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Abstract

Background: Recent advances in single-cell RNA sequencing have allowed researchers to explore transcriptional
function at a cellular level. In particular, single-cell RNA sequencing reveals that there exist clusters of cells with similar
gene expression profiles, representing different transcriptional states.

Results: In this study, we present SCPPIN, a method for integrating single-cell RNA sequencing data with
protein–protein interaction networks that detects active modules in cells of different transcriptional states. We
achieve this by clustering RNA-sequencing data, identifying differentially expressed genes, constructing
node-weighted protein–protein interaction networks, and finding the maximum-weight connected subgraphs with
an exact Steiner-tree approach. As case studies, we investigate two RNA-sequencing data sets from human liver
spheroids and human adipose tissue, respectively. With SCPPIN we expand the output of differential expressed genes
analysis with information from protein interactions. We find that different transcriptional states have different
subnetworks of the protein–protein interaction networks significantly enriched which represent biological pathways.
In these pathways, SCPPIN identifies proteins that are not differentially expressed but have a crucial biological function
(e.g., as receptors) and therefore reveals biology beyond a standard differential expressed gene analysis.

Conclusions: The introduced SCPPIN method can be used to systematically analyse differentially expressed genes in
single-cell RNA sequencing data by integrating it with protein interaction data. The detected modules that
characterise each cluster help to identify and hypothesise a biological function associated to those cells. Our analysis
suggests the participation of unexpected proteins in these pathways that are undetectable from the single-cell RNA
sequencing data alone. The techniques described here are applicable to other organisms and tissues.
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Background
Liver metabolism is at the centre of many non-
communicable diseases, such as diabetes and cardiovas-
cular disease [1]. In healthy organisms, the liver is critical
for metabolic and immune functions and gene-expression
studies have revealed a diverse population of distinct cell
types, which include hepatocytes in diverse functional cell
states [2]. As diabetes is a complex and heterogenous dis-
ease, the study of liver physiology at single-cell resolution
helps us to understand the biology [3]. At a single-cell
level, however, large-scale protein interaction data is not
yet available [4]. The available data are in the form of
single cell gene expression levels. Such single cell data pro-
vide processing challenges but it is plausible to enhance
their analysis through the integration of protein interac-
tions. In this study, we develop SCPPIN a method for the
integration of single-cell RNA-sequencing data with com-
plementary PPINs. Our SCPPIN analysis of liver single
cell data and PPINs reveals biological pathways in cells of
different transcriptional states that hint at inflammatory
processes in a subset of hepatocytes.
In recent years, much attention has been given to

scRNA-seq techniques as they allow researchers to
study and characterise tissues at a single-cell resolution
[5–7]. Most importantly, scRNA-seq reveals that there
exist clusters of cells with similar gene expression pro-
files, commonly referred to as ‘cell states’ [8]. Multiple
approaches have been created to reveal these cell clus-
ters, driven by the transcriptional profile of each cell
[9, 10]. Computational tools can identify biomarkers for
such cell clusters [11]. Specifically, the analysis of differen-
tially expressed genes (DEGs) between these cell clusters
has been shown to reveal different cell types [12], dis-
eased cells [13], and cells that resist drug treatment [14].
Due to technological advances the quality and availabil-
ity of scRNA-seq data has increased dramatically in the
last decade [15]. This makes the development of compu-
tational approaches for interpreting scRNA-seq data an
active field of research [16] of which one research direc-
tion is the identification of gene regulatory networks in
scRNA-seq data (e.g., SCENIC [17], PIDC [18]).
These approaches do not make systematic use of avail-

able protein–protein interaction data. One can repre-
sented such data as PPINs and use PPINs to, for example,
identify essential proteins [19–21] and to predict dis-
ease associations [22, 23] or biological functions [24–26].
For this, researchers have used tools from network sci-
ence and machine learning. Many of these methods build
on the well-established evidence that in PPINs, proteins
with similar biological functions are closely interacting
with each other. These groups of proteins with common
biological functions are calledmodules [27, 28].
It is understood that gene-expression is context-specific

