
Yang et al. BMC Genomics 2020, 21(Suppl 9):583
https://doi.org/10.1186/s12864-020-06936-w

RESEARCH Open Access

GLaMST: grow lineages along minimum
spanning tree for b cell receptor sequencing
data
Xingyu Yang1, Christopher M. Tipton2, Matthew C. Woodruff2, Enlu Zhou3, F. Eun-Hyung Lee4,
Inãki Sanz2 and Peng Qiu5*

From The Sixth International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC
2019)
Niagara Falls, NY, USA. 07 September 2019

Abstract

Background: B cell affinity maturation enables B cells to generate high-affinity antibodies. This process involves
somatic hypermutation of B cell immunoglobulin receptor (BCR) genes and selection by their ability to bind antigens.
Lineage trees are used to describe this microevolution of B cell immunoglobulin genes. In a lineage tree, each node is
one BCR sequence that mutated from the germinal center and each directed edge represents a single base mutation,
insertion or deletion. In BCR sequencing data, the observed data only contains a subset of BCR sequences in this
microevolution process. Therefore, reconstructing the lineage tree from experimental data requires algorithms to
build the tree based on partially observed tree nodes.
Results: We developed a new algorithm named Grow Lineages along Minimum Spanning Tree (GLaMST), which
efficiently reconstruct the lineage tree given observed BCR sequences that correspond to a subset of the tree nodes.
Through comparison using simulated and real data, GLaMST outperforms existing algorithms in simulations with high
rates of mutation, insertion and deletion, and generates lineage trees with smaller size and closer to ground truth
according to tree features that highly correlated with selection pressure.
Conclusions: GLaMST outperforms state-of-art in reconstruction of the BCR lineage tree in both efficiency and
accuracy. Integrating it into existing BCR sequencing analysis frameworks can significant improve lineage tree
reconstruction aspect of the analysis.

Keywords: B cell receptor gene, Lineage tree

Background
To specifically recognize and respond to different
pathogens, adaptive immune system relies on a diverse
repertoire of B cell immunoglobulin receptors (BCR).
Such a diverse repertoire comes from recombination,
somatic hypermutation of immunoglobulin (Ig) gene

*Correspondence: peng.qiu@bme.gatech.edu
5Department of Biomedical Engineering, Georgia Institute of Technology and
Emory University, Atlanta, USA
Full list of author information is available at the end of the article

segments, and selection by their ability to bind pathogens.
This process will generate numerous different BCRs. To
explore the dynamic process of BCR affinity maturation,
researchers have applied high throughput sequencing
[1–3] to examine BCR repertoires and to construct lineage
trees of BCR sequences [4, 5].

In a BCR lineage tree, each tree node corresponds to
one unique sequence, and each directed edge indicates
the relationship between one sequence and its imme-
diate ancestor, which are separated by one-base muta-

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-06936-w&domain=pdf
mailto: peng.qiu@bme.gatech.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Yang et al. BMC Genomics 2020, 21(Suppl 9):583 Page 2 of 11

tion, insertion or deletion. Given high throughput BCR
sequencing data of a repertoire, the observed sequences
correspond to some of the internal nodes and the leaf
nodes of the BCR lineage tree, while many intermedi-
ate nodes are not observed due to the diversification and
selection process the repertoire went through, as well as
subsampling inherent to the assay. With these observed
sequences, we can easily identify the root sequence of this
tree by sequence alignment against known germline BCR
segments in the genome [6]. To reconstruct the full lin-
eage tree, we need to fill in the unobserved internal nodes
and connect them to the observed nodes by direct edges.
This process is similar to building the phylogenetic tree
among species, except that only leaf nodes are observed in
phylogenetic problem, whereas some internal nodes and
the root nodes are also observed in this BCR lineage tree
reconstruction problem. Popular methods in phylogenetic
analysis includes maximum parsimony, maximum likeli-
hood, and Bayesian methods. The maximum likelihood
and Bayesian methods are usually computational demand-
ing and require a decent amount of prior knowledge [7,
8], for example, the replacement rates and preference of
mutation target under relatively selection pressure [9].
Such prior knowledge is relative limited in BCR lineage
trees. Therefore, we decided to pursue the maximum par-
simony idea to reconstruct the BCR lineage tree, which
intends to reconstruct a tree as small as possible, which
connects all the observed sequences with minimum num-
ber of mutation, insertion and deletion events.

