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Abstract

order.

Background: Microbe-microbe and host-microbe interactions in a microbiome play a vital role in both health and
disease. However, the structure of the microbial community and the colonization patterns are highly complex to infer
even under controlled wet laboratory conditions. In this study, we investigate what information, if any, can be
provided by a Bayesian Network (BN) about a microbial community. Unlike the previously proposed Co-occurrence
Networks (CoNs), BNs are based on conditional dependencies and can help in revealing complex associations.

Results: In this paper, we propose a way of combining a BN and a CoN to construct a signed Bayesian Network (sBN).
We report a surprising association between directed edges in signed BNs and known colonization orders.
Conclusions: BNs are powerful tools for community analysis and extracting influences and colonization patterns,
even though the analysis only uses an abundance matrix with no temporal information. We conclude that directed
edges in sBNs when combined with negative correlations are consistent with and strongly suggestive of colonization

Keywords: Bayesian networks, Conditional dependence, Microbiome, Colonization order, PC-stable

Background

Bayesian Networks (BN) (also Belief Networks and Bayes
Nets) are graphical models where nodes represent a set
of multi-dimensional variables and edges represent con-
ditional dependencies between the nodes. BNs can thus
capture implicit and explicit relationships between these
nodes [1]. When learning from data, edges in BNs can be
directed or undirected. In fact, highly correlated variables
very often lead to undirected (or two-way dependencies),
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since knowing one variable provides a lot of information
about the other variable. In its simplest form, an edge
in a BN expresses the conditional probability of knowing
the (multi-dimensional) value of the variable at one node,
given the value of the variable at another. BNs were used
by Friedman et al. to use gene expression data to infer
interactions between genes [2]. Conditional dependen-
cies are often misinterpreted as causation, but are merely
mathematical relationships that approximate causation
under specific circumstances.

A significant feature of BNs is that they can allow us
to differentiate between direct and indirect conditional
dependence [3]. For example, if the dependence of variable
B on variable A vanishes when conditioned on a third vari-
able C, then it allows us to infer that a directed edge from
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A to B is superfluous and may be removed without loss
of information since the directed edges (4, C) and (C, B)
allows us to completely capture the dependency of B on A.
BNs also help to differentiate between dependency con-
figurations referred to as “common cause” and “common
effect” [4].

Many algorithmic variants and implementations to con-
struct BNs exist, including bnlearn [5], CGBayesNet [6],
Banjo [7], DEAL [8], GlobalMIT [9], BNFinder [10] and
Tetrad [11].

Causation is an important type of relationship to be
explored with biological data. So it makes sense to see
if BNs can identify relationships that are suggestive of
causation and that could lead to wet lab experiments for
validation. Recently, BNs were used by Zhang et al. to
understand changes in gene regulatory networks under
different cellular states [12]. By modeling metabolic reac-
tions and their involvement in multiple subnetworks of
“metabosystems’, Shafiei et al. used BNs to infer differen-
tial prevalence of metabolic subnetworks within microbial
communities [13].

The term microbiota refers to the community of
microbes, including bacteria, archaea, protists, fungi, and
viruses that share an environmental niche [14]. The term
microbiome refers to the entire habitat, including the
microbes, their genetic material and the environmental
factors. The total genome from microbiota is referred to
as the metagenome. The microbes exist as a social net-
work because of the complex set of potential interactions
between its various taxonomic members [15, 16].

To understand potential interactions between taxa in a
microbial community, the construction of co-occurrence
networks (CoN) was proposed by Fernandez et al. [15] and
Faust et al. [17]. The results suggested that groups of taxa
frequently co-infected or co-avoided cohorts of subjects
due to underlying interactions between them. Unfortu-
nately, that is as far as CoNs are able to go in terms of
inferring complex relationships in microbiomes.

In this paper, we investigate how to infer directional
relationships between microbial taxa in a microbiome
by focusing on the important challenge of inferring
“colonization order” from abundance data.

In humans, normal microbial colonization starts from
birth, and over time these communities become rela-
tively stable [18]. Microbial communities are dynamic,
and their compositions change with time [19]. Some
microbes occupy an environmental niche early and then
recruit other microbes suggesting an order of coloniza-
tion in many microbial communities. Once new recruits
enter the scene, their fitness for the environmental niche
could determine the growth or decline of the early
colonizers [20].