and thus varies between tissues [29], changes over time

[30], and differs between healthy and diseased states [31].
It follows therefore that different parts of a PPIN are
active under different conditions [32]. Analysing PPINs
in an integrated way, together with bulk gene-expression
data, provides such biological context, helps to reveal
context-specific active functional modules [33, 34], and
can identify proteins associated with disease [35].
Based on the success of methods where PPINs have

been integrated with bulk expression data, we have devel-
oped SCPPIN, a novel method to integrate scRNA-seq
data with PPINs. It is designed to detect active mod-
ules in cells of different transcriptional states. We achieve
this by clustering scRNA-seq data, performing a DEGs
analysis, constructing node-weighted PPINs, and iden-
tifying maximum-weight connected subgraphs with an
exact Steiner-tree approach. Our method is applicable
to the broad range of organisms for which PPINs are
available [36].
The SCPPIN method can be used to analyse mRNA-seq

data from any tissue or organ type. As a case study, we
investigate scRNA-seq data from human liver spheroids
because this tissue is important in many diseases and it
is known to have diverse cell types with different cellu-
lar metabolic processes. This makes the application of our
method particularly relevant, because we expect the iden-
tification of very different active modules in different cell
clusters — a hypothesis that our investigation partially
confirms.
Our method identifies proteins involved in liver

metabolism that could not be detected from the scRNA-
seq data alone. Some of them have been shown to be
involved in the liver of other organisms and for others
this study is the first indicator of a specific function in
liver. Furthermore, we can associate cells in a given tran-
scriptional state with enriched biological pathways. In
particular, we find that cell clusters have different biologi-
cal functions, for example, translational initiation, defence
response, and extracellular structure organisation. To test
the SCPPIN method on scRNA-seq data from a different
tissue, we investigate human adipose tissue in the Supple-
mentary Results 6. We detect other functional modules
than in the liver data and also find different biological
functions enriched.
This case study demonstrates that SCPPIN provides

insights into the context-specific biological function of
PPINs. Importantly, these insights would not have been
revealed from either data type (PPIN or scRNA-seq)
alone. As this technique is, in principle, applicable to a
wide range of organism and tissue types, it could reveal
functional modules in these, too.

Results
In this paper, we present SCPPIN, a method that detects
functional modules in different cell clusters. The method
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Fig. 1 Our method consists of the following steps. (1) clustering of scRNA-seq data (e.g., with SEURAT [9]). For each cluster, we (2) compute p-values
of differential expression and use them to (3) estimate node scores by using an approach presented in [33]. (4) We combine these node scores with
a PPIN to construct node-weighted PPINs for each cluster. (5) We compute functional modules as maximum-weight connected subgraphs

involves multiple analysis steps (see Fig. 1 for an overview
and the “Methods” section for a detailed discussion). First,
we preprocess the scRNA-seq profiles. Second, we use an
unsupervised clustering technique from SEURAT to iden-
tify sets of cells in similar transcriptional states. Third,
for each cluster, we identify DEGs using a Wilcoxon rank
sum test. Fourth, for each gene in every cluster, we com-
pute additive scores from these p-values (see [33] and
Supplementary Note 1). Fifth, for each cluster, we map
these gene scores to their corresponding proteins in
a PPIN, constructed from publicly available data from
BIOGRID [36]. Lastly, we identify functional mod-
ules as maximum-weight connected subgraphs in these

node-weighted networks. To test whether this integrative
analysis of scRNA-seq data with a PPIN has been success-
ful, we compare the detected modules with a ‘biological
ground truth’ in the form of GO-enrichment annotations.
In order to demonstrate SCPPIN, we investigate newly

measured scRNA-seq data of liver hepatocytes (see
“Methods” section for a description of the experimen-
tal setup and preprocessing steps). Using a standard
modularity-maximisation algorithm, we obtain ten cell
clusters of which seven consist of hepatocytes (see Fig. 2),
which make up a majority of the liver tissue. Hepato-
cytes are known to show a functional diversity and are,
for example, involved in the carbohydrate metabolism [2].