Reconstruction of a phylogenetic tree using maximum
parsimony method is known to be a NP-Complete prob-
lem [10, 11], which means we cannot guarantee a best
solution in polynomial time. In terms of computational
complexity, reconstruction of BCR lineage tree is very
similar to phylogenetic tree. Although the root sequence
and some of the internal nodes are known, it is still a
NP-Complete problem [5]. To reconstruct BCR lineage
trees from high throughput sequencing data, an algo-
rithm named IgTree was previously developed, which is
a heuristic procedure consisting of multiple components
[5]. It first constructs a preliminary tree that only contains
observed sequences based on multiple sequence align-
ment [12], then uses a complex scoring metric to gradually
add internal node to complete the full tree, and finally
scans the resulting tree to identify subtrees that can be
reduced by reversion events. IgTree enabled efficient anal-
ysis of large BCR sequence datasets, and brought insights
into various area of somatic-hypermutation-related bio-
logical processes including neutralization of HIV anti-
bodies [13] and progression of follicular lymphoma [14].
Another algorithm for reconstructing BCR lineage trees
is included in the TIgGER software package [15], which is
a classical maximum parsimony method called “dnapars”
in the PHYLIP library [16, 17]. dnapars almost always

achieves smaller lineage trees compared to IgTree, but
is considerably slower when analyzing large number of
observed sequences.

Here, we present a novel algorithm, GLaMST, to recon-
struct BCR lineage trees using the maximum parsimony
criterion. GLaMST uses simple heuristics to Grow the
Lineage trees along the Minimum Spanning Tree. In terms
of the maximum parsimony criterion, GLaMST generates
lineage trees with small size similar to dnapars, and out-
performs dnapars for simulated datasets with insertions
and deletions. In terms of the computational efficiency,
GLaMST runs faster than IgTree. In this paper, we present
the GLaMST algorithm, and evaluate its performance on
both simulated and real data.

Methods
A formal description of the BCR lineage tree reconstruc-
tion is as follows. Given a set of observed BCR sequences
and a root sequence, the maximum parsimony criterion
would like to identify the minimum-sized directed tree
structure with necessary intermediate sequences, where
each directed edge in the tree represents a one-base oper-
ation (mutation, insertion and deletion), and all observed
sequences are reachable from the root.

GLaMST reconstructs BCR lineage trees based on the
minimum-spanning-tree (MST) [18, 19]. Figure 1 shows
an outline of this algorithm. We first compute the pair-
wise edit-distances [20] of the observed sequences includ-
ing the root node. These pairwise distances reflect the
landscape of the observed sequences, in terms of their
relative distances and directions with respect to the root
node. The algorithm is initialized by considering the root
sequence as the root node of the tree, the observed
sequences as observed nodes, and no edges. We then grow
the tree from the root node by adding directed edges and
necessary intermediate nodes toward directions that are
more populated by the observed sequences, and iteratively
grow the tree until all the observed nodes are reachable
from the root node. Observed nodes can either be inter-
nal nodes or leaf nodes of the tree, depending on whether
they have descendants that are also observed nodes.

Compute edit-distance
The edit-distance from one sequence to another sequence
is the size of the minimal set of operations that can
convert the first sequence into the second one [20].
In the context of DNA or RNA sequence alignment,
one operation is mutation, insertion, or deletion of
one base position. This distance metric is symmet-
ric. We compute the pairwise edit-distances using the
Wagner-Fischer algorithm, which is a dynamic pro-
gramming algorithm with time complexity of o(mn),
where m and n are the lengths of the two query
sequences [21].



Yang et al. BMC Genomics 2020, 21(Suppl 9):583 Page 3 of 11

Fig. 1 Overview of GLaMST

When computing the edit-distance from one sequence
to another, we record the one-base operations in the min-
imal set. If there are multiple minimal sets, we record all
operations in those sets, counting each unique operation
only once. One example is shown in Fig. 2. From sequence
“ATCCCC” to “GCCCC”, the edit-distance is 2, because at
least 2 one-base operations are needed to convert the first
sequence to the second. As shown in Fig. 2, there exist four

paths of length 2 between the two sequences, and there-
fore, four possible sets of operations corresponding to the
edit-distance. Out of the eight operations, four are unique
(delete the 1st position, delete the 2nd position, mutate
the 1st position to G, mutate the 2nd position to G). These
four unique operations are recorded. The recorded oper-
ations reflect the “direction” from one sequence to the
other, showing what operations can take the first sequence
one step toward the second one. This direction informa-
tion is useful in the next step to choose edges (operations)
and intermediate nodes to grow the tree.

Initialize the lineage tree
We initialize GLaMST by treating the root sequence as the
root node of the tree, and the observed sequence as other
tree nodes. This initial structure does not contain any
edges. The root node is considered as the reconstructed
part of the lineage tree, whereas all other nodes are stand-
ing by, waiting to be brought into the reconstructed part
of the lineage tree. Figure 3a shows an illustrative exam-
ple of this initial structure and the distinction between the
reconstructed part and the standby nodes.

Iteratively grow the lineage tree
In the first iteration, GLaMST starts by building an MST
using the pairwise edit-distances between all nodes. The
MST is an undirected tree that connects all nodes with
minimum total distances along its edges [19]. An illus-
trative example is shown in Fig. 3b. Since the MST is
undirected and the edit-distance associated to each edge
is often larger than 1, edges of the MST are different from
edges of the lineage tree we want to reconstruct. Figure 3b
uses the dotted undirected lines to represent the MST.