In the healthy state, our bodies harbor rich communities
of microbes mostly on cutaneous and mucosal surfaces
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such as the skin, oral cavity, gastrointestinal tract, and the
reproductive tract [21, 22]. Microbes in these communi-
ties have a variety of interactions that impact the health
of the host or the environmental niche [17]. An imbal-
ance (dysbiosis) in the microbial community is strongly
associated with a variety of human diseases [23]. The
dysbiosis is often due to invasion or increase in harm-
ful pathogenic bacteria, which in turn is often preceded
by colonization at the site of infection by specific early
colonizers [24]. Thus, understanding colonization and its
order can provide a window into how infections take hold.
Understanding these functional (directed) relationships
within the niche is critical for understanding healthy ver-
sus diseased microbiomes as well as the mechanisms and
biological processes involved in the disease.

In this paper, we show that signed Bayesian Net-
works (sBNs), a variant of BNs obtained by combin-
ing BNs with co-occurrence networks can help tease
apart some of these directed relationships and provide a
glimpse into the complex and dynamic world of micro-
bial communities. The paper is organized as follows.
“Results and discussion” section provides foundations of
BNs and some background on microbial colonization in
select niches. “Conclusions” section presents the details of
the data and experiments and summarizes the results, and
“Methods” section presents some conclusions and future
directions.

Results and discussion

The sBNs were obtained by prudent use of BNs in con-
junction with CoNs. The main contribution of this paper
is to show evidence to support the claim that sBNs can
help make inferences about colonization order. In some
niche environments, research has shown that microbes
colonize the niche in specific orders, with early colonizers
often recruiting late colonizers or creating conditions that
make it more attractive for specific late colonizers [25].
We have observed that with high accuracy, the edges of
sBNs are consistent with known colonization orders. In
particular, we show that the sBNs can capture colonization
order when augmented with the correlation coefficient.
The findings were validated by analyzing oral, infant gut,
and vaginal microbiome data sets, where prior published
information on colonization order was available. The col-
onization order was also retained in our experiments with
the semi-synthetic data sets as well.

The sBNs generated from the data sets mentioned above
were visualized with Cytoscape. In all the sBNs generated
(Figs. 1, 2, 3, 4 and additional files 1 — 6), nodes corre-
spond to bacterial taxa, node sizes are proportional to the
average abundance of the taxa, thickness of the edges are
proportional to the absolute value of Pearson correlation
coefficient (i.e., measure of co-occurrence), and opacity
of an edge is proportional to its bootstrap values. Edges
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are colored green and red for positive and negative cor-
relations, respectively. The purple and red node colors
correspond to the bacterial taxa that are described as early
and late colonizers (in published literature), respectively
[26-28]. The black nodes indicate colonizers whose order
has not been described previously. We note (data not
shown) that while there are many strongly connected clus-
ters in CoNs, these nodes remain connected in sBNs (as
expected), but relatively sparsely because of the stringent
conditional probability tests.

Semi-synthetic data from infant gut microbiome - sBN
edges are consistent with temporal order

The infant gut data set was temporally aligned as
described earlier. We then divided the time line into k

periods, with k = 1,2,... and created sBNs from each
period. The goal was to see if any of the known orders
of colonization can be observed in the figures, even after
having modified the time axis of each subject differently.
The infant gut is dominated by three classes that gen-
erally appear and colonize in a sequential order: Bacilli
(Firmicutes) soon after birth, which then gives way to
the Gammaproteobacteria (Proteobacteria), and followed
by Clostridia (Firmicutes) [29]. When we partitioned the
time series into k = 2 periods, the sBN from the first
period had a directed edge from the Bacilli to Gammapro-
teobacteria. The red-colored edge suggested a negative
correlation as would be expected if this inference came
from colonization order. Additionally, the sBN gener-
ated from the second period showed a directed edge
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from Gammaproteobacteria to Clostridia, also colored
red (Fig. 5).

