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Abstract

Background: Enterohemorrhagic Escherichia coli O157:H7 (EHEQ) is a significant foodborne pathogen that resides
asymptomatically within cattle and other ruminants. The EHEC genome harbors an extensive collection of mobile
genetic elements (MGE), including multiple prophage, prophage-like elements, plasmids, and insertion sequence (IS)
elements.

Results: A chronological collection of EHEC strains (FRIK804, FRIK1275, and FRIK1625) isolated from a Wisconsin
dairy farm (farm X) comprised a closely related clade genetically differentiated by structural alterations to the
chromosome. Comparison of the FRIK804 genome with a reference EHEC strain Sakai found a unique prophage like
element (PLE, indel 1) and an inversion (1.15 Mb) situated symmetrically with respect to the terminus region.
Detailed analysis determined the inversion was due to homologous recombination between repeat sequences in
prophage. The three farm X strains were distinguished by the presence or absence of indel 3 (61 kbp) and indel 4
(48 kbp); FRIK804 contained both of these regions, FRIK1275 lacked indel 4, and indels 3 and 4 were both absent in
FRIK1625. Indel 3 was the stx2 prophage and indel 4 involved a deletion between two adjacent prophage with
shared repeat sequences. Both FRIK804 and FRIK1275 produced functional phage while FRIK1625 did not, which is
consistent with indel 3. Due to their involvement in recombination events, direct and inverted repeat sequences
were identified, and their locations mapped to the chromosome. FRIK804 had a greater number and overall length
of repeat sequences than E. coli K12 strain MG1655. Repeat sequences were most commonly associated with MGE.
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EHEC in the bovine and farm environments.

Conclusions: This research demonstrated that three EHEC strains from a Wisconsin dairy farm were closely related
and distinguished by variability within prophage regions and other MGE. Chromosome alterations were associated
with recombination events between repeat sequences. An inventory of direct and inverted repeat sequences found
a greater abundance and total length of repeat sequences in the EHEC strains compared to E. coli strain MG1655.
The locations of the repeat sequences were biased towards MGE. The findings from this study expand our
understanding of the precise molecular events and elements that contributed to genetic diversification of wild-type

Keywords: £. coli O157, stx2, Recombination, Prophage, Direct and inverted repeats

Background

Enterohemorrhagic E. coli O157:H7 (EHEC) is a signifi-
cant zoonotic pathogen that causes hemorrhagic colitis
and abdominal cramping. In some cases, patients de-
velop hemolytic uremic syndrome (HUS) and kidney
failure, particularly in young children [1-3]. Cattle are
the primary reservoir of EHEC where residence is
asymptomatic [4, 5]. Contaminated ground beef has
been associated with transmission from cattle to
humans, but an increasing array of foods including leafy
greens [6-8], sprouts [9-11], in-shell hazelnuts [12], and
cookie dough [13] have been implicated as vehicles in
recent outbreaks.

Genomic comparisons of EHEC with nonpathogenic E.
coli strain MG1655 found a common core sequence inter-
rupted by hundreds of genomic islands [14, 15]. Many of
these islands are recognized mobile genetic elements
(MGE) including prophage, prophage-like elements (PLE),
and insertion sequence (IS) elements. EHEC usually har-
bor pO157, a ~ 92 kbp F-like plasmid with some genes en-
coding for virulence factors (i.e, hemolysin) [16, 17].
Other smaller plasmids have been found in some strains
[18-20]. EHEC strain Sakai possesses a typical comple-
ment of mobile MGE: 18 prophage, 6 PLE, and 80 identi-
fied IS, including 19 1S629 elements [15]. By length,
prophage account for 11% of the Sakai chromosome and a
majority of MGE. Most of the identified prophage ele-
ments are considered incapable of excision or replication
and are regarded as cryptic [21]. The genes encoding for
Shiga-like toxins Stx1 and Stx2 are located within separate
prophage. Stx2 possesses greater cytotoxicity in compari-
son to Stx1, and Stx2 production is correlated with the in-
cidence of HUS [22-24]. The stx2-prophage is typically
the only functional phage present [21]. Virulence factors
located in other MGE also contribute to EHEC pathogen-
esis [25, 26].

EHEC have been divided into distinct lineages based
upon octamer-based genome scanning, amplification of
lineage-specific polymorphisms, and microarray-based
comparative genome hybridization techniques [27-31].
Lineages I (LI) and I/II (LI/II) are isolated from clinical
and bovine/environmental sources while lineage II (LII)

strains are confined to bovine/environmental sources.
This suggests that LII has lower human virulence poten-
tial with respect to LI and LI/II. In a previous study, the
prophage content of EHEC strains isolated from a Wis-
consin dairy farm (farm X) was characterized using
phage-based PCR markers [32]. Prophage polymorphism
profiles (PPP) of strains showed an initial resident LII
population supplanted by LI (FRIK804, FRIK1275, and
FRIK1625) with strain-specific PPP. Originally distin-
guished on the basis of differing PFGE profiles, the dif-
ferences between these strains included the insertional
inactivation of stx2 by 1S629 in FRIK1275 and the ab-
sence of the stx2-prophage in FRIK1625. FRIK804 con-
tained the stx2 prophage without 1S629. Based on the
genomic differences and the date of isolation, FRIK804
likely was the original LI strain on farm X followed by
genomic alterations that resulted in strains FRIK1275
and FRIK1625.

In the current study, whole-genome restriction site
mapping and DNA sequencing were used to confirm
that the LI strains isolated from farm X were closely re-
lated and to discern the molecular events leading to the
formation of FRIK1275 and FRIK1625. Prophage and
PLE, containing repeat sequences, occupied the sites of
chromosomal alterations that distinguished the farm X
strains in most cases. A greater number and overall
length of repeat sequences were present in FRIK804
than E. coli strain MG1655. The distribution of repeats
was skewed towards MGE. Results from this study high-
light the prevalence of repeat sequences, particularly
within prophage and PLE, and their role in EHEC diver-
sification in the bovine-farm ecosystem.

Results

de novo sequence assembly of the FRIK804 genome
Sequence assembly using Illumina short-read data was
hampered by an inability to resolve DNA sequence re-
peats longer than read length. Draft genomes produced
using only short-read data produced fragmented assem-
blies. Crucially, these assemblies failed to completely
capture the assortment of MGE present in the EHEC
genome. A high-quality de novo assembly of the
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FRIK804 was produced using single molecule real-time
(SMRT) sequence data in conjunction with Illumina
paired-end data and confirmation using whole-genome
mapping (i.e., optical mapping). The gapless assembly of
the FRIK804 genome was required to provide a refer-
ence for the other strains analyzed in this study.