Fig. 2 (Left) Clustering the scRNA-seq data reveals ten clusters of which seven are hepatocyte cells. We visualise the cells in a two-dimensional
space as obtained from a t-distributed stochastic neighbour embedding (t-SNE) of their original high-dimensional space [37], which is defined by the
expression of the d = 6983 genes. (Middle) For each cluster, we perform DEGs analysis to identify genes that most differentially expressed in a given
cluster. Here, we show DEGs for hepatocyte cluster 6 (H6). (Right) We use SCPPIN to integrate the p-values from DEGs analysis with the PPIN and
identify a functional module for the H6 cluster. We find genes that are significantly differentially expressed (p < 0.05; disks) and proteins that are not
strongly differentially expressed (p ≥ 0.05; squares). Colour indicates p-value from low (white) to high (purple)
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We focus on hepatocytes because it allows us to study the
heterogeneity of cellular function in this single cell type.
We identify DEGs in each of the hepatocyte clusters. In

Fig. 2, middle panel, we show the p-values of differential
expression for some of the genes in hepatocyte cluster H6.
Usually, the top-ranked genes in each of the clusters can
be seen as ‘marker genes’, i.e., one may use these genes to
associate cells with a certain transcriptional state. For H6,
for example, protein phosphatase 1 regulatory subunit 3C
(PPP1R3C) has the smallest of all p-values, namely 10−63.
It therefore could serve as a potential biomarker and is a
known regulator of liver glycogen metabolism [38]. While
such a DEG analysis reveals important genes in certain
cell states it is not straightforward to identify the crucial
biological pathways. Next, we demonstrate that integrat-
ing p-values from a DEGs analysis with PPIN information
can reveal a more comprehensive picture of the biological
processes. In the right panel of Fig. 2, we show a functional
module identified by SCPPIN. We detect a subnetwork
consisting of nine proteins. This module consist of seven
proteins with small p-values (among them PPP1R3C) that
are connected to each other via the amyloid precursor pro-
tein (APP) and epidermal growth factor receptor (EGFR),
which have p-values ∼ 10−7 and 10−2, respectively. Both
proteins are integral membrane proteins and do not show
significant differential expression in this cell cluster as
they rank 373 and 1800 out of all differentially expressed
genes. The EGFR signalling network has been identified
as a key player in liver disease [39]. The precise function
of APP is unknown but it is involved in Alzheimer’s dis-
ease and also has been hypothesised to be involved in liver
metabolism [40].
These findings demonstrate that SCPPIN can help to

automate the further investigation of results from a DEG
analysis by identifying parts of the PPIN that correspond
to genes that are significantly differentially expressed.
Furthermore, it also identifies proteins corresponding to
genes that are not significantly differentially expressed in a
particular cluster. These genes are candidates of a biolog-
ical connector function between differentially expressed
genes.

Influence of the false discovery rate
We have demonstrated that SCPPIN can reveal functional
modules inside a PPIN and associate them with cells of
a certain transcriptional state. Now we explore whether
there is only one functional module for a given cell state
or whether there are functional modules of different sizes.
We anticipate in this case that the latter is true, as it
has been shown that functional modules may exists at
multiple scales [28].
There is only one free parameter in SCPPIN, the false

discovery rate (FDR), which is defined as the propor-
tion, out of all genes which are declared significantly

differentially expressed, that are false positive and indeed
not significantly differently expressed. Given the distribu-
tion of p-values of differential expression and a FDR, we
can compute node weights that yield the intended FDR
(see Supplementary Note 1). Intuitively, increasing the
FDR identifies a larger subgraph of the PPIN as an active
module. In the following, we explore this systematically,
for the hepatocyte cluster H6 that we investigated above.
The size M ∈ [1,N] of the detected modules is non-

decreasing with the FDR. While the size M is non-
decreasing, our method is non-monotonous, i.e., proteins
identified for a certain FDR are not necessarily detected
for all larger FDRs. For small FDRs, we detect a mod-
ule of size M = 1, which is exactly the protein with
the smallest p-value1. For FDRs close to one, we detect a
maximum weight subgraph which is spanning almost the
whole network.
In Fig. 3, we show the sizeM of the optimal subnetworks