When the time series were partitioned into three peri-
ods, the same two edges were represented strongly in
periods 2 and 3 respectively. In fact, the strength of the

two edges in the three periods were (1) 0.4 and 0.16
(i.e., both weak), (2) 0.94 and 0.16, and (3) 0.61 and
0.80. The above observations suggest strongly that the
transition from Bacilli to Gammaproteobacteria occurs
before the transition from Gammaproteobacteria to
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sBN generated from mid to last time point (bottom)

Clostridia, and that the colonization order is supported in
the sBNs.

We, therefore, conclude that sBNs are capable of cap-
turing colonization order using the methods suggested
above. Red edges or negative correlations are consistent
with the model that for both edges when one taxon is
declining in abundance, the other is increasing in abun-
dance.

Oral microbiome - sBN edges are consistent with
colonization order

In the oral cavity, early and late bacterial colonizers have
been identified and reviewed in the literature [26]. Many
species from the genus Streptococcus is the early primary
colonizer, accounting for 60% - 90% of the early abundance
profile [30]. The following taxa have been identified as
early and late colonizers for oral microbiomes [26—-28].

Early: Streptococcus gordonii, Streptococcus mitis, Strep-
tococcus oralis, Streptococcus sanguis, Actinomyces
israelii, Actinomyces naeslundii, Propionibacterium
acnes.

Late: Selenomonas flueggei, Treponema spp., Porphy-
romonas gingivalis.

Comparison of the sBNs for all oral microbiomes (Figs. 1-
2 and additional files 1-6) showed that the keratinized
gingiva (Fig. 1) and tongue dorsum (Fig. 2) have the fewest
number of distinct taxa. The sBNs for these two sites were
more distinctive than those derived from other sites and
showed stronger correlations between taxa. The saliva,
subgingival, and palatine tonsils sites harbored a higher
number of taxa and exhibited weaker correlations. Note
that not every taxa is present in every oral site, thus
explaining the differences in the set of nodes present in
each sBN.

The sBNs for the oral microbiomes had a combined
total of 716 edges. Of these, 78 edges connected vertices,
which were associated with known early or late coloniz-
ers. Table 1 summarizes the directed edges between early
and late colonizers, they are consistent with the known
colonization order, and the correlation (negative/positive
edges) among them. More than 90% of the sBN edges for
the oral microbiome were directed with the exceptions
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Table 1 Inferring Colonization order in oral microbiomes
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Oral Site Total Directed Red E—>L E— EorE— L L—>E Consistent Red edges
Buccal mucosa 69 57 5 1 4 0 100%
keratinized gingiva 39 36 8 3 5 0 100%
Palatine tonsils 126 116 9 1 13 1 92%
Saliva 102 86 8 1 12 0 100%
Subgingival plague 123 113 8 1 18 0 100%
Supragingival plaque 109 105 11 3 13 1 92%
Dorsum of tongue 56 50 1 1 4 0 100%
Throat 92 83 8 0 9 0 100%
Total 716 646 68 1 78 2 97.4%

The columns indicate the following: sampled oral sites, total number of edges in causal network, number of directed edges, total number of negatively correlated (red)
edges, number of edges connecting early to late colonizers, number of edges connecting early with early or late colonizers, number of inconsistent directed edges (i.e,, from
late to early colonizers), and percentage of negatively correlated edges connecting early to late colonizers

of saliva and buccal mucosa, for which only 83-84% were
directed. Of the 78 edges connecting labeled vertices, all
edges except for two were consistent with the known col-
onization order, i.e., directed from early to late colonizers
(Table 1). These two edges are shown as dashed lines in
the corresponding sBNs (see additional file 2 and addi-
tional file 5). In summary, for the oral microbiome the
directed sBN edges go from early to late colonizers, with
few exceptions. For example, the sBN from keratinized
gingiva (Fig. 1) has three directed edges (Actinomyces2-
Porphyromonasl, Streptococcusl-Porphyromonasl, and
Streptococcus2-Porphyromonasl) from early colonizers
to late colonizers and none from late to early coloniz-
ers. Note that all taxonomic names have been abbreviated
in the figures to the first five characters plus a number,
each name refers to a distinct OTU. The sBN for the buc-
cal mucosa (Additional file 1), palatine tonsils (Additional
file 2), saliva (Additional file 3), subgingival plaque (Addi-
tional file 4), supragingival plaque (Additional file 5), and
throat (Additional file 6) are included in the supplemen-
tary files.