Initial assembly of the FRIK804 genome used SPAdes
and both SMRT and Illumina data [33]; however, the
substitution of two prophage regions was identified and
a new assembly was produced using Canu and SMRT
data only that lacked this assembly error [34]. Assembly
improvement and correction was performed using Pilon
[35]. Contigs representing the chromosome and pO157
were identified in the Canu assembly (Table 1). Three
small plasmids (pFRIK804-1, pFRIK804-2, and
pFRIK804-3) present in the former assembly were ab-
sent in the latter suggesting that multiple assembly ap-
proaches are useful. pFRIK804—1 was 6.73 kbp and
carried genes encoding for colicin D and associated im-
munity and lysis genes [19]. pFRIK804—-2 was 4.09 kbp
in length and possessed no predicted phenotype.
pFRIK804—3 was 3.31 kbp in length and featured 100%
sequence similarity with pOSAK]1, a plasmid previously
reported in the genome of EHEC strain Sakai.

Comparative analysis of FRIK804 and Sakai chromosomes
The EHEC strain Sakai was used as a reference for com-
parison with FRIK804 [15]. The extensive synteny of the
two chromosomes was interrupted by a few structural
differences. Non-conserved regions consisted of Mu-like
prophage with distinct strain-specific integration sites,
an inverted segment of the chromosome that included
the terminus, and two indels (Fig. 1). Both strains har-
bored 18 prophage (®804-1 — ®804—18 for FRIK804)
(Spl — Sp18 for Sakai) while FRIK804 contained 7 PLE
(PLE804-1 — PLE804-7) and Sakai 6 PLE (SpLE1 -
SpLE6)(Table 2 and Fig. 1). Both strains harbored the
pO157 plasmid and a 3.31 kbp plasmid pFRIK804-3
(FRIK804) and pOSAKI1 (Sakai). 1S629 and ISEc8 were
the predominate IS in both genomes. Twenty-one 15629
elements were present in FRIK804 and 17 in Sakai
(Table S6). Fifteen integration sites for 1S629 were
shared by the two strains. Nine ISEc8 elements were
present in both strains with 8 common sites of integra-
tion (Table S7).

Table 1 FRIK804 genome assembly statistics

Contig name Size (kbp) GC% ORFs
Chromosome 5554.24 50.52 5836
pO157 92.70 47.59 99
pFRIK804-1 6.73 50.19 6
pFRIK804-2 4.09 4957 3
pFRIK804-3 3.31 4342 4
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Temperate prophage Mu exhibits transposable activity
within the host chromosome [36]. The Mu-like pro-
phage in Sakai (Sp18) is 38.76 kbp in length and is inte-
grated within a putative sorbose operon, disrupting the
sorbose operon and specifically locus sorM [37]. Mu-like
prophage ®804—3 was 39.18 kbp in length and was inte-
grated in an intergenic region separating loci prpD and
prpE. The Mu-like prophage shared 37.97 kbp of
(96.52%) sequence identity (Fig. 2).

Indel-1 (PLE804—1) was a 57.02 kbp region present in
FRIK804 and absent in Sakai. Indel-1 disrupted serW en-
coding for serine tRNA. Alignment of the nucleotide se-
quence of indel-1 from FRIK804 with the nucleotide
sequences of PLE in the Sakai genome (SpLE1-SPLE6)
identified common flanking regions shared with SpLE1
(Fig. S1). On this basis, indel-1 was classified as a PLE
and designated as PLE804—1. Indel-2 was a 7.46 kbp re-
gion present in Sakai but absent in FRIK804 and was not
recognized as a MGE. A majority of the ddp operon and
dosP were within this region. The ddp operon contains
genes encoding for D-ala-D-ala transport and a dipepti-
didase [38, 39]. dosP is a predicted pseudogene.

Comparison of the stx2-prophage in FRIK804 (D804—
6) and Sakai (Sp5) was conducted due to its central role
in human pathogenesis. Sp5 measured 62.71 kbp in
length while ®804—6 was 61.90 kbp in length. The pro-
phage shared 58.10 kbp (90.4%) of common sequence
(Fig. 2). Alignment of the prophage was interrupted at
several locations; including key phage regulatory regions
encoding for repressors CI and Cro, replication proteins
O and P, and anti-terminator N found in non-conserved
regions. Strain Sakai had an IS629 element inserted
downstream of stx2 in Sp5 that was absent in ®804—6.
A broader comparison of ©804—6 with other stx2-pro-
phage identified closest sequence homology with phage
933 W, the stx2-prophage present in the genome of
EHEC strain EDL933 [40].

An inversion measuring 1.15 Mbp disrupted the align-
ment of the FRIK804 and Sakai chromosomes. The
inverted segment in FRIK804 relative to strain Sakai cen-
tered around the terminus of replication region. Se-
quence motifs associated with termination of replication
within the inversion included dif and four Ter sites
(TerA, TerB, TerC, and TerD) (Table S1). dif was medi-
ally situated with respect to the inversion, resulting in
approximate symmetry with respect to both replichores.
Replichores 1 and 2 were 2894.4 kbp and 2603.8 kbp in
length in Sakai while replichores 1 and 2 in FRIK804
were 2970.9 kbp and 2583.0 kbp, respectively. The inver-
sion terminated bilaterally within prophage in both
strains. Termini were present within prophage regions
®804-7 and ®804-15 in FRIK804, and their chimeric
counterparts Sp6 and Spl4 in Sakai (Fig. 3). The se-
quences of ®804—7 and ®804—15 were searched for the
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Fig. 1 Comparison of FRIK804 and Sakai chromosomes. Alignment of the FRIK804 (outer) and Sakai (inner) chromosome found disruption of
synteny by large-scale structural alterations. To evaluate each dissimilarity, the locations of relevant genomic features (prophage, PLE, IS, rRNA and
tRNA) were identified. Non-conserved regions (e.g. indel-1 and indel-2) of each chromosome are shaded lighter relative to conserved regions.
Evidence of mosaicism in otherwise conserved prophage was evident in several pairs of homologs, including the stx2-prophage. The majority of
dissimilarities that distinguished each chromosome were associated with MGE. A 1.15 Mb inversion is denoted by the offset region in FRIK804.
Indel-1 was classified as a PLE and indel-2 was not associated with any MGE. Mu-like prophage were integrated at different loci. The locations of
rRNA and tRNA regions are denoted by dark green and light green regions, respectively
A

presence of repeat sequences greater than 100bp in

length. Sixteen inverted repeat sequences were shared
between the prophage (Table S2). A 174 bp repeat se-
quence precisely flanking the boundaries of the inversion
in both ®804-7/®804-15 and Sp6/Spl4 was identified.
To confirm the precise boundaries of the inversion, two

pairs of oligonucleotide primers were designed to amp-
lify the repeat sequence and flanking regions in Sp6
(ECs_1507-F/ ECs_1508-R) and Sp14 (ECs_2759-F/ECs_
2760-R) using PCR (Fig. S1). No amplification was ob-
served using gDNA extracted from FRIK804. Exchange
of primers specific to sequences within the inversion
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Table 2 Designation and chromosomal locations of corresponding prophage and PLE in EHEC strains FRIK804 and Sakai. Prophage
and PLE were numerically designated in clockwise order (see Fig. 1). The locations of prophage in Sakai were used to identify and
locate most prophage and PLE in FRIK804