The MST approximates the landscape of the observed
sequences with respect to the reconstructed part of the
lineage tree, grouping the standby nodes into clusters.
For example, in Fig. 3b, the observed sequences (standby

Fig. 2 Example of edit-distance. The edit-distance between these two sequences is 2. There are four sets of operations corresponding to the
edit-distance



Yang et al. BMC Genomics 2020, 21(Suppl 9):583 Page 4 of 11

Fig. 3 GLaMST tree construction process. This example shows the first two iterations of an illustrative example. In each visualization, black nodes
and solid arrows represent the reconstructed part of the lineage tree. White nodes represent observed sequences that are standing by and waiting
to be incorporated into the reconstructed part of the lineage tree. The dotted lines represent the MST, which guides the algorithm in growing the
reconstructed part of the lineage tree. a GLaMST is initialized by treating the root node as the reconstructed part and all other observed nodes as
standing by. b An MST is constructed based on the pairwise edit-distance. c GLaMST selects the most frequent origination-operation pair to create
and insert an intermediate node and grow the reconstructed part. d–f The second iteration of the process to insert another node to the
reconstructed part

nodes) are divided into three clusters, which locate in
three “directions” from the root node. One cluster con-
sists of nodes {2, 3, 7, 8} in the same direction from the
root node, because they are relatively close to each other,
and away from the root node and other nodes. There may
exist one or several one-base operations that can take the
root sequence one step closer to all those four nodes. Such
operations are likely to generate intermediate nodes in the
maximal parsimony lineage tree.

We then examine clusters of standby nodes originating
from the same node in the reconstructed part of the lin-
eage tree, which are all three clusters in Fig. 3b attached
to the root node. We take the sets of operations recorded
when computing the edit-distances from the root node
to the members in these clusters, and count the num-
ber of times each operation appears. If one operation
appears four times, applying this operation to the root
sequence will generate an intermediate sequence that is
one step closer to four standby sequences. We choose the
operation that appears the most number of times, and
apply it to the root sequence to generate the first inter-
mediate node to be added to the reconstructed part of
the lineage tree. As shown in the illustrative example in
Fig. 3c, the reconstructed part now contains two nodes

and one directed edge. The added node is typically along
one branch of the MST, representing a common ancestor
of the observed nodes in one cluster, but it is also possi-
ble that the added node is a common ancestor of multiple
clusters.

The second iteration starts with the reconstructed part
of the lineage tree and the standby nodes, as shown
in Fig. 3d. The previous MST is discarded, because the
newly added node may cause the structure of the MST to
change. In this iteration, we rebuild a new MST to con-
nect the standby nodes to the reconstructed part of the
lineage tree, as shown in Fig. 3e. The new MST divides
the standby nodes into four clusters. Two clusters origi-
nate from the root node, and two clusters originate from
node 9. We examine the one-base operations for clusters
attached to the same node in the reconstructed part of the
tree (operations that take root node R to nodes {4} and {1,
5, 6}, and operations that take node 9 to nodes {2, 8} and
{3, 7}), choose the origination-operation pair that appears
the most number of times, and apply the operation to
the origination node to generate an intermediate node to
be added to the reconstructed part of the lineage tree. In
the illustrative example in Fig. 3f, the chosen origination-
operation pair generated an intermediate node from the



Yang et al. BMC Genomics 2020, 21(Suppl 9):583 Page 5 of 11

root node, which is one step closer toward the cluster {1,
5, 6}.

The subsequent iterations operate exactly the same as
the second iteration. When selecting the most frequently
appearing origination-operation pair, if there is a tie, we
randomly choose one. When the new node suggested by
the chosen origination-operation pair is identical to an
observed node, the observed node is recruited into the
reconstructed part of the lineage tree using a directed
edge from the origination node to the observed node,
and no intermediate node is added. The iteration con-
tinues until all observed nodes are recruited into the
reconstructed part of the lineage tree.

Trim and rewire the lineage tree
The lineage tree reconstructed by this heuristic iterative
procedure can be reduced by trimming off unnecessary
branches. The iterative procedure may occasionally pro-
duce branches whose leaf nodes are not observed nodes,
because the process of growing the tree is guided by the
MST which only approximates the structure of the under-
lying lineage tree. Branches with unobserved nodes as
leaves are unnecessary to explain the mutation process
that gives rise to the observed nodes. To trim the lin-
eage tree, we remove all unobserved intermediate and leaf
nodes that do not have any observed nodes as descen-
dants.

Another possible improvement is rewiring. In the
reconstructed lineage tree, we can detach a subtree by
removing the edge pointing to the root of the subtree,
reattached it to some other node, and then trim the result-
ing tree. The trimming operation removes intermediate
unobserved nodes right upstream of the removed edge.
The reattaching operation introduces additional interme-
diate nodes if the edit-distance is larger than one between
the subtree root and the node it reattaches to. It is pos-
sible that such a rewiring operation can reduce the size
of the lineage tree. We consider all the observed nodes
and branching nodes (i.e. out-degree larger than one) for
rewiring. For each node under rewiring consideration, we
try to rewire it to all possible nodes in the lineage tree,
and examine whether we can reduce the tree size. If yes,
we accept the rewiring operation, and examine the result-
ing lineage tree again for possible rewiring operations that
may further reduce the tree size. We repeat this process
until no rewiring operation can reduce the tree size.