Oral microbiome - sBN edges with negative correlation are
consistent with colonization order

As mentioned above, two out of the 78 edges are excep-
tions to the rule that no edges in the sBNs are directed
from late to early colonizers. In particular, one edge goes
from Trepo5 (Treponema, labeled as a late colonizer) to
Actin3 (Actinomyces, labeled early colonizer) in palatine
tonsils. Similarly, another edge goes from Porph3 (Por-
phyromonas, labeled as late colonizer) to Actin3 (Actino-
myces, labeled early colonizer) in supra-gingival plaque.
However, the correlation coefficient of the edges between
them is positive. Thus, the accuracy in terms of direction
is 97.4%, and all correctly directed edges have negative
correlations. According to Kolenbrander et al., the bac-
terial taxa representing early colonizers coaggregate with

only a specific set of other early colonizers, and not with
any of the late colonizers [26]. Our findings, albeit lim-
ited, are consistent with this observation, that all edges
connecting early to late colonizers in that direction are
negatively correlated (red edges).

Infant gut microbiome

The abundance of microbes in neonatals over the course
of the first few weeks of their lives have been reported
[29]. In two infant gut microbiome studies, the class
Bacteroidetes and Gammaproteobacteria were observed
early, followed by Bacilli, Clostridia and Gammapro-
teobacteria [29, 31]. Over time, there was a signifi-
cant decrease in Bacilli, and the infant’s gut appears to
have a tug-of-war between the two classes Gammapro-
teobacteria and Clostridia [31]. When the sBNs were
constructed with the infant gut microbiome data, we
obtained a directed network that supported the claim
that sBNs shed light on the colonization pattern (Fig. 3).
There were directed edges from Bacteroidetes, Bacilli, and
Clostridia to Gammaproteobacteria (Fig. 3). The results
also supported the prior knowledge that Clostridia pre-
cedes Bacilli in the colonization order. All these taxa
are mostly negatively correlated (red edges), as shown in
Fig. 3, reinforcing the point that a directed edge com-
bined with negative correlations is strongly suggestive of
colonization order.

Vaginal microbiome

A healthy vaginal microbiome is dominated mainly by
Lactobacillus species [32]. When women at a reproductive
age suffer from bacterial vaginosis (BV), the Lactobacillus
species are replaced by Gardnerella, Peptostreptococcus,
Atopobium, Sneathia, Parvimonas, and Corynebacterium,
among others [33]. Figure 4 shows three sBNs for vagi-
nal microbiomes associated with low (healthy), medium
(early BV), and high (advanced BV) Nugent scores. All
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samples were analyzed for the abundance of the same set
of 23 genera. Overall, the predominant genera observed
were Lactobacillus, Atopobium, Gardnerella, Parvimonas,
and Prevotella (Fig. 4).

In the sBN associated with the healthy “vaginome’, the
abundance of Lactobacillus was comparatively higher as
expected. The Lactobacillus species, especially, L. crispa-
tus and L. iners (data not shown) displayed an antagonistic
relationship with the BV-associated Gardnerella.

In the sBN for the medium Nugent score cohort, indica-
tive of early vaginosis, the BV-associated genera, Atopo-
bium, and Sneathia AND Gardnerella were significantly
increased in abundance, and appeared as early coloniz-
ers. The abundance of all the BV-associated pathogens
was negatively correlated with Lactobacillus, reaffirming
an antagonistic relationship.

In the sBN for the advanced BV cohort, characterized
by higher Nugent scores, a proportional increase in abun-
dance was observed with Atopobium followed by Gard-
nerella. Even with the antagonistic relationship with Lac-
tobacillus, the BV-associated pathogenic genera especially
Atopobium and Gardnerella, Sneathia are connected by
a directed edge to Lactobacillus. The appearance of the
pathogenic genera as late colonizers is consistent with
clinical findings [34]. Strong positive relationships were
observed between Prevotella and Peptostreptococcus, and
Peptostreptococcus with Parvimonas. This may suggest
that the presence of Prevotella enables the colonization of
Peptostreptococcus followed by Parvimonas.

