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Abstract

Background: RNA-Seq, the high-throughput sequencing (HT-Seq) of mRNAs, has become an essential tool for
characterizing gene expression differences between different cell types and conditions. Gene expression is regulated
by several mechanisms, including epigenetically by post-translational histone modifications which can be assessed by
ChIP-Seq (Chromatin Immuno-Precipitation Sequencing). As more and more biological samples are analyzed by the
combination of ChIP-Seq and RNA-Seq, the integrated analysis of the corresponding data sets becomes, theoretically,
a unique option to study gene regulation. However, technically such analyses are still in their infancy.

Results: Here we introduce intePareto, a computational tool for the integrative analysis of RNA-Seq and ChIP-Seq
data. With intePareto we match RNA-Seq and ChIP-Seq data at the level of genes, perform differential expression
analysis between biological conditions, and prioritize genes with consistent changes in RNA-Seq and ChIP-Seq data
using Pareto optimization.

Conclusion: intePareto facilitates comprehensive understanding of high dimensional transcriptomic and epigenomic
data. Its superiority to a naive differential gene expression analysis with RNA-Seq and available integrative approach is
demonstrated by analyzing a public dataset.
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Background
With increasing accessibility and application of high-
throughput sequencing (HT-Seq), it has become possible,
in principle, to combine and integrate complex transcrip-
tomic (RNA-Seq, [1]) and epigenomic data as a multi-
omics approach to understand mechanisms of gene reg-
ulation [2]. One of the most important epigenetic regu-
lators of gene expression are histone modifications [3].
Several types of histone modifications can change the
state of the chromatin in different ways and increase or
decrease gene expression.
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There are many interesting applications of integrative
analysis of RNA-Seq and ChIP-Seq data. For instance, the
consistent co-occurrence of histone modification patterns
and up- or down-regulated gene expression can improve
our understanding of the “histone code” [4]; or, the com-
parison of histone modification states with quantitative
gene expression can lead to the discovery of new enhancer
regions [5]; or, expression and simultaneous occurrence
of different modifications at a gene can reveal gene reg-
ulation dynamics along a developmental trajectory [6].
Separate analyses of RNA-Seq or ChIP-Seq data alone
can not fully explain the complex mechanisms underlying
the regulation of gene expression. Efforts to quantitatively
integrate available RNA-Seq and ChIP-Seq data of his-
tone modifications in various conditions are crucial for

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-07205-6&domain=pdf
http://orcid.org/0000-0001-9739-8972
mailto: yingying.cao@uni-due.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Cao et al. BMC Genomics 2020, 21(Suppl 11):802 Page 2 of 9

improving our understanding of the role of epigenetics in
gene regulation.

Several computational methods have been proposed to
use histone modifications for predicting gene expression
[7, 8]. However, these methods generally focus on the
prediction of gene expression with ChIP-Seq data of dif-
ferent histone modifications in one cell type or state. An
important task for quantitative integration of RNA-Seq
and ChIP-Seq data is the identification of genes of impor-
tant biological function that are differentially expressed
and therefore define cell types or states. Integration could
answer questions like these: For which genes do we see
consistent changes in expression and in histone modifi-
cations as we compare different cell types or conditions?
Which genes show increased expression in combination
with acquisition of activating histone modifications, or
decreased expression in combination with more suppres-
sive histone modifications?

Such genes with consistent transcriptomic and epige-
nomic changes are more likely to point to essential func-
tional differences and to play an important role in cell
differentiation or the development of disease.

Although identification of such genes is obviously highly
attractive, and matched data sets of RNA-Seq and ChIP-
Seq are increasingly available, promising technical imple-
mentations are still rare and not readily available [9]. One
reason may be the sheer complexity of the data, consider
e.g. that there are numerous histone marks with simi-
lar but probably not identical function, such as activating
marks H3K4me3, H3K4me1, H3K36me3, H3K27ac, or
repressive marks H3K9me3 and H3K27me3.

There are a few methods developed to detect genes
with congruent changes in RNA-Seq and ChIP-Seq
between two experimental conditions. For example, Klein
et al., 2014 [10] and Schäfer et al., 2017 [11] developed
approaches based on Bayesian inference of mixture mod-
els [10] and hierarchical models and clustering [11]. These
early methods are a great step forward towards integra-
tive analysis, but they still suffer from limitations, e.g. with
respect to the number of genomic variables that may be
analyzed, or because of the danger of losing important
information in the aggregating of data. Further more, their
integration [11] is based on transcript level, from a biolog-
ical perspective, data integration on gene level is easier to
interpret than at the transcript level.

Here we present a quantitative method for the inte-
grative analysis of RNA-Seq and ChIP-Seq data for sev-
eral different histone modifications. We frame integrative
analysis as multi-objective optimization problem that we
solve by Pareto optimization [12]. Multi-objective opti-
mization has significant advantages compared to single-
objective optimization, e.g., in classification, system opti-
mization, and inverse problems [13]. With our new R
package intePareto we provide a first solution of Pareto

optimization to the integration of RNA- and ChIP-Seq
data sets. Specifically, intePareto is a flexible and user-
friendly tool (1) to match these data sets on gene level,
(2) to integrate them in a quantitative fashion, (3) to
examine abundance correlations of histone modifications
and gene expression, and (4) to prioritize genes based on
the consistence of changes between conditions in both
RNA-Seq and ChIP-Seq using Pareto optimization. The
result of the last step is an informative rank-ordered
gene list.