Results
Reconstructed lineage trees using simulated data
To compare IgTree, dnapars and GLaMST, we gener-
ated simulated datasets using nine different simulation
settings, varying the root sequence length and the rela-
tive probabilities of mutation, insertion, and deletion as
shown in first column of Table 1. Following parameters in

a previous simulation study [5], we generated 500 random
lineage trees in each simulation setting, and subsampled
the tree nodes to obtain the observed sequences. The
overall tree size ranged from 20 to 80, and the number of
observed nodes ranged from 2 to 24. Therefore, each sim-
ulated lineage tree contained 20∼ 80 BCR sequences ran-
domly generated by mutations, insertions or deletions of
the root sequence, and the number of observed sequences
ranged from 2 to 24. The simulated lineage trees served as
the ground truth that we would like to recover using the
algorithms. Table 1 shows the comparison of size of lin-
eage trees reconstructed by three different algorithms in
all nine simulated datasets.

As shown in Table 1, in the first simulation setting
where the sequence length was 300 and probabilities of
insertion and deletion were 0, all three methods per-
formed well. We recorded how many times the size of
reconstructed tree is smaller, equal, or larger than the
simulated ground truth. A reconstructed tree larger than
the simulated ground truth was undesirable, because the
reconstruction failed to achieve the goal of maximum
parsimony. A reconstructed tree could occasionally be
smaller than the simulated ground truth. This was because
the observed sequences represented only a subset of the
simulated mutation process, and it was possible to explain
such partial observations by trees smaller than the simu-
lated mutation process. We considered it a success if the
reconstructed tree was of smaller or equal size compared
to the simulated ground truth. In the first simulation set-
ting, the success rates of all three algorithms were > 98%.
This was mainly because the first simulation setting was
relatively simple: given a sequence length of 300 and the
underlying tree size of 20∼ 80, the simulated mutations
seldom occurred more than once at the same position.

Comparing the first three simulation settings with the
same root sequence length but different proportions of
mutations, insertions and deletions, we can see that
the performance of all three algorithms decreased with
increased insertions and deletions. The same trend was
seen in simulation settings with shorter sequence length,
showing that the presence of insertions and deletions
made the maximum parsimony lineage tree reconstruc-
tion problem more challenging.

In the first set of three simulations, the mutations, inser-
tions and deletions are uniformly distributed in simulated
sequences of length 300. In reality, the frequency of muta-
tions is not uniform across the BCR. For example, the
V(D)J region of the BCR can be partitioned into frame-
work regions (FWRs) which typically have lower observed
mutation frequencies, and complementarity determining
regions (CDRs) which have higher observed mutation fre-
quencies [6]. To examine a simpler situation that has the
flavor of variable mutation rate, we created two subse-
quent sets of simulations with short sequence lengths of



Yang et al. BMC Genomics 2020, 21(Suppl 9):583 Page 6 of 11

Ta
b

le
1

C
om

pa
ris

on
of

tr
ee

si
ze

ba
se

d
on

si
m

ul
at

ed
da

ta

Si
m

ul
at

io
n

Se
q

Le
ng

th
M

ut
at

io
n

D
is

tr
ib

ut
io

n
(m

ut
at

io
n,

in
se

rt
io

n,
de

le
tio

n)
Ig

Tr
ee

dn
ap

ar
s

G
La

M
ST

La
rg

er
Sa

m
e

Sm
al

le
r

Su
cc

es
s

La
rg

er
Sa

m
e

Sm
al

le
r

Su
cc

es
s

La
rg

er
Sa

m
e

Sm
al

le
r

Su
cc

es
s

1
30

0
(1

.0
0,

0.
00

,0
.0

0)
10

46
9

21
98

%
0

48
0

20
10

0%
6

47
3

21
99

%

2
30

0
(0

.9
8,

0.
01

,0
.0

1)
12

46
8

20
98

%
3

47
7

20
99

%
7

47
2

21
99

%

3
30

0
(0

.9
0,

0.
05

,0
.0

5)
54

42
4

22
89

%
34

44
4

22
93

%
11

46
4

25
98

%

4
80

(1
.0

0,
0.

00
,0

.0
0)

39
39

0
71

92
%

1
42

0
79

10
0%

38
39

1
71

92
%

5
80

(0
.9

8,
0.

01
,0

.0
1)

71
37

3
56

86
%

20
41

6
64

96
%

28
41

4
58

94
%

6
80

(0
.9

0,
0.

05
,0

.0
5)

13
0

32
5

45
74

%
10

3
34

5
52

79
%

26
41

2
62

95
%

7
20

(1
.0

0,
0.