To check the robustness we also experimented with a
higher number of taxa, i.e., by including all taxa whose
abundance added up to 99.99%. We found that sBNs can
retrieve the known colonization order even if we include
taxa with small abundance (from 99% to 99.99% of most
abundant taxa shown in Additional file 7).

Conclusions

In healthy oral microbiomes, taxa such as Actinobacteria
were identified as early colonizers [35]. Many pathogenic
microbes associated with oral diseases such as dental
caries, gingivitis, and periodontitis appeared as late colo-
nizers [36]. In addition, there were antagonistic relation-
ships between these pathogens. The rivalry seemed to
occur between Streptococcus, Fusobacterium, Prevotella,
Porphyromonas, Veillonella, Propionibacterium and Neis-
seria. Since the oral samples came from healthy individ-
uals, the existence of the rivalry could lead to the elimi-
nation of one or more taxa from the site. Alternatively, it
is also possible that one taxon keeps the other in check
to prevent dysbiosis. A well-known pathogenic genera,
Treponema, appeared as a late colonizer with positive cor-
relations in most of the sites. It was absent in keratinized
gingiva and tongue dorsum, but appeared as an early col-
onizer in buccal mucosa. This may suggest that the buccal
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mucosa is the site in the oral cavity where Treponema
colonizes.

The sBN for the vaginal microbiome confirmed pre-
viously known relationships between Lactobacillus and
other BV-associated pathogens. In the process, it also
suggested a possible colonization order. It would require
a longitudinal study of women before and after BV to
validate the suggested colonization order. Current analy-
ses suggest that the balance in the relative abundance of
Lactobacillus and Atopobium may be a biomarker for BV.

Inferring the interactions between different taxa within
a microbial community and understanding their influ-
ence on health and disease is one of the primary goals of
microbiome research. The sBNs help us to infer potential
relationships and dependencies within a microbiome, and
the colonization order, even without the use of data from
longitudinal studies. The sBNs could help in understand-
ing the dependencies between the entities of a microbial
community.

Finally, we reiterate the conclusion that directed edges
in sBNs when combined with negative correlations, may
be strongly suggestive of colonization order.

Methods

Bayesian networks

Bayesian Networks (BNs) are a class of Probabilistic
Graphical Models (PGMs) [1, 37] where each node repre-
sents a random variable from a set, X = {X;,i = 1, ..., n},
with # random variables. The BN is represented as a graph
G = (V,E), where each vertex in V represents a ran-
dom variable from X, and E is the set of edges on V. In
general, a BN is represented as a Directed Acyclic Graph
(DAG), although undirected edges are used in cases where
the direction cannot be reliably determined or when both
directions appear plausible. Each random variable X; has
a local probability distribution. A directed edge of E
between two vertices represents direct stochastic depen-
dencies. Therefore, if there is no edge connecting two
vertices, the corresponding variables are either marginally
independent or conditionally independent given (a subset
of) the rest of the variables. The “local” probability dis-
tribution of a variable X; depends only on itself and its
parents (i.e., the vertices with directed edges into the node
Xi); the “global” probability distribution, P(X) is the prod-
uct of all local probabilities, i.e., a joint distribution [38] as
shown below:

P(X) = [ | P(XilParents(Xy)).
i=1

The task of fitting a BN is called “model learning”
and its implementation generally involves two steps -
structure learning and parameter learning. Structure
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learning involves finding a BN that encodes the con-
ditional dependencies from the data, while parameter
learning is the estimation of the parameters of the global
distribution [39]. Eliminating edges in the structure helps
to simplify the “global” joint distribution, allowing for
more efficient computations with the model and for bet-
ter inferring of critical relationships. In this paper, we
only focus on the structure of the BN, not the parame-
ters. For structure learning, at least three approaches have
been proposed in the literature — constraint-based, score-
based, and hybrid. We focus on the constraint-based algo-
rithms, which are based on an approach called Inductive
Causation (IC) [40]. IC provides a framework for learning
the BN using conditional independence (CI) tests under
the assumption that graphical separation in the BN is
equivalent to probabilistic independence between the cor-
responding variables. Note that the resulting BN may be a
partially directed acyclic graph (PDAG) [41] because not
all edge directions can be resolved with IC.