for cluster H6 as a function of the FDR. As expected, the
M(FDR) is non-decreasing. For FDR < 10−26, we detect a
single node, which represents PPP1R3C, the protein with
the smallest p-value (∼ 10−63). For larger FDRs, we detect
subnetworks of larger size that contain proteins that are
associated with larger p-values and could not have been
identified with the gene-expression data alone. For FDR =
10−25, for example, we detect the subnetwork of sizeM =
9 (shown in Fig. 2).
For FDR < 10−22, we detect an even larger functional

module, which partially overlaps with the one identified
for FDR < 10−23, as it also includes EGFR as connector
between proteins with small p-values. The second con-
nector is ELAV-like protein 1 (ELAVL1) with p ≈ 0.06.
The precise function of ELAVL1 is unknown but it is
believed to play a role in regulating ferroptosis in liver
fibrosis [41]. For even larger FDRs, we identify a module
with M = 42 nodes out of which 9 are not identi-
fied from the gene-expression data alone. We observe all
the before-mentioned connectors, as well as, hepatocel-
lular carcinoma-associated Antigen 88 (ECI2) and S100
calcium-binding proteinA4 (S100A4). The latter regulates
liver fibrogenesis by activating hepatic stellate cells [42].
Overall, the number of proteins we identify additionally
with our method is moderately increasing with the FDR.
In Supplementary Note 5, we show these M(FDR) curves
for the hepatocyte clusters.

Functional modules for different clusters
In the “Influence of the false discovery rate” section, we
investigated the influence of the FDR on the detected
modules for a single cell cluster. As we obtained seven
hepatocyte clusters (see Fig. 2), we can compute DEGs and

1If this is non-unique, multiple optimal modules of sizeM = 1 exist and can
be detected. In none of our examples was this the case.
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Fig. 3 (Upper Panel) Network plots of the detected modules for three choices of the FDR (10−25, 10−24, and 10−18). The colour of the nodes shows
their p-value from low (white) to high (purple). We indicate proteins that would not have been discovered from the gene-expression data alone as
squares and give their names in bold red font. (Lower Panel) The size of detected modules (blue disks) depends on the FDR. A large fraction of
proteins in these modules have significant p-values (red squares), however, for all FDR> 10−26, we also identify additional proteins as for a given
FDR, the blue disks are to the right of the red disks

thus also activemodules for each cluster separately. As each
cluster represents a different cell state, different genes
are identified by a DEG analysis, which then results in
different functional modules. To compare the detected
modules, we use SCPPIN with a FDR of 10−27 for all of
them. In Fig. 4, we show the functional modules for six
clusters (we omit the largest cluster due to illustration
limitation). The detected clusters differ in size, with the
largest consisting of 52 nodes (cluster H2) and the smallest
consisting only of a single node (Cluster H6). This hetero-
geneity occurs because the p-values of differential expres-
sion are differently distributed for each cluster. Cluster
Two has the smallest p-values as its gene expression is
most different from those in all other clusters, which indi-
cates a special function of these cells in comparison to
the rest. As shown for cluster H6 in Fig. 3, increasing
the FDR increases also the size of the detected functional
module.

In four out of the six modules, we find proteins that
we could not have identified with a DEG analysis alone.
For cluster H1, these are APP, ELAVL1, TRIM25, ACTN4,
PTEN, KRAS, TFG, and RPL4. For cluster H2, these
are VKORC1, APOA1, SNX27, CYCS, ECI2, APP, EGFR,
UBE3A, HNRNPL, COPS5, TP53, YWHAE, RCHY1, and
TERF2IP. For cluster H3, this is APP. For H5, these are
HSPA8 and FN1. We find that APP is identified as part of
the active module in three of these clusters, which indi-
cates that this membrane-bound protein may play a role
in different biological contexts.
To systematically access these biological contexts, we

perform a GO-term enrichment test to assess the hypoth-
esis that the detected modules represent biologically rele-
vant pathways (see Methods). We find that all but the two
smallest modules have GO terms enriched (see Table 1).
The GO terms hint at distinct biological functions for the
different cell clusters. Clusters H1 and H3 are involved in
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Fig. 4 Detected modules for six hepatocyte clusters for FDR = 10−27.We find that the detected modules vary in size, with the smallest consisting of
a single protein and the largest consisting of 253 proteins (we omit the largest cluster for visualisation purposes). Colour indicates p-value of
associated gene from low (white) to high (purple). We show nodes as squares if they would not have been detected without PPIN information. For
the larger modules, we only give the names of these proteins that we would not have detected by a DEG analysis. See SI for an illustration which
includes protein names