00
,0

.0
0)

77
23

4
18

9
85

%
8

24
1

25
1

98
%

46
25

1
20

3
91

%

8
20

(0
.9

8,
0.

01
,0

.0
1)

11
6

20
1

18
3

77
%

54
22

1
22

5
89

%
35

23
6

22
9

93
%

9
20

(0
.9

0,
0.

05
,0

.0
5)

27
8

12
9

93
44

%
23

4
15

3
11

3
53

%
47

25
5

19
8

91
%



Yang et al. BMC Genomics 2020, 21(Suppl 9):583 Page 7 of 11

80 and 20, respectively. These simulations were equivalent
to simulating the length 300 sequences while constrain-
ing the mutations to only a sub-region of length either
80 or 20. These simulation settings with shorter sequence
length were progressively more difficult, because the
simulated mutations, insertions and deletions in shorter
sequences were more likely to occur multiple times at the
same position, which represented higher mutation rates.
Table 1 shows that the reconstruction performance of
all three algorithms consistently decreased with higher
mutation rates.

Overall, in terms of tree size shown in Table 1, GLaMST
and dnapars consistently outperformed IgTree in all nine
simulation settings. In simulation settings without inser-
tions and deletions, dnapars outperformed GLaMST by
a relatively small margin. However, in simulation settings
with insertions and deletions, GLaMST achieved the sig-
nificantly better performance than dnapars, especially in
the last and most challenging simulation setting.

In addition to tree size, we also compared the three
algorithms based on tree features defined in the MTree
program for lineage tree measurement [22, 23], especially
features that are highly correlated with selection pres-
sures [23]. We considered 12 features listed in Table 2.
For each simulated lineage tree, we computed the differ-
ence between the tree features of the simulation ground
truth and the tree features of the lineage trees recon-
structed by all three algorithms, and then normalized the
differences by dividing by the range of corresponding tree
features in the simulation ground truth. The average dif-
ferences for the simulation settings and algorithms are
compared in Fig. 4. For the majority of these 12 tree
features, GLaMST achieved differences smaller than the

other two algorithms, especially in the most challenging
simulation settings. For the last two features in Fig. 4,
GLaMST showed similar performance compared to the
other two algorithms. Overall, comparisons using these
tree features showed that the lineage trees constructed
by GLaMST were more similar to the simulation ground
truth compared to the other two algorithms.

Reconstructed lineage trees using bCR sequencing data
In order to produce a biological dataset for testing, periph-
eral blood mononuclear cells (PBMC) were collected
from an individual afflicted with Pemphigus Vulgaris.
These cells were sorted via fluorescence-activated cell
sorting (FACS) into 4 major B cell populations: Naive
(CD19+IgD+CD27-), Switched memory (CD19+IgD-
CD27+), Double negative (CD19+IgD-CD27-), and Plas-
mablasts (CD19+/-CD27++CD38++). RNA was extracted
and immunoglobulin heavy chain transcripts were ampli-
fied using RT-PCR with primers located in the framework
region 1 for VH families 1-7 and constant regions for
IgM, IgG, and IgA. The amplicons were subsequently
sequenced on an Illumina MiSeq using 300bp x2 paired
end reads. Reads were processed using our IgSeq pipeline
as described in [24], where sequences from all populations
were quality filtered, joined, and divided into clones based
on same V gene usage, same J gene usage, identical CDR3
length, and 85% CDR3 similarity. Therefore, the data for
each individual clone consisted of sequences sharing the
same V gene, the same J gene, and the same CDR3 length
with 85% sequence similarity in the CDR3 region. Data for
individual clones were then used as separate datasets for
further testing of GLaMST, with the largest clone being
illustrated here.

Table 2 Comparison of 12 tree features based on real data

Description IgTree dnapars GLaMST

Tree Size Total number of tree nodes 1396 1199 1190

OD-Root Out-degree of the root of the tree 1 1 1

OD-Avg Average out-degree of all tree nodes 0.999 0.999 0.999

OD-Ratio Ratio between OD-Root and OD-Avg 1.001 1.001 1.001

T Maximum depth of the tree leaves 62 147 130

PL-Min Minimum distance from root to any leaf 12 38 36

PL-Avg Average distance from root to all nodes 30.164 84.624 79.821

DRSN-Min Minimum distance from root to any branching node 2 36 34

DLFSN-Min Minimum distance from first branching node to leaves 10 2 2

DLFSN-Avg Average distance from first branching node to leaves 28.164 48.624 45.821

DASN-Min Minimum distance between branching nodes 1 1 1

DASN-Avg Average distance between branching nodes 2.903 2.590 2.216



Yang et al. BMC Genomics 2020, 21(Suppl 9):583 Page 8 of 11

Fig. 4 Comparison based on tree features in simulated data. These figures compare GLaMST, IgTree and dnapars using 12 tree features. Descriptions
of these features are listed in Table 1. Each panel corresponds to one tree feature, x-axis represents the nine simulation settings and y-axis is the
mean square error between reconstructed trees and simulated ground truth. Tree features in the first row suggest that GLaMST is significantly
better than the other two methods. The second row shows tree features where GLaMST is moderately outperforms the other methods. The third
row shows tree features where the three algorithms show similar performance