Training the Bayesian network structure

The constraint-based IC approach to structure learning
mentioned above was proposed by Spirtes et al. [42]. The
constraint-based approaches are typically more conserva-
tive than score-based algorithms in terms of the number
of edges they retain in the final Bayesian network. Further-
more, constraint-based approaches are better suited for
causal inferences [41]. The approach of Spirtes et al. was
later modified by Colombo and Maathuis to make it order
independent in an algorithm known as PC-Stable [43].
The main feature of PC-Stable algorithm is the inference
of a skeleton (undirected structure) in an order indepen-
dent way [43]. Order dependency is a minor issue for
low dimensional settings. However, in high dimensional
settings, order dependence may give results with high
variance [44].

PC-stable consists mainly of three steps — adjacency
search in order to learn the “skeleton’, identifying impor-
tant substructures called v-structures, and detecting and
orienting other arcs. In Step 1, the algorithm starts with a
complete undirected graph and then performs a series of
conditional independence tests to eliminate as many edges
as possible. The remaining undirected graph is referred to
as the skeleton.

Step 2 is key to inferring a BN model, and uses the
concept of v-structures, which are defined as follows.
For any three nodes representing variables X;, Xj, X in a
Bayesian network G, if {X,',Xj} and {X,, Xk} are edges in
G, but {X;, Xi} is not, and if edges are oriented as X; —
Xj < X then the triple (Xi,)(j,Xk) is called a v-structure.
Triples satisfying the v-structure property can be identi-
fied in the skeletons using conditional dependency tests,
following which edges are appropriately directed to form
a v-structure. The variable X; in the triple forming the
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v-structure represents a “common effect” of X; and Xj.
These v-structures are critical in giving directions to some
of the edges of the skeleton.

In Step 3, three rules [43] are applied repeatedly to
orient edges not already in v-structures.

Rule 1: Orient X; — Xj as X; — Xj whenever (a) there is
a directed edge X; — X; and (b) X; and X are not
adjacent.

Rule 2: Orient X; — Xj as X; — X; whenever there is a
chain X; — X; — X;.

Rule 3: Orient X; — X; as X; — X whenever there are
two chains X; — X; — Xy and X; — X; — X given
that X; and X are not adjacent.

Real data sets

Ribosomal 16S rRNA sequences from three microbiome
data sets (oral, infant gut, and vaginal) were used (see
Table 1). The oral data set was generated as part of the
Human Microbiome Project (HMP) from eight differ-
ent sites within the oral cavity from 242 healthy adults
(129 males, 113 females) [14, 45]. The samples included:
saliva, buccal mucosa (cheek), keratinized gingiva (gums),
palatine tonsils, throat, tongue dorsum, and supra- and
sub-gingiva dental plaque (tooth biofilm above and below
the gum) [14, 45].

The preterm infant gut microbiome samples were col-
lected and processed for a longitudinal study as described
by La Rosa et al. [29]. This study involved a total of 922
stool samples from 58 premature babies, each weighing
<1500 g at birth.

The vaginal microbiome data set was previously gen-
erated to determine temporal dynamics of the human
vaginal microbiota [46]. This study involved 32 women
from different ages (18 through 40), races (Black, White,
Hispanic and other), educational backgrounds, and sex-
ual habits [46]. Each sample was associated with a Nugent
score [47], an indicator of the level of vaginosis. All OTUs
associated with Lactobacillus were combined into one
taxa.

Friedman et al. performed the BN inference by adding
an extra “cell cycle phase” variable to account for the
temporal aspect of the data [2]. Following their sugges-
tion, an extra variable for sampling time was added to
the analyses of the infant gut and vaginal microbiome
data sets, thus assuming that the sampling time for each
sample is an independent random variable from some
distribution.

Data processing

The samples were processed by amplifying the V35 hyper-
variable region of the bacterial 16S rRNA gene. This was
followed by sequencing and grouping reads into com-
mon Operational Taxonomic Units (OTUs). The Mothur
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pipeline [48] was used to compute the microbial abun-
dance of each taxon.