translational initiation, H2 in response to stress, and H5 in
the extracellular structure organisation. All of these iden-
tified cellular processes represent different hepatocytes
functions that have been found in vivo [2, 43].
The analysis of different cell states in the scRNA-seq

with SCPPIN indicates that genes associated with differ-
ent parts of the PPIN are active in different transcriptional
states. Different biological functions of the cell clusters
are reflected by different enriched GO terms. Overall, the
integration of scRNA-seq with a PPIN suggests that the
cells utilise the underlying PPIN differently to fulfil their
diverse biological functions.

Discussion
In this study, we integrated scRNA-seq data with PPINs to
construct node-weighted networks. For each cell cluster,
detecting a maximum-weight connected subgraph identi-
fies an active module, i.e., proteins that interact with each
other and taken together the corresponding genes are

significantly differently expressed. Our method SCPPIN
builds on advances in DEG analysis, which are standard
tools for the interpretation of scRNA-seq data. As a case
study, we investigated data from healthy human livers.
We find that the seven identified cell clusters have dif-
ferent subnetworks of the PPIN as functional modules in
which the corresponding genes exhibiting most signifi-
cantly changed expression levels. A GO-term enrichment
analysis indicates that these are also associated with differ-
ent biological functions. Furthermore, these subnetworks
identify proteins for which the corresponding genes are
not differently expressed in a given cluster but do inter-
act with proteins for which the corresponding genes are
strongly differentially expressed. These proteins are can-
didates for regulatory functions in these cells. It is only
through our combination of single-cell data with PPIN
data that these candidate proteins can be identified. Often,
they are integral membrane proteins such as FN1, EGFR,
and APP, drivers of cell fate such as P53 and KRAS, or
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Table 1 For each of the seven clusters we give the three most enriched GO terms and the multiple-testing-corrected p-values that we
received from Fisher’s exact tests. For these GO terms, we also give the fold-enrichment as the fraction of genes in the module with this
annotation over the total number of genes with this annotation in the whole data set

Cluster Module sizeM Top enriched GO terms (fold-enrichment) log10(p-value)

H1 51 translational initiation (15/158) −6

nuclear-transcribed mRNA catabolic process (14/101) −6

SRP-dependent cotranslational protein targeting to membrane (14/90) −5

H2 52 response to stress (32/491) −2

defense response (19/200) −2

cell maturation (6/18) −2

H3 27 SRP-dependent cotranslational protein targeting to membrane (24/78) −26

nuclear-transcribed mRNA catabolic process (24/86) −26

translational initiation (24/105) −24

H4 3 none

H5 30 extracellular structure organization (9/25) −3

exocytosis (12/203) −2

alcohol metabolic process (9/69) −3

H6 1 none

H7 253 SRP-dependent cotranslational protein targeting to membrane (78/88) −26

nuclear-transcribed mRNA catabolic process (78/90) −26

cotranslational protein targeting to membrane (78/91) −26

proteins of so-far unknown function such as TERF2IP and
TFG.
In a more general setting, SCPPIN can be used to sys-

tematically analyse DEGs in scRNA-seq data. The iden-
tified networks that characterise each cluster help to
identify and hypothesise a biological function associated
to those cells. For example, we identified the gene S100A4
in the hepatocyte cluster H6. S100A4 has been identi-
fied as a key component in the activation of stellated cells
in order to promote liver fibrosis [42]. Although previ-
ously identified in a population of macrophages [42, 44],
observing the expression of S100A4 in this cluster of hep-
atocytes may indicate that a subpopulation of hepatocytes
promotes fibrogenesis in paracrine. We also identified the
amyloid precursor protein (APP) and interaction partners
active in multiple hepatocyte clusters. Although little is
known about liver-specific functions of APP, in the central
nervous system it is a key driver of Alzheimer’s disease,
as source of the amyloid-β-peptide (Aβ) [45]. Due to the
major role of liver in the clearance of plasma Aβ , it would
be interesting to study the contribution of Aβ produced
in the liver and the impact in the central nervous system.
This systemic view of Alzheimer’s disease [46, 47] may
reveal alternative treatments. A more holistic approach
is the comparison of the detected functional modules
with disease associations to identify disease modules. We
undertake and discuss this approach in Section 6 in the SI.
Despite their success, scRNA-seq techniques have