In the dataset corresponding to the largest clone, the
lengths of the observed sequences were around 320, and
the total number of observed sequences was 684. The root
node sequence was derived from the most likely germline
IgHV sequence as identified using IMGT/HighV-QUEST
(http://www.IMGT.org), and trimmed to match the for-
ward primer location and beginning of the CDR3 [25].
The root sequence had a 48-base segment at the five-
prime end that did not exist in many of the observed
sequences, as shown in Fig. 5a, which visualized a few
selected observed sequences using multiple alignment
[12]. Therefore, a fixed size gap existed between root and
many of the observed sequences. This gap was because
there were two forward primer locations used in the
experimental setup that generated the data. This gap can
be removed by further trimming the root sequence and
some of the observed sequences according to the location

of the primer that was relatively downstream. However,
even without such further preprocessing, successful lin-
eage tree reconstruction algorithms should be able to
recognize this gap as a common segment of deletion
between the observed sequences and the root. Therefore,
we decided to keep the root sequence as is and evaluate
whether tree reconstruction algorithms could identify the
common deletion shared by the observed sequences.

The lineage tree reconstructed by IgTree was of size
1396 (Fig. 5b). dnapars generated a lineage tree which
has 1199 nodes (Fig. 5c). The lineage tree reconstructed
by GLaMST contained 1190 nodes (Fig. 5d). Therefore,
GLaMST and dnapars significantly outperformed IgTree
in achieving the maximum parsimony criterion. From
Fig. 5c and d, we can see that the trees reconstructed by
GLaMST and dnapars shared similar topology, with a long
chain of intermediate nodes off of the root before the first

http://www.IMGT.org


Yang et al. BMC Genomics 2020, 21(Suppl 9):583 Page 9 of 11

Fig. 5 Comparison based on real data. a Multiple sequence alignment of the root node and 14 selected observed nodes. This sequence alignment
shows a fixed gap between root node and observed nodes. b Lineage tree constructed by Igtree. Square represents the root node. The solid nodes
are the observed sequences, while the white/empty nodes are intermediate nodes. c Lineage tree constructed by dnapars. d Lineage tree
constructed by GLaMST

branching point. This chain corresponded to the 48-base
segment in the root sequence which did not exist in the
observed sequences. In contrast, Fig. 5b shows that IgTree
failed to recognize this common difference between the
observed sequences and the root, generating a tree wider
and shallower tree with much larger size compared to

GLaMST and dnapars. We also computed the 12 tree fea-
tures in Table 2, which confirmed that the topology of the
GlaMST and dnapars results were similar to each other,
but very different from that of IgTree.

This dataset contained 684 observed sequences, which
was much larger than the simulated data, and therefore,



Yang et al. BMC Genomics 2020, 21(Suppl 9):583 Page 10 of 11

enabled us to compare the running time of the three algo-
rithms. These algorithms were compared on a desktop
computer with Intel i7-3770 processor at 3.40GHz and
32GM memory. dnapars spent roughly 5 days to recon-
struct a lineage tree for this dataset. IgTree took 20 min-
utes, while GLaMST took only 16 minutes. Although dna-
pars and GLaMST reconstructed similar tree structures,
GLaMST is significantly more efficient computationally.

Discussion
In the simulation results, 9 different simulation settings
were explored, with the same ranges of numbers of simu-
lated mutation and indel events and observed sequences,
but different sequence length and different probability
distributions for mutations, insertions and deletions. In all
9 simulation settings, the mutation and indel events were
uniformly distributed in simulated sequences. Such a sim-
plification means that no individual of the 9 simulation
settings was able to sufficiently capture the complexity of
the somatic hypermutation process of the BCR repertoire.
However, we can view these simulation settings as bases
whose combinations can capture the complex biology.
For example, the first 3 simulation settings corresponded
to relatively low rates of somatic hypermutation events,
while the last 3 simulation settings corresponded to high
rates of somatic hypermutation events. A weighted com-
bination of the first 3 and the last 3 simulation settings
can represent a BCR sequence that has a lower muta-
tion frequency in the framework regions (FWRs) and
a higher frequency in the complementarity determining
regions (CDRs), and the weights can represent the rela-
tive length of the FWRs and CDRs in the BCR sequence.
Therefore, the algorithm that performed well in all simu-
lation settings was more likely to perform well in real BCR
sequencing data, which was GLaMST as shown in Table 1
in terms of the reconstructed tree size.