FRIK804 Sakai
Name Start End Length (bp) Name Start End Length (bp) Notes
®804-1 300,040 310,625 10,586 Sp1 300,041 310,626 10,586
®804-2 310,626 323,512 12,887 Sp2 310,627 323513 12,887
0804-3 409,092 448,271 39,180 Mu-like prophage®
®804-4 929,716 968,301 38,586 Sp3 891,123 929,708 38,586
PLE8O4-1 1,095,506 1,152,526 57,021
0804-5 1,256,797 1,306,445 49,649 Sp4 1,161,091 1,210,740 49,650
®804-6 1,341,717 1,403,616 61,900 Sp5 1,246,012 1,308,719 62,708 stx2-prophage®
PLE804-2 1,465,380 1,552,938 87,559 SpLE1 1,370,456 1,456,704 86,249
0804-7 1,637,715 1,679,972 42,258 Sp6 1,541,470 1,589,892 48,423 Inversion terminus
®804-8 1,733,959 1,755,078 21,120 Sp7 1,594,570 1,610,032 15463
®804-9 2,097,886 2,142,115 44,230 Sp8 1,618,153 1,665,049 46,897 Indel-4
®804-10 2,142,116 2,187,895 45,780 Sp9 1,757,506 1,815,680 58,175 Indel-4
0®804-11 2,366,081 2,417,801 51,721 Sp10 1921414 1,972,525 51,112
®804-12 2,523,534 2,583,605 60,072 Sp11 2,158,174 2,203,951 45,778
®804-13 2,675,768 2,722,663 46,896 Sp12 2,203,952 2,250,093 46,142
0®804-14 2,730,784 2,746,246 15,463 Sp13 2,592,901 2,614,020 21,120
®804-15 2,750,924 2,801,116 50,193 Sp14 2,668,007 2,712,035 44,029 Inversion terminus
PLE804-3 2,828,472 2,843,243 14,772 SpLE2 2,738,079 2,751,537 13,459
®804-16 2,987,650 3,036,836 49,187 Sp15 2,895,926 2,943,804 47,879 stx1-prophage*
®804-17 3,287,328 3,295,878 8551 Spl16 3,192,983 3,201,533 8551
0®804-18 3,570,310 3,594,556 24,247 Sp17 3,475,965 3,500,163 24,199
PLES04-4 3,946,431 3,969,884 23,454 SpLE3 3,852,036 3,875,489 23,454
PLE804-5 4,675,258 4,718,713 43,456 SpLE4 4,580,864 4,624,313 43,450
Sp18 5,040,843 5,079,601 38,759 Mu-like prophage®
PLEB04-6 5/402,757 5,412,991 10,235 SpLES 5,347,085 5357319 10,235
PLE804-7 5413,043 5447,190 34,148 SpLE6 5357371 5,391,518 34,148

*The Mu-like prophage is capable of transposition
PFunctional phage
“Does not produce functional phage

D804-3 = in —Mh _.“m .-..

A) spig [ ——— [E=rmr e s s WS
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Fig. 2 Alignment of distinctive prophage and the functions of predicted genes in EHEC strains FRIK804 and Sakai. a Alignment of Mu-like
prophage ®804-3 and Sp18. b 804PLE-1 and SpLE1 showed conserved flanking regions and divergent core sequences. ¢ Alignment of stx2-
prophage ®804-6 and Sp5 found overall sequence homology disrupted by several regions of low sequence similarity
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Fig. 3 Alignment of prophage ®804-7 and ®804-15 and the locations of 16 inverted and direct repeat sequences, including the flanking ends of
the inversion. Inverted and direct repeat sequences =100 bp in length were evaluated as potential sites of recombination (blue). The inverted
segment of the FRIK804 chromosome relative to the Sakai chromosome was flanked by a pair of repeats, the site of the crossover of the
inversion is shown in red. To better show alignment, the orientation of ®804-15 is inverted relative to ©804-7
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(ECs_2760-R/ECs_1508-R and ECs_1507-F /ECs_2759-
F) resulted in amplification of appropriate size amplicons
when using gDNA extracted from FRIK804 only.

Whole-genome mapping

Whole-genome mapping (also known as optical map-
ping) produced ordered restriction maps of each farm X
strain. Mapping of the chromosome provided a better

understanding of the chromosome rearrangements that
distinguished each strain. Whole genome mapping was
also valuable for verification of genome assembly of the
FRIK804 chromosome. Maps were prepared using the
restriction enzyme Ncol. FRIK804, FRIK1275, and
FRIK1625 had 559, 548, and 542 fragments, respectively,
that were greater than 2.0 kbp in length (Fig. 4a). Based
on the sum of the length of the fragments, the

supophage

(indel-3)

TS
i OV
E coli O1STHT EDL9SY

Fig. 4 a Ncol restriction site maps of the chromosomes from FRIK804 (outer), FRIK1275 (middle), and FRIK1625 (inner). An alignment and
comparison of farm X strains detected the presence of two indels which distinguished each strain. The identity of each indel was determined
using the nucleotide sequence of FRIK804. The location of indel-3 was consistent with the absence of the stx2-prophage in FRIK1625. Indel-4 was
determined to overlap portions of two adjacent prophage, ©804-9 and ®804-10. b Hierarchical clustering and pairwise alignment scoring of
Ncol chromosome restriction maps was used to assess relative similarity of the three farm X strains with 30 other E. coli. EHEC O157:H7 strains
grouped together (black), and farm X strains (underlined) formed a cluster (bold), indicating that these strains were closely related to one
another. FRIK966 is a lineage group Il strain included for comparative purposes
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chromosome lengths were estimated to be 5.494
(FRIK804), 5.440 (FRIK1275), and 5.349 (FRIK1625)
Mbp. A side-by-side comparison of mapping data from
each strain revealed collinear chromosomes disrupted by
two indels (indel-3 and indel-4). The presence or ab-
sence of these indels served to distinguish each strain.
Indel-3 and indel-4 were estimated to be 61 and 48 kbp
in length, respectively. Both indels were present in
FRIK804 and absent in FRIK1625. FRIK1275 possessed
indel-3 but lacked indel-4. Guided by the nucleotide se-
quence of FRIK804, the position of indel-3 in FRIK1625
was consistent with the absence of the stx2-prophage.
The location of indel-4 corresponded with portions of
two adjacent prophage in FRIK804, ®804—-9 and ®804—
10. Pairwise alignment scoring of the ordered restriction
maps of the three farm X strains and maps of 30 other
E. coli strains was used to assess similarity via hierarch-
ical clustering. Farm X strains clustered in a single clade
(Fig. 4b).

