNP: Single nucleotide
polymorphisms
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