In the performance comparison based on the real
BCR sequencing data, the main performance difference
between IgTree and dnapars/GLaMST was due to a fixed
size gap between the root sequence and the observed
sequences corresponding to two different primers used in
the experiment that produced the data. As a result of the
fixed size gap, we expected the reconstructed tree to start
with a long chain of deletions that represent the segment
in the root sequence but not in the observed sequences.
This was successfully captured by dnapars and GLaMST
but not by IgTree. However, typical BCR sequencing anal-
ysis pipelines often include preprocessing steps to trim all
sequences according to the location of the downstream
primer, which eliminates the fixed size gap. To compare
the algorithms without the fixed size gap in the data,
we trimmed all sequences according to the location of
the downstream primer. When applied to the trimmed
data, the sizes of the lineage trees generated by the three

algorithms were 1136 for IgTree, 958 for dnapars and
954 for GLaMST. The topologies of these resulting trees
were highly similar to those shown in Fig. 5b-d, with
IgTree being wider and shallower compared to the other
two algorithms. Therefore, even after the fixed size gap
removed in the BCR sequencing data we tested, GlaMST
and dnapars still outperformed IgTree in terms of the
maximum parsimony criterion for reconstructing lineage
trees.

Conclusion
High throughput sequencing of BCR repertoire analysis
motivated the analysis here, addressing the computational
question of reconstructing lineage trees based on par-
tially observed tree nodes. We developed the GLaMST
algorithm to reconstruct lineage trees with maximum par-
simony. As suggested by its name, GLaMST grows lineage
trees along the minimum spanning tree, which is a sim-
ple and efficient heuristic algorithm. Using both simulated
and real data, we demonstrated that GLaMST is more
effective in achieving maximum parsimony compared
two existing algorithms. GLaMST is also computationally
more efficient, enabling its application in analysis of large
BCR sequencing datasets. Integrating GLaMST into exist-
ing BCR sequencing analysis frameworks can lead to sig-
nificant improvements in the lineage tree reconstruction
aspect of the analysis.
Abbreviations
GLaMST: Grow Lineages along Minimum Spanning Tree; BCR: B cell
immunoglobulin receptor; Ig: Immunoglobulin; NP: Nondeterministic
polynomial time; TIgGER: Tool for Ig Genotype Elucidation via Rep-Seq; PHYLIP:
PHYLogeny Inference Package; MST: Minimum Spanning Tree; FWRs:
Framework regions; CDRs: Complementarity determining regions; PBMC:
Peripheral blood mononuclear cells; FACS: Fluorescence-activated cell sorting;
IMGT: The international ImMunoGeneTics information system

Acknowledgements
Not applicable.

About this supplement
This article has been published as part of BMC Genomics Volume 21 Supplement
9, 2020: Selected original articles from the Sixth International Workshop on
Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC 2019):
genomics. The full contents of the supplement are available online https://
bmcgenomics.biomedcentral.com/articles/supplements/volume-21-
supplement-9.

Authors’ contributions
PQ, EZ, FL and IS designed and supervised the project. XY and PQ developed
and implemented the algorithm. XY, CMT and MCW performed the analysis.
XY and PQ prepared the manuscript. All authors read and approved the final
manuscript.

Funding
This work was partially supported by funding from the National Science
Foundation (CCF1552784). PQ is an ISAC Marylou Ingram Scholar and a Carol
Ann and David D. Flanagan Faculty Fellow. Publication costs are funded by
PQ’s Faculty Fellowship. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
Source code is available at https://github.com/xysheep/GLaMST. Example
demonstrations along with testing data are available at https://xysheep.
github.io/GLaMST.

https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-9
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-9
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-9
https://github.com/xysheep/GLaMST
https://xysheep.github.io/GLaMST
https://xysheep.github.io/GLaMST


Yang et al. BMC Genomics 2020, 21(Suppl 9):583 Page 11 of 11

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA.
2Department of Medicine, Division of Rheumatology, Emory University,
Atlanta, USA. 3School of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, USA. 4Department of Pulmonology, Emory University,
Atlanta, USA. 5Department of Biomedical Engineering, Georgia Institute of
Technology and Emory University, Atlanta, USA.

Published: 9 September 2020

References
1. Calis JJ, Rosenberg BR. Characterizing immune repertoires by high

throughput sequencing: strategies and applications. Trends Immunol.
2014;35(12):581–90.

2. He L, Sok D, Azadnia P, Hsueh J, Landais E, Simek M, Koff WC, Poignard
P, Burton DR, Zhu J. Toward a more accurate view of human B-cell
repertoire by next-generation sequencing, unbiased repertoire capture
and single-molecule barcoding. Sci Rep. 2014;4:6778.

3. Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake
SR. The promise and challenge of high-throughput sequencing of the
antibody repertoire. Nat Biotechnol. 2014;32(2):158–68.

4. Dunn-Walters DK, Belelovsky A, Edelman H, Banerjee M, Mehr R. The
dynamics of germinal centre selection as measured by graph-theoretical
analysis of mutational lineage trees. Dev Immunol. 2002;9(4):233–43.