Plasmid content

All three farm X strains contained pO157. FRIK804 also
contained three smaller plasmids: pFRIK804-1,
pFRIK804-2, and pFRIK804-3. Draft genome assemblies
were produced using SPAdes with Illumina sequencing
data and iteratively polished using Pilon. The FRIK1275
and FRIK1625 assemblies had contigs representing
pO157 and pFRIK804-3, but contigs for pFRIK804-1
and pFRIK804-2 were absent.

Inter-prophage deletion in FRIK1275 and FRIK1625

Whole-genome mapping identified an inter-prophage
deletion in adjacent prophage ®804-9 and ®804-10
(indel 4) in FRIK1275 and FRIK1625. To precisely deter-
mine the boundaries of the absent prophage region in
FRIK1275 and FRIK1625, Illumina sequencing data from
each strain (including FRIK804) were aligned to the nu-
cleotide sequence of ®804-9 and ®804—10 using Bowtie
(Fig. 5). Divergence in read coverage was calculated be-
tween FRIK804 and both FRIK1275 and FRIK1625. Read
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coverage found a 47-kbp deletion that spanned prophage
®804-9 and ®804-10 in both strains.

Twenty-three direct repeat sequences of 100bp or
greater in length were shared between the two adjacent
prophage ®©804—-9 and ®804—10 (Table S3). An 822 bp
direct repeat was situated at both ends of the region
missing in FRIK1275 and FRIK1625. This suggested that
homologous recombination between the two repeat se-
quences was responsible for the deleted region in
FRIK1275 and FRIK1625 (indel 4, Fig. 4a). The predicted
location and function of the remaining ®804-9 and
®804—10 genes, in FRIK1275 and FRIK1625, aligned
with those in FRIK804 (Fig. S3). The 822 bp repeat over-
lapped with a gene predicted to encode for a phage anti-
repressor protein (Table S4). PCR amplification of the
region was performed using oligonucleotide primers spe-
cific to sequences flanking the repeat sequence (ECs_
2180-int-F and ECs_2272-R). Amplification was ob-
served using gDNA extracted from FRIK1275 and
FRIK1625 (Fig. S2). Because of the excessive length, an
amplicon was not observed using gDNA extracted from
FRIK804 (> 47.7 kbp).

FRIK804 harbors a greater number and overall length of
repetitive sequences than nonpathogenic E. coli K12
strain MG1655

The abundance of repeat sequences in the chromosome
of FRIK804 was quantified using a custom program writ-
ten in Perl. Briefly, a sliding-window of 75-mer nucleo-
tide sequences were iteratively hashed to the
chromosome coordinate occupied by that sequence. Se-
quences present in only one location or those lacking a
reverse complement in the hash table were discarded.
The distribution of repeat sequences was determined
using the start and end coordinates of chromosome re-
gions and repeat sequence(s). The categories of chromo-
some elements were prophage, PLE, IS, rRNA, tRNA,
and rearrangement hot spot (Rhs) elements. There were
5,402,917 unique 75-mer sequences in the FRIK804
chromosome (5,554,243 bp in length) in which 112,206
were present two or more times irrespective of

‘\;Ww ’va‘ Mm\/‘ ,J\ ]‘!7, ’\-,/\«’V

~

wvv‘wmwwi\ww&

LI M 4N AN WY

Il Crossover region of homology

B AFRIK1275 read coverage
B Other regions of homology shared between prophage [l A FRIK1625 read coverage

W Predicted ORFs

Fig. 5 Detection of the boundaries of inter-prophage deletion (indel-4) in ®804-9/0804-10 present in FRIK1275 and FRIK1625. Short-read
lllumina sequencing data from each strain was aligned to the nucleotide sequence of ®804-9 and ®804-10 from FRIK804. The difference in read
coverage in FRIK1275 (dark green) and FRIK1625 (light green) relative to FRIK804 was determined at each location. Additionally, repeat sequences
shared between ©804-9 and ©804-10 that were = 100 bp (blue) were determined and mapped to identify potential sites of recombination. The
difference in read coverage in AFRIK1275 and AFRIK1625 was below zero in the region of the deletion and terminated in direct repeats (shaded
red) that flanked the deleted 47.7 kbp fragment. Predicted ORFs in ®804-9 and ®804-10 are shown in dark gray
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orientation. The majority (67.81%) of 75-mer repeats were
present in prophage and PLE (Fig. 7a), followed by IS
(14.58%) and rRNA (9.01%). MG1655 possessed fewer re-
peat sequences overall. The MG1655 chromosome had
38,188 75-mer sequences present more than once and
458,4562 unique sequences (4,641,652bp in length).
There were 24,249 repeat sequences present two or more
times, irrespective of orientation. The greatest number of
repeats were located within IS (40.45%) followed by rRNA
(30.18%), prophage (5.42%), and tRNA (0.15%).

Repeat sequence complexity was a measure of the re-
peat copy number irrespective of orientation, i.e. the
more times repeat sequences appeared in a chromosome
the greater the complexity. Measurement of the copy
number of each 75-mer repeat sequence (and disregard-
ing sequence orientation) in each strain found a greater
number in FRIK804 compared to MG1655 (Fig. 7b). To
further evaluate repeat sequence complexity, the loca-
tions of pairs of direct and inverted repeats were defined
and termed as links. The number of links for a given dir-

nq(ng - 1)
~£=5— where nq

ect repeat sequence was a function of
is the number of direct repeats, and the number of
inverted links (reverse complement sequences) was n,n;
I, where n; is the number of inverted repeats. The pairs
of start and end locations that defined each link were
then aligned with their chromosome location. In

FRIK804, there were 289,610 direct and 303,420 inverted
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links. IS accounted for the greatest number of direct
links (42.68%) followed by links within prophage/PLE
(34.37%) and rRNA (15.50%). IS also accounted for the
greatest number of inverted (46.28%) links followed by
prophage/PLE and rRNA (37.65 and 12.96%, respect-
ively) (Fig. 7b). MG1655 possessed fewer direct (113,
733) and inverted (96,478) links. IS accounted for the lo-
cations of most direct (51.46%) and inverted (55.34%)
links followed by rRNA genes (direct 36.23% and
inverted 38.39% inverted).

The extent and topography of repeat sequences in the
chromosome were examined by merging pairs of direct
and inverted links that were adjacent to one another,
mapping their chromosome locations and connecting
links by lines that were plotted using Circos (Fig. 6).
Merged links were both more abundant and longer in
FRIK804 compared to MG1655 (Fig. 7c). There were
1075 direct and 1241 inverted merged links in FRIK804.
The maximum and median direct repeat lengths were
10,011 and 134 bp, respectively, and for inverted repeats,
the maximum length was 4729 and the median length
was 141 bp. In MG1655, there were 407 direct and 234
inverted merged links identified. The maximum repeat
length for direct repeats was 2816 bp with a median of
144 bp, and for inverted repeats, the maximum length
was 3024 bp and median was 245 bp.