OTU abundance data were stored in matrix B, ann X p
abundance matrix, where # is the number of samples and
p is the number of OTUs. The i-th sample is represented

by the i-th row of B, BV = [, 60,5, .., "], where

b denotes the abundance of the j-th bacterial OTU in
the i-th sample. The total number of mapped reads from
the i-th sample is denoted by w?) = Zle b]@. The rela-
tive abundance matrix is then computed by normalizing
each raw count, b;i), with the total number of reads in that

sample w®. The normalized vector of relative abundances
for sample i is thus given by

W L0 0)
| b by
W@ W@ Lo |

Each data set from the HMP collection had abundances
for several hundred taxa, most of which were extremely
small [14, 45]. To make our computations efficient, taxa
with abundance close to the background noise were elim-
inated. This is achieved by first sorting the relative abun-
dance values of the OTU-level taxa and then picking the
taxa with the highest values that added up to a total of
99%. In other words, the discarded taxa were the lowest
values that summed up to less than 1%. Table 2 shows
the number of taxa from each site used to learn the
BNs during the structure learning step. The subjects in
the vaginal data set were grouped by Nugent Scores —
lower (healthy), medium, and higher. Individuals with
higher Nugent scores had more severe cases of bacterial
vaginosis [47].

Table 2 Microbiomes analyzed with sites, number of samples
and number of taxa detected

Site # of samples # of taxa
Buccal mucosa 309 51
Keratinized gingiva 269 29
Palatine tonsils 320 68
Saliva 298 75
Subgingival dental plaque 325 84
Supragingival dental plaque 335 65
Dorsum of tongue 335 37
Throat 313 64
Infant gut 922 12
Vaginal (lower Nugent score) 3203 19
Vaginal (medium Nugent score) 568 19
Vaginal (higher Nugent score) 916 19

The first eight are from oral microbiomes, the next one from gut microbiome, and
the last three from vaginal microbiomes. Note that the Nugent score is an indicator
of the level of vaginosis
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Semi-synthetic data

Besides using real data for our experiments, we also
carried out experiments on what we refer to as “semi-
synthetic” data, which were obtained by appropriate mod-
ifications of real data sets as described below. The semi-
synthetic data sets were obtained by performing tem-
poral alignments on the infant gut data sets using the
time-warping methods proposed by Lugo-Martinez et al.
[49, 50]. The purpose of temporal alignments was to
align the “internal clocks” of the subjects correcting for
their different metabolic speeds. The temporal alignment
was done by interpolating the time series and stretch-
ing/squishing and shifting them with respect to time
series of a reference subject. As a consequence, the time
series are put on an artificial time scale and then uniformly
sampled with a sampling rate of 1 per (warped) day.

Construction of Bayesian networks

The PC-stable, a causality-learning algorithm, was used to
construct the BNs [43]. It is a constraint-based algorithm
that is more conservative than score-based algorithms and
results in fewer false positives. Also, it is partly order-
independent, as described below [43]. The PC-stable algo-
rithm from the bnlearn package [5] was used to obtain
the BN for each data set.

Construction of co-occurrence networks

The co-occurrence networks (CoNs) were constructed
for each cohort using Pearson correlation coefficient, as
described in previous work [15].

Construction of signed Bayesian networks

The edges of BNs were augmented with the coefficient
values generated in CoNs, thus distinguishing between
positive and negative correlations. As mentioned earlier,
the resulting network is referred to as a Signed Bayesian
Network (sBN). All sBNs in this paper were visualized
using Cytoscape [51]. The color of the edges (green for
positive and red for negative) indicates sign information.

Experiments and statistical analyses
The constraint-based algorithms employ statistical tests
for deciding conditional independence. Since the random
variables in our experiments hold continuous data repre-
senting the abundance of taxa, we used linear correlation
(student’s exact T-test) and Fisher’s Z-test (asymptotic
normal test) for conditional independence testing [52, 53].
In the PC-stable algorithm, inferring the skeleton struc-
ture and inferring the directions of edges involved in the
v-structures are known to be “order-independent”. How-
ever, inferring the directions of edges not involved in the
v-structures is not order-independent. A non-parametric
bootstrap value was computed to indicate the strength
of each edge in the output network in order to assess
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the accuracy of the output [54, 55]. To achieve this, the
data was randomized before input into the PC-stable
algorithm. The bootstrap values were computed by exe-
cuting the program on 200 different permuted inputs
and reporting the percentage of times it reports one
direction.
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