methodological limitations (e.g., zero-inflation [48]). The

presented technique might be further improved by
considering such specific challenges, e.g., by construct-
ing a different mixture model (see Supplementary Note 1)
or implementing an imputation/noise reduction method-
ology. Furthermore, while we demonstrated exclusively
a modularity-based cell clustering, other clustering algo-
rithms might be appropriate, depending on the biological
question and the experimental platform [49]. As they
may reveal different cell states, SCPPIN may also reveal
different functional modules in these.
In this study, we used DEGs as the foundation to identify

the active modules in different cell types. We choose this
approach because DEG analysis is a common tool for the
identification of biomarkers in scRNA-seq experiments
[50]. Our scPPIN method, however, could also be used on
other statistics derived from scPPIN data, such as, scores
indicating the abundance of gene expression.
There is a rich literature of alternative ways to iden-

tify active modules in PPINs [51–53]. Here, we decided
to use a maximum-weight connected subgraph approach
because it allows an exact solution and is widely-used for
bulk RNA-seq analysis [33]. It is an open question whether
other approaches, such as, the maximum clique method
[54] or methods integrating gene-coexpression data [55]
are also fruitful in the single-cell setting. Active-module
detection methods in general could also be explored to
identify potential novel protein interactions because there
is an association between functional similarity of protein
pairs and whether or not they interact [28]. In this study,
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we used GO terms to computationally test the hypothesis
that the detectedmodules facilitate a joint biological func-
tion. Despite its shortcomings, such as annotation bias
[56], this is a widely-used approach. In future work experi-
mental knockout studies could be used to test the function
of these proteins in vivo in cellular context.
In conclusion, we demonstrate that integrating scRNA-

seq data with PPINs detects distinct enriched biological
pathways and demonstrates a functional heterogeneity of
cell clusters in the liver. It suggest the participation of
unexpected proteins in these pathways that are unde-
tectable from a gene-expression analysis alone. We pro-
vide an R package SCPPIN, so that our method can easily
be integrated to current analytical workflows for single
cell RNA-seq analysis.

Methods
Protein–protein interaction network
We construct a PPIN from the publicly available BIOGRID
database [36], version 3.5.166. The obtained network for
Homo sapiens has n = 17, 309 nodes and m = 296, 637
undirected, unweighted edges. While the PPIN might be
directed and edge-weighted [57] (e.g., considering confi-
dence in an interaction [58]), we consider here exclusively
undirected networks without edge weights.

Liver spheroid and bioinformatics
Human primary hepatocytes from a mixture of 10 donors
grown in a 3D spheroid, were purchased from InSphero
AG (Switzerland) and maintained in the culture medial
provided by the company. Single cell libraries were pre-
pared with a 10X Genomics 3’ kit and sequenced in an
Illumina NextSeq 500. Sequencing data demultiplexing
and alignment was carried out with CELLRANGER with
default parameters [59]. As a quality control, we only kept
cells with between 500 and 6000 genes detected. A total
of 2597 cells passed this quality control, of which 2123
are hepatocytes. We identified the cell types by using gene
markers as identified in [2, 60, 61]. The data is publicly
available and we make the process available under https://
github.com/floklimm/scPPIN.

Preprocessing
We analyse the scRNA-seq data with the SEURAT R pack-
age v2.3.4 [62]. As a preprocessing step, we align the data
with a canonical correlation analysis [62] with usage of
the first nine dimensions. We identify clusters with the
default resolution of one with the function FindClusters.
To identify cell types, we use gene markers expression and
in-house reference datasets.
To compute a p-value of differential expression for

each obtained cluster, we use the function FindAllMark-
ers with the argument RETURN.THRESH equal to 1 and
LOGFC.THRESHOLD set to 0.0 because we would like

to obtain p-values for all genes (significant and non-
significant ones). For the same reason, we do not employ a
threshold for fold-change in gene expression. We exclude
genes that are expressed in less than 10% of a cluster to
avoid comparing sparsely expressed genes.