Repetitive regions of the chromosome were defined as
areas containing one or more repeat sequences. To
evaluate repeat sequences on the basis of length rather

/ / /
a g

RN,
RN,

My,

EEEEER

RNA
RNA
Rhs clements

green), tRNA (light green), and rhs elements (purple)
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than copy number (e.g., complexity), the length of each
annotated chromosome region occupied by repetitive re-
gions were determined. A total of 417,747 bp (7.52%) of
the FRIK804 chromosome consisted of repetitive re-
gions. These regions were predominantly located within
prophage/PLE (5.22%) (Fig. 7d) followed by IS (0.97%).
Strain MG1655 had a total length of 117,294 bp (2.53%)
of repetitive regions that were most commonly associ-
ated with IS (0.92%) and rRNA genes (0.69%).

stx2-prophage excision site in FRIK1625

The site of integration of the stx2-prophage is specific in
each EHEC lineage [41, 42], with the stx2-prophage inte-
grating into wrbA in LI and I/II strains. Prophage exci-
sion requires both Int and excisionase (Xis) activity,
resulting in restoration of attP and attB sites [40]. A pu-
tative attB site within wrbAgpross was previously

identified by Plunkett et al. [40]. Comparison of the nu-
cleotide sequence of wrbA from the FRIK1625 with
wrbA from a LI/II strain (without stx2 prophage) found
100% sequence identity (data not shown). This shows
that if the stx2-prophage was present in FRIK1625, exci-
sion was mediated by Int/Xis activity rather than hom-
ologous recombination, and excision occurred without
subsequent lysis of the host.

Detection of stx2 transcript in FRIK1275 (stx2::15629)

Identification of different EHEC strains from farm X was
previously determined using Xbal restriction enzyme di-
gest profiles (REDP) generated using PFGE [43]. A ma-
jority of EHEC isolates from farm X during the last year
of visits to this farm had a common REDP profile, and
FRIK1275 is a representative isolate from this group
[43]. PCR amplification of stx2 from strains with this
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common REDP (80 samples) had IS629 inserted in stx2
[32]. Since Stx2 production and release is linked with
prophage induction [44], the farm X strains were tested
for transcript of stx2 and a downstream gene encoding
for a putative terminase. Three RT-PCR targets were de-
signed. Primers stx2-US-RT-F/R and stx2-DS-RT-F/R
targeted regions of stx2 immediately upstream and
downstream of 1S629. The identification of suitable tar-
gets downstream of stx2:1S629 was hampered by repeat
sequences shared between the stx2-prophage and other
prophage and PLE in the chromosome; however, a suit-
able target was identified in a gene annotated as a termi-
nase (primers ECs_1220-RT-F/R). Amplification of a
portion of the 16S rRNA gene (primers 16S-RT-F/R)
was included as a control. Following prophage induction
with MMC, amplification of both stx2-prophage targets
and the downstream terminase was detected in RNA ex-
tracted from FRIK804 and FRIK1275, demonstrating
that IS629 in stx2 did not abolish the production of tran-
script from stx2 and the downstream terminase in
FRIK1275 (Table 3). Amplification using RNA extracted
from cultures of FRIK1625 did not result in amplifica-
tion of targets since it lacked the stx2-prophage.

Discussion

Epidemiological investigations of EHEC outbreaks have
noted REDP variations in strains isolated from impli-
cated foods and clinical stool samples [45, 46]. The pres-
ence of multiple cryptic prophage regions in the EHEC
genome are thought to serve as recombination hotspots;
however, a detailed understanding of the underlying mo-
lecular event(s) that lead to the observed chromosomal
alterations is lacking, particularly in isolates from the bo-
vine reservoir [47, 48]. In this study, a precise examin-
ation of chromosome modifications in a chronological
set of E. coli O157:H7 strains from a Wisconsin dairy
farm (farm X) was conducted. The three strains, each
with a unique REDP, belonged to LI and were isolated
over a period of approximately 2 years from farm X.
FRIK804 was the first E. coli O157:H7 strain isolated
from the farm and was found in multiple cattle fecal
samples over a two-month period [49]. FRIK1275 was
isolated roughly 2 years later than FRIK804 over a 7-
month period and was recovered from feed, water, and

Table 3 RT-PCR amplification of stx2-prophage markers
following induction with mitomycin C

Strain
Target FRIK804 FRIK1275 FRIK16215
stx2-US-RT-F/R + + -
stx2-DS-RT-F/R + + -
ECs_1220-RT-F/R + + -
165-F/R + + +
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cattle [43, 49]. FRIK1625 was isolated from a single fecal
sample in the last year of the study. Findings from these
analyses found that the presence, absence, and location
of MGE, (i.e., plasmids, prophage, and IS elements)
accounted for the genomic differences among the
strains. Furthermore, direct and inverted repeat se-
quences commonly found in prophage and PLE in EHEC
played a central role in the chromosome changes in the
farm X strains.

Analysis of MGE in draft E. coli O157:H7 genomes as-
sembled using short-read DNA sequence data (Illumina)
was complicated by repeat sequences found in multiple
regions of the chromosome. The assembly of the
FRIK804 genome was accomplished using SMRT long-
read sequencing data and improved using short-read
data. Validation of the finished sequence assembly was
conducted using whole-genome mapping data (optical
mapping). Pairwise alignment of the ordered restriction
maps and hierarchical clustering determined the farm X
strains comprised a single clade of strains (Fig. 4b).

Genome diversity in EHEC is associated with MGE
[37, 50], particularly prophage and PLE. By length, the
largest difference between FRIK804 and strain Sakai was
a 1.15Mb inversion in which inverted repeat sequences
were identified at the boundaries in a pair of chimeric
prophages. The inversion was nearly symmetrical with
respect to the axis of replication (defined by dif and
oriC). This is important since inversion of the Ter
(terminus of replication) region can stall or stop replica-
tion forks and induce the SOS response in E. coli [51,
52]. Inversions spanning the terminus of replication re-
gion have been found in the chromosomes of EHEC and
other enterics and linked to pairs of inverted repeats [48,
53, 54]. The persistence of this clade of strains on farm
X, with the inversion relative to strain Sakai, indicates
the inversion likely had no or little impact. Other differ-
ences were the integration sites of a Mu-like prophage,
the presence of an additional PLE in FRIK804, and a
7.46 kbp region not associated with MGE that was
present in Sakai and absent in FRIK804 (Fig. 1). Com-
parison of prophage homologs occupying the same
chromosomal site in the two strains identified regions of
reduced sequence similarity in otherwise conserved pro-
phage. Exchange of portions of phage genomes by hom-
ologous recombination has been previously observed
and attributed to phage-encoded recombinases with re-
laxed fidelity [55—57]. Both FRIK804 and Sakai harbored
the pO157 virulence plasmid and a small plasmid
(pFRIK804-3) sharing 100% sequence similarity.
FRIK804 possessed two other plasmids (pFRIK804—1
and pFRIK804-2). pFRIK804-1 carried genes for pro-
duction and immunity to colicin D. No predicted pheno-
type was ascribed to pFRIK804-2. IS629 was the most
numerous recognized IS in both chromosomes.
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Although the locations of a majority of 1S629 elements
were conserved between the two chromosomes, variabil-
ity in copy number and location was in agreement with
previous reports suggesting relatively high frequencies of
transpositional activity [58, 59].