5. Barak M, Zuckerman NS, Edelman H, Unger R, Mehr R. IgTree: creating
Immunoglobulin variable region gene lineage trees. J Immunol Methods.
2008;338(1-2):67–74.

6. Yaari G, Kleinstein SH. Practical guidelines for B-cell receptor repertoire
sequencing analysis. Genome Med. 2015;7:121.

7. Yang Z, Rannala B. Molecular phylogenetics: principles and practice. Nat
Rev Genet. 2012;13(5):303–14.

8. Werhli AV, Husmeier D. Gene regulatory network reconstruction by
Bayesian integration of prior knowledge and/or different experimental
conditions. J Bioinform Comput Biol. 2008;6(3):543–72.

9. Whelan S, Lio P, Goldman N. Molecular phylogenetics: state-of-the-art
methods for looking into the past. Trends Genet. 2001;17(5):262–72.

10. Day WH, Johnson DS, Sankoff D. The computational complexity of
inferring rooted phylogenies by parsimony. Math Biosci. 1986;81(1):33–42.

11. Chor B, Tuller T. Maximum likelihood of evolutionary trees: hardness and
approximation. Bioinformatics. 2005;21(Suppl 1):i97–106.

12. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res. 1994;22(22):4673–80.

13. Sok D, Laserson U, Laserson J, Liu Y, Vigneault F, Julien JP, Briney B,
Ramos A, Saye KF, Le K, Mahan A, Wang S, Kardar M, Yaari G, Walker
LM, Simen BB, St John EP, Chan-Hui PY, Swiderek K, Kleinstein SH,
Kleinstein SH, Alter G, Seaman MS, Chakraborty AK, Koller D, Wilson IA,
Church GM, Burton DR, Poignard P. The effects of somatic
hypermutation on neutralization and binding in the PGT121 family of
broadly neutralizing HIV antibodies. PLoS Pathog. 2013;9(11):1003754.

14. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL, Kela I,
Hopmans ES, Myklebust JH, Ji H, Plevritis SK, Levy R, Alizadeh AA.
Hierarchy in somatic mutations arising during genomic evolution and
progression of follicular lymphoma. Blood. 2013;121(9):1604–11.

15. Gupta NT, Vander Heiden JA, Uduman M, Gadala-Maria D, Yaari G,
Kleinstein SH. Change-O: a toolkit for analyzing large-scale B cell
immunoglobulin repertoire sequencing data. Bioinformatics. 2015;31(20):
3356–8.

16. Felsenstein J. PHYLIP - phylogeny inference package (version 3.2).
Cladistics. 1989;5:164–6.

17. Stern JN, Yaari G, Vander Heiden JA, Church G, Donahue WF, Hintzen
RQ, Huttner AJ, Laman JD, Nagra RM, Nylander A, Pitt D, Ramanan S,
Siddiqui BA, Vigneault F, Kleinstein SH, Hafler DA, O’Connor KC. B cells
populating the multiple sclerosis brain mature in the draining cervical
lymph nodes. Sci Transl Med. 2014;6(248):248–107.

18. Kruskal JB. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc Am Math Soc. 1956;7(1):48–50.

19. Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD,
Sachs K, Nolan GP, Plevritis SK. Extracting a cellular hierarchy from
high-dimensional cytometry data with SPADE. Nat Biotechnol.
2011;29(10):886–91.

20. Prim RC. Shortest connection networks and some generalizations. Bell
Syst Technol J. 1957;36:1389–401.

21. Wagner RA, Fischer MJ. The string-to-string correction problem. J ACM.
1974;21(1):168–73.

22. Dunn-Walters DK, Edelman H, Mehr R. Immune system learning and
memory quantified by graphical analysis of B-lymphocyte phylogenetic
trees. BioSystems. 2004;76(1-3):141–55.

23. Uduman M, Shlomchik MJ, Vigneault F, Church GM, Kleinstein SH.
Integrating B cell lineage information into statistical tests for detecting
selection in Ig sequences. J Immunol. 2014;192(3):867–74.

24. Tipton CM, Fucile CF, Darce J, Chida A, Ichikawa T, Gregoretti I,
Schieferl S, Hom J, Jenks S, Feldman RJ, Mehr R, Wei C, Lee FE, Cheung
WC, Rosenberg AF, Sanz I. Diversity, cellular origin and autoreactivity of
antibody-secreting cell population expansions in acute systemic lupus
erythematosus. Nat Immunol. 2015;16(7):755–65.

25. Alamyar E, Giudicelli V, Li S, Duroux P, Lefranc M-P. Imgt/highv-quest:
the imgt web portal for immunoglobulin (ig) or antibody and t cell
receptor (tr) analysis from ngs high throughput and deep sequencing.
Immunome Res. 2012;8(1):26.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Compute edit-distance
	Initialize the lineage tree
	Iteratively grow the lineage tree
	Trim and rewire the lineage tree

	Results
	Reconstructed lineage trees using simulated data
	Reconstructed lineage trees using bCR sequencing data

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