Node-weighted network construction
The SCPPIN pipeline builds on a method for the identifi-
cation of functional modules as introduced by Dittrich et
al. for analysing bulk gene-expression data [33]. Dittrich
et al. compute maximum-weight connected subgraphs
to find subnetworks that change their expression signifi-
cantly in a certain disease. Here, we use a similar approach
to identify subnetworks that change significantly in differ-
ent clusters of cells.
Given a network G = {V ,E} with node set V and edge

set E ⊂ V × V , we construct a node-weighted network
Gnw = {V ,E,W } by assigning each node i ∈ V a real-
valued node weight wi, which we represent as a function
W :V → R (see Eq. 1). We construct these node-weighted
networks from a PPIN and gene-expression information.
The former is in the form of a network and the latter are
p-values of differential expression. We assume a bijection
between genes and proteins, i.e., each protein is expressed
by exactly one gene, which is a simplification of the
biological processes. We find this bijection by mapping
GeneIDs [36].
We delete all nodes from the PPIN for which no gene-

expression data is available. In the Supplementary Note 4,
we present an alternative approach that can incorporate
proteins with missing expression data.
We assign each node a score

W (x) = (α − 1)
(
log(x) − log(τ )

)
, (1)

which is a function of the p-value x and we vary the signif-
icance threshold τ to tune the false discovery rate (FDR).
We estimate α by fitting a beta-uniform mixture model to
the observed p-values (see Supplementary Note 1). This
score S(x) is negative for proteins below the significance
threshold τ and positive otherwise.

Mathematical optimisation algorithm
Mathematically, the problem of identifying a subnetwork
with maximal change of expression is a maximum-weight
connected subgraph problem. Algorithmically, it is easier
to solve an equivalent prize-collecting Steiner tree (PCST)
problem [33]. Steiner trees are generalisations of spanning
trees [63] and ‘prize-collecting’ indicates that the nodes
have weights. To find a PCST, we use the dual ascent-
based branch-and-bound framework DAPCSTP [64, 65].
For all calculations in this paper the algorithm identi-
fied an optimal solution in less than 10 s. For details see
Supplementary Note 2.

https://github.com/floklimm/scPPIN
https://github.com/floklimm/scPPIN
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Gene ontology enrichment
We use TOPGO in version 3.8 for the gene ontol-
ogy enrichment (GO-enrichment) analysis. [66]. We use
Fisher’s exact test to identify enriched GO terms [67]. All
reported GO terms are significant with p-value 0.01 and
we use a Benjamini–Hochberg procedure to counteract
the multiple-comparison problem.

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s12864-020-07144-2.

Additional file 1: Supplementary Information.
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64. Fischetti M, Leitner M, Ljubić I, Luipersbeck M, Monaci M, Resch M,
Salvagnin D, Sinnl M. Thinning out Steiner trees: a node-based model for
uniform edge costs. Math Program Comput. 2017;9(2):203–29.

65. Leitner M, Ljubić I, Luipersbeck M, Sinnl M. A dual ascent-based
branch-and-bound framework for the prize-collecting Steiner tree and
related problems. INFORMS J Comput. 2018;30(2):402–20.

66. Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology.
R package version. 2010;2(0):2010.

67. Fisher RA. Statistical methods for research workers. In: Kotz S, Johnson
NL, editors. Breakthroughs in Statistics. Springer; 1992. p. 66–70.

68. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res.
2002;30(1):207–10.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1016/j.cels.2018.12.008
https://doi.org/10.1016/j.cels.2018.12.008
https://doi.org/10.1038/nrm2101
https://doi.org/10.1186/s12859-019-3036-6
https://doi.org/10.1038/nbt.3192

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Influence of the false discovery rate
	Functional modules for different clusters

	Discussion
	Methods
	Protein–protein interaction network
	Liver spheroid and bioinformatics
	Preprocessing
	Node-weighted network construction
	Mathematical optimisation algorithm
	Gene ontology enrichment

	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s12864-020-07144-2.
	Additional file 1

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