Analysis of the three farm X strains determined that
FRIK1275 and FRIK1625 shared a common plasmid pro-
file with Sakai. In addition, FRIK1275 and FRIK1625
shared a common deletion (47.7 Kbp) in two adjacent
prophage ©804—9/®804-10 in comparison to FRIK804
(indel 4, Fig. 4a). The 1S629 content of the farm X
strains was similar. One important difference noted in
FRIK1275 was the insertion of IS629 in stx2 (stx2:
1S629). FRIK1625 lacked the stx2-prophage (indel 3)
suggesting non-lethal excision of the stx2-prophage. Loss
of the stx2-prophage has been observed before during la-
boratory passage [60, 61].

Detailed analysis of the 47.7-kbp deletion in FRIK1275
and FRIK1625 was conducted by alignment of short-
read sequence data to the intact sequence of adjacent
prophage ®804—-9 and ®804—10 from FRIK804. A com-
parison of the difference in read coverage between
strains FRIK1275 and FRIK1625 with that of FRIK804
(no deletion) enabled demarcation of the deletion
boundaries (Fig. 5). The difference in read coverage rela-
tive to FRIK804 (<0) terminated in direct repeats that
flanked the deletion boundaries. Similar deletions in
Sakai involving Sp1ll and Spl2 in Sakai have been ob-
served in laboratory conditions [62]. The propensity for
deletions in this region may be due to the proximity of
the two prophages.

Homologous recombination is a process fundamental to
DNA replication, repair, and horizontal gene transfer. The
frequency of recombination between homologous repeat
sequences increases with the length of the repeat in a bi-
phasic manner [63]. The inflection point in this curve is
74 bp, below which there is a dramatic decrease in recom-
bination frequency. Based on these findings, Perl scripts
were written to detect repeat sequences =75 bp in length.
We did not address approximate repeats in DNA se-
quences because of the extensive number of homologous
sequences present in the O157:H7 genome and the dra-
matic decrease in the frequency of recombination when
mismatches are present within the repeats [63].

The chromosome inversion present in farm X strains
relative to the Sakai strain and the partial deletion of
®804—9/D804—10 present FRIK1275 and FRIK1625
both involved repeat sequences. Analysis of direct and
inverted repeat sequences >75bp was conducted using
Perl scripts written to evaluate the abundance, location,
and complexity of repeat sequences [GitHub (http://
github.com/eliotstanton/)]. There was a greater abun-
dance of repeat sequences in FRIK804 in comparison to
non-pathogenic E. coli K-12 strain MG1655 (Figs. 6 and
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7). In FRIK804, the abundance of 75mer repeat se-
quences was most prominent in prophage/PLE regions.
The complexity of repeat sequences (includes copy num-
ber of both direct and inverted repeat sequences) was
most commonly associated with IS elements. Analysis of
areas of the chromosome containing one or more re-
peats (repeat regions) found that most repeat regions
were located within prophage/PLE. In MG1655, the
abundance and complexity of repeat sequences were
mostly associated with IS elements. PLE were not identi-
fied and comparatively few repeat sequences were lo-
cated in prophage regions.

IS integration can result in polar mutations [64]. The
production of functional phage by FRIK1275 (stx2:
1S629) indicated that genes downstream of stx2:1S629
(encoding for lysis, head, and tail proteins) were
expressed. Transcripts from genes upstream and down-
stream of the stx2:1S629 were detected by RT-PCR al-
though Stx2 was not detected by Western blot [32].
Phage from FRIK1275 (stx2:1S629) formed plaques on
host strain MG1655, and PCR amplification of material
from individual plaques generated amplicons with a size
consistent with the presence of stx2:: 1S629. This indi-
cated that phage production and plaque formation was
not the result of excision of 1S629 and the restoration of
phage function. FRIK1275 (stx2:1S629) was the domin-
ant strain isolated from farm X [43] over a 7-month
period of time indicating that Stx2 production was not
required for dominance or persistence of EHEC within
cattle and the farm environment.

Conclusion
The results of this study support and illustrate the
contribution of MGE (i.e., plasmids, prophage, PLE,
and IS) to genome diversity in EHEC from cattle and
the farm environment. Detailed analysis of an inver-
sion and inter-prophage deletion provided evidence
that homologous recombination between pairs of re-
peat sequences in prophage were involved in struc-
tural alterations to the chromosome. Analysis of
repeat sequences in the genome found a greater num-
ber and complexity in FRIK804 compared to E. coli
K12 strain MG1655 with a preponderance of the re-
petitive sequences present in MGE. The abundance
and location of repeat sequences in FRIK804 may be
a driver of chromosome rearrangements in EHEC.
This study contributes to our understanding of the precise
molecular events contributing to genomic diversity in wild-
type EHEC strains from the bovine and farm environments.

Methods

Strains

The EHEC strain Sakai (RIMD 0559952) is a well char-
acterized lineage group I strain that was used as a


http://github.com/eliotstanton/
http://github.com/eliotstanton/

Stanton et al. BMC Genomics (2020) 21:562

standard reference for comparison purposes (Accession:
BA000007.2)(https://doi.org/10.1093/dnares/8.1.11).
EHEC strains FRIK804, FRIK1275 and FRIK1625 also
belong to lineage group I and were isolated from bovine
fecal samples on farm X (PMCID: PMC106160).
FRIK966 was used as a representative lineage group II
strain isolated from farm R in Wisconsin [49]. E. coli K-
12 strain MG1655 was from Dr. Tricia Kiley. Stocks of
all strains were maintained at — 70 °C in LB (Luria broth,
BD Difco, Houston TX) with 20% glycerol.

Media and buffers

LB was used for propagation of E. coli strains. LB agar
was used for resuscitation of strains from frozen storage.
LB soft agar consisted of LB, agar (6.0g/L) and CaCl,
(10 mM). SM buffer (100 mM NaCl, 8 mM MgSO,, and
50 mM Tris-HCI) was used to serially dilute phage ly-
sates. For SMRT sequencing of FRIK804, cells were
grown in M9 medium (BD Difco, Houston, TX).

Whole-genome mapping of farm X strains

Ordered restriction maps (also known as optical maps)
of the chromosomes from farm X strains were con-
ducted by OpGen (Gaithersburg, MD) using restriction
enzyme Ncol as outlined by Zhou et al. [65]. Structural
differences in the chromosome of each strain were first
resolved by map alignment using Argus MapSolver soft-
ware. Alignment scoring data of in silico maps of other
E. coli and the farm X strains was obtained from Map-
Solver and used to create a similarity matrix. Hierarch-
ical clustering was performed using UPGMA in R to
create an unrooted tree illustrating the relative similarity
of maps from each strain [66].

lllumina sequencing of farm X strains

Strains were individually inoculated into LB directly
from frozen stock cultures maintained at —70°C. Fol-
lowing incubation overnight at 37°C, cells were har-
vested by centrifugation. Genomic DNA was prepared
using MasterPure Complete DNA and RNA Purification
Kit (Epicentre, Madison, WI). Samples were treated with
RNAse A (Thermo Fisher Scientific, Waltham, MA) and
incubated for 30 min at 37 °C to remove RNA. The man-
ufacturer’s protocol was modified with regards to pre-
cipitation of DNA to include an overnight incubation in
70% ethanol at — 20 °C. DNA samples were then submit-
ted to the University of Wisconsin-Madison Biotechnol-
ogy Center. DNA concentration was verified using the
Qubit® dsDNA HS Assay Kit (Life Technologies, Grand
Island, NY). Samples were prepared according to the
TruSeq Nano DNA LT Library Prep Kit (Illumina Inc.,
San Diego, CA) with minor modifications. Samples were
sheared using a Covaris M220 Ultrasonicator (Covaris
Inc., Woburn, MA), and were size selected for an
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average insert size of 550 bp using SPRI bead-based size
exclusion. The quality and quantity of the finished li-
braries were assessed using an Agilent High Sensitivity
DNA kit and Qubit® dsDNA HS Assay Kit, respectively.
Libraries were standardized to 2nM, and paired-end
250bp sequencing was performed using the Illumina
MiSeq Sequencer and a MiSeq 500 bp (v2) sequencing
cartridge. Images were analyzed using the standard Illu-
mina Pipeline, version 1.8.2.

SMRT sequencing of FRIK804

FRIK804 was inoculated into M9 media from a single
colony on a LB agar plate and incubated overnight at
37 °C. Cells were harvested by centrifugation and washed
4 times using sterile 10% glycerol. gDNA from washed
cell pellets was purified using the method “bacterial gen-
omic DNA isolation using CTAB” from JGI protocol
(version 3) (https://jgi.doe.gov/user-programs/pmo-over-
view/protocols-sample-preparation-information/jgi-bac-

terial-dna-isolation-ctab-protocol-2012/). The gDNA
sample was submitted to the University of Wisconsin-
Milwaukee Great Lakes Genomic Center. A standard Pa-
cific Biosciences large insert library was prepared by
fragmenting DNA to approximately 20kb using g-
TUBEs (Covaris, Woburn, MA). Fragmented DNA was
enzymatically repaired and ligated to a PacBio adapter to
form the SMRTbell Template. Templates larger than 10
kb were size selected using BluePippin (Sage Science,
Beverly, MA). Templates were annealed to a sequence
primer, bound to polymerase (P6), and then bound to
PacBio Mag-beads and SMRTcell sequenced using a
RSII sequencer and C4 chemistry.

Genome assembly

Draft genome assemblies of each farm X strain were
produced using Illumina short-read data and the gen-
ome assembler SPAdes 3.11.1 [33]. Corrected paired-end
reads were aligned to the assembly using Bowtie 1.1.2
[67]. SAM files were reformatted using Sequence Align-
ment/Map (SAM) tools (http://samtools.sourceforge.
net), and Pilon 1.22 [35] was used to identify and resolve
sequence variants. Improvement of the draft assemblies
was iteratively performed until no sequence variants
were found by Pilon. Contigs smaller than 1.0 kb or with
kmer coverage less than 20 were excluded from final
draft assemblies.

The FRIK804 genome was also assembled using Pac-
Bio long-read data and Canu 1.7 [34]. Iterative improve-
ment of the assembly was performed as previously
outlined. Circularization of the chromosome was per-
formed manually using BLASTn [68-70] to identify
overlapping regions. Validation of the assembly was con-
firmed by generating an in silico whole-genome map of
Ncol restriction sites and comparing it to map generated
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from the FRIK804 chromosome to ensure that the two
maps were congruent.

Genome annotation and prophage identification

Contigs from the complete FRIK804 genome and draft
genomes of FRIK1275 and FRIK1625 were automatically
annotated using RAST [71, 72]. Prophage and PLE re-
gions in FRIK804 were identified using the published
start and end locations of prophage and PLE in strain
Sakai and BLASTn [65].

Nucleotide accession sequence numbers

The genome sequences of the E. coli O157:H7 strains
have been deposited in GenBank; FRIK804 under the ac-
cession numbers CP034384-CP034388, FRIK1275 under
RWJR00000000 and FRIK1625 under RWJQ00000000.

Whole genome alignment and comparisons

Alignment of the FRIK804 and Sakai chromosomes was
performed using progressiveMauve [73] and BLASTn
[68-70]. To better identify common and divergent re-
gions, alignment data from progressiveMauve was for-
matted using custom Perl scripts to format data for
visualization using Circos 0.69 [74]. Common sequence
identity shared between genome regions was calculated
using the BLAST global alignment interface (Needle-
man-Wunch). All custom Perl scripts written for this
study are available on GitHub (http://github.com/eliot-
stanton/).

PCR amplification of inversion termini

The boundaries of the inversion present in strains of the
farm X clade, with respect to Sakai, were verified using
oligonucleotide primers ECs_2759-F, ECs_22760-R,
ECs_1507-R, and ECs_1508-R. All primers used in this
study were manufactured by Integrated DNA technolo-
gies (Coralville, IA) and are listed in Table S5. The indi-
vidual primer pairs ECs_2759-F/ECs_2760-R, ECs_1507-
F/ECs_1508-R, ECs_2759/ECs_1507-R, and ECs_2760-
R/ECs_1508-R were separately mixed with gDNA ex-
tracted from Sakai, FRIK804, FRIK1275, and FRIK1625.
DNA was amplified using rTaq DNA polymerase (Bull-
dog, Portsmouth, NH) and PCR conditions used were
94.°C for 5 min, followed by 35 cycles consisting of 94 °C
for 30s, 51°C for 30s, and 72°C for 3 min, and con-
cluded by 72°C for 5min. Amplicons were visualized
using agarose (1.0%) gel electrophoresis and ethidium
bromide staining.

PCR amplification of regions of inter-prophage deletions

The boundaries of the inter-prophage region present in
FRIK804 but absent in FRIK1275 and FRIK1625 was
verified using oligonucleotide primers (Table S5). ECs_
2183-F and ECs_2261-int-R. gDNA extracted from
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FRIK804, FRIK1275, and FRIK1625 was amplified using
Phusion DNA polymerase (New England Biolabs, Ips-
wich, MA). PCR conditions used were 98°C for 30s
followed by 30 cycles consisting of 98 °C for 155, 66 °C
for 20, and 72 °C for 60s. PCR was concluded by 72 °C
for 5min. Amplicons were visualized using agarose
(0.8%) gel electrophoresis and ethidium bromide
staining.

RNA extraction

In three separate trials, overnight cultures of FRIK804,
FRIK1275, and FRIK1625 were incubated overnight at
37 °C. ODgg of overnight cultures was measured and in-
oculated into fresh LB at ODgy = 0.01. Cultures were in-
oculated in duplicate, to provide a negative control, at
37 °C with shaking (100 RPM) for 2.25h. At this point
ODyg( of cultures was measured prior to addition of mi-
tomycin C (Dot Scientific, Burton, MI) at a final concen-
tration of 1.0 ug/ml. Cultures were incubated for one
additional hour prior to measuring ODgg of cultures,
collection of cells by centrifugation at 4°C, and disrup-
tion of cells by the addition of TRIzol (Thermo Fisher,
Waltham, MA). Samples containing TRIzol were stored
at — 70 °C until RNA extraction.

RNA from each frozen TRIzol sample was extracted ac-
cording to the manufacturer’s instructions. Extracted
RNA quality and quantity was inspected by measurement
of absorbance at 230 nm, 260 nm, and 280 nm. Residual
DNA contamination was removed using RQ1 DNase
(Promega, Madison, WI) in accordance with manufac-
ture’s protocol. Following DNase treatment nucleic acid
concentration of samples was adjusted to 10 ng/pl.

RT-PCR

Primers (Table S5) targeting regions immediately up-
stream (stx2-US-RT-F/R) and downstream (stx2-DS-RT-
F/R) of the 1S629 insertion in the FRIK1275 copy of stx2
were used. Primers targeting an additional gene anno-
tated as a phage terminase that was located downstream
of stx2 were also used (ECs_1220-RT-F/R). Amplifica-
tion of 16S rRNA (16S-RT-F/R) was used to provide
positive and negative controls. One-step RT-PCR using
AccessQuick RT-PCR System (Promega, Madison, WI)
was performed consisting of cDNA synthesis at 45 °C for
45 min followed by DNA synthesis consisting of 94°C
for 2 min, and the following cycle conditions 94 °C for
30s and 57 °C for 30s. 16S-RT-F/R marker was ampli-
fied for 19 cycles and stx2-US-RT-F/R, stx2-US-RT-F/R,
and ECs_1220-RT-F/R markers were amplified for 23—
25 cycles. A final extension step consisting of 68 °C for 5
min was included for all reactions performed. Amplicons
were visualized using agarose (1.5%) gel electrophoresis
and ethidium bromide staining.
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Analysis of 1S629 stability during stx2-phage propagation

In three separate trials, FRIK1275 was incubated over-
night at 37 °C. One mL of overnight culture was trans-
ferred into 9.0ml of LB broth in 250 mL Erlenmeyer
flasks and incubated at 37 °C with shaking (100 RPM).
Following incubation for 4h, supernatant containing
spontaneously produced phage was collected following
centrifugation. Supernatant was sterilized using 0.22 pm
PVDF filters (Millipore, Burlingame, MA). Concurrently,
MG1655 was prepared as a host cell suspension. Upon
reaching mid-log phase (ODggo = 0.4-0.6), MG1655 was
centrifuged, washed with SM buffer, and resuspended to
an ODgyo = 2.5 using SM buffer before storage at 4 °C.
Serial dilution of phage lysate was performed using SM
buffer. In triplicate, 100 uL of each diluted sample was
co-incubated with an equal volume of MG1655 cell sus-
pension at 37°C for 20 min. Three ml of soft agar
(48°C) was mixed with each sample and immediately
poured onto pre-warmed LB agar plates. Plates were
allowed to cool on the bench for 15 min before over-
night incubation at 37 °C.

Twenty-four plaques were picked at random from
each trial and material from the plaque was transferred
to 10 pL of nuclease-free H,O. DNA was amplified using
rTaq DNA polymerase (Bulldog, Portsmouth, NH) and
stx2a-F/R primers (Table S5). PCR conditions were
94°C for 10min, followed by 30 cycles consisting of
94°C for 30s, 53 °C for 30s, and 72 °C for 1 min, ampli-
fication was concluded by 72°C for 5min. Amplicons
were visualized using agarose (1.0%) gel electrophoresis
and ethidium bromide staining. The presence or absence
of 1S629 was determined by amplicon size.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-06943-x.

Additional file 1: Fig. S1. PCR confirmation of inverted repeats present
at the flanking ends of the inversion in farm X strains (FRIK804, FRIK1275,
and FRIK1625) and control strain Sakai. a Primer pairs ECs_1507-F/
ECs_1508-R and ECs_2759-F/ECs_2760-R were specific to Sp6 and Sp14 in
Sakai. Primer pairs ECs_1507-F/ECs_2759-F and ECs_1508-R/ECs_2760-R
were specific to regions of ®804-7 and ®804-15. b Amplification was
observed using primer pairs ECs_1507-F/ECs_1508-R (lane 15) and
ECs_2759-F/ECs_2760-R (lane 16) using gDNA extracted from Sakai.
Amplification was observed using primer pairs ECs_1507-F/ECs_2759-F
(lanes 4, 8, and 13) and ECs_1508-R/ECs_2760-R (lanes 5, 9, and 14) using
gDNA extracted from farm X strains. Lanes 1 and 10, 1.0-kb ladder.

Additional file 2: Fig. S2. PCR confirmation of regions flanking inter-
prophage deletion in FRIK1275 and FRIK1625 using PCR amplification.
Lane 1: 1.0 kb ladder. gDNA in lane 2 (FRIK804), lane 3 (FRIK1275), lane 4
(FRIK1625), and lane 5 (Sakai). Amplification was observed only in strains
with the inter-prophage deletion between the identified direct repeats.

Additional file 3: Fig. S3. Predicted function and location of genes in
®804-9 and ®804-10. The portions of the two adjacent phage in all farm
X strain has a shaded grey background. The region in FRIK804 but absent
in FRIK1275 and FRIK1625 has a white background.
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Additional file 4: Table S1. Chromosomal locations of corresponding
replication motifs in EHEC FRIK804 and Sakai. Highlighted motifs (light
orange) located within the segment of the FRIK804 chromosome that is
inverted relative to strain Sakai.

Additional file 5: Table S2. Location and length of inverted repeats in
®804-7 and ®804-15. Crossover region highlighted in light orange.
Additional file 6: Table S3. Location and length of direct repeats in
®804-9 and ®804-10. Crossover region of highlighted in light orange.
Additional file 7: Table S4. Location, classification, and predicted
functions of genes in ®804-9 and ©®804-10. Highlighted region is
present in FRIK804 but absent in FRIK1275 and FRIK1625.

Additional file 8: Table S5. Oligonucleotide primers used in this study.

Additional file 9: Table S6. Locations of 1S629 elements in FRIK804 and
Sakai chromosomes.

Additional file 10: Table S7. Locations of ISEc8 locations in FRIK804
and Sakai chromosomes.
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