We demonstrate that integration of RNA-Seq data and
ChIP-Seq data by Pareto Optimization outperforms a
clustering method based on Bayesian inference of a hier-
archical model [11], and the analysis of RNA-Seq alone.

Implementation
intePareto is implemented as an R package that provides
an easy-to-use workflow to quantitatively integrate RNA-
Seq and ChIP-Seq data of one or more different histone
modifications. A typical application, as presented here
with 4 RNA-Seq samples and 28 ChIP-Seq samples (case
study in Additional file 1), runs in less than one hour on
a standard personal computer. In this section, we describe
the implementation of intePareto in detail. The pipeline
takes as first input RNA-Seq data, preprocessed by RNA-
Seq quantification software, for instance estimated read
counts from Kallisto [14], or other suitable quantities
[15–17]. Kallisto performs well in terms of speed and
quantification, so we use as input file format the output
format of Kallisto. Other quantification inputs [15–17]
are also accepted if structured in the same input file for-
mat. Second, the pipeline takes ChIP-Seq reads, aligned to
the reference genome with tools like BWA [18], and then
processed further with Samtools [19]. The workflow then
comprises three main steps, 1. “Matching”, 2. “Integration”,
3. “Prioritization” sections (Fig. 1a).

Matching
Our first problem is to link histone modification data with
the corresponding gene expression data. Hence, the first
step is to match quantitative histone modification data
from ChIP-Seq to the biologically corresponding gene
expression data as measured by RNA-Seq, or in other
words: to find the target genes for histone modifications.

This matching of RNA-Seq and ChIP-Seq data is com-
plicated by the fact that one gene usually has multiple
transcripts, and multiple transcript starting sites (TSSs),
which means that there are multiple promoters that can
drive gene expression [20]. Another more challenging task
is that the link between enhancers and genes is much more
difficult to determine. Contrary to promoters that reside
approximately 3 kilobases (kb) upstream from the tran-
scription start site (TSS) of a gene, enhancers are often
found dozens of kb away from the genes they influence.
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Fig. 1 intePareto workflow. a The general pipeline of intePareto. b Heatmap of correlation matrix of RNA-Seq and ChIP-Seq for different histone
marks after genewise matching. The color represents Spearman’s rank correlation across all samples. c Top Pareto fronts

Moreover, enhancers are tissue- and cell type-specific and
highly variable [21–23].

Several methods for predicting target genes for histone
modifications have been published [24–26]. However, the
lack of agreement between them discouraged us to include
them in our pipeline [27].

For ChIP-Seq data of histone modification marks that
are enriched in promoter regions, like H3K4me3 and
H3K27me3, intePareto offers two matching strategies: (1)
highest – choose the promoter with maximum ChIP-Seq
abundance value among all the promoters as a representa-
tive of the ChIP-Seq signal for this gene; (2) weighted.mean
– calculate the abundance weighted mean of all the pro-
moters to represent the ChIP-Seq signal for this gene. In
this study the promoter region was defined as 5 kb stretch
with the TSS at the center; we found that this value safely
included all relevant ChIP-Seq signals. This definition can
be adapted if necessary.

More matching strategies will be offered in future ver-
sions with increasing availability of validated annotated
enhancers and of studies that examine the relationship
between the density of ChIP-Seq and expression level

of RNA-Seq. After the genewise match of RNA-Seq and
ChIP-Seq data, the correlation of RNA-Seq and ChIP-Seq
can be examined for each histone mark (Fig. 1b)

Integration
After the genewise matching of RNA-Seq and ChIP-Seq,
these two data types are integrated by calculation of log
fold changes (FC) between conditions, as implemented in
DESeq2 [28]. For that purpose we propose to use DESeq2
because it works well for both RNA-Seq and ChIP-Seq
data [29]. Another benefit is that apeglm algorithm [30] is
used to shrink the logFC values to zero when the counts
are low, dispersion is high, or the number of biological
replicates is small. To normalize the data for sequencing
depth and RNA composition, the median of ratios method
is implemented [28]. intePareto determines the Z scores
for each gene g and each histone modification type h,
defined as:

Zg,h = logFC(RNA)
g
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(

logFC(RNA)
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) ·
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A combination of gene and histone mark has a high,
positive Z score if between the compared conditions or
cell populations gene expression and histone modification
change strongly and in the same direction, i.e. both up or
both down.

Prioritization
intePareto takes the Z scores for different, user-selected
histone modifications as input, so that for each gene we
have several Z scores.

To this end, we can collect all Z scores in an objective
function, namely the vector of the n Z scores (one for each
histone modification), i.e. (α1Z1, α2Z2, . . . , αnZn), where
αi ∈ {−1, 1}, depending on whether the histone mark is
repressive or activating.

We can then interpret the identification of genes that
show strong and consistent changes across histone marks
as a multi-objective optimization problem, and we solve
this problem by a Pareto optimization algorithm [12, 31].

The result is a ranking of genes in Pareto fronts. Using
marks H3K27me3 and H3K4me3 as an example, genes
in the first Pareto front could minimize Z scores for the
repressive mark H3K27me3, and simultaneously maxi-
mize the Z scores for the activating mark H3K4me3. This
simultaneous optimization is understood in the sense that
genes in the first Pareto front are not dominated by other
genes, i.e. no genes outside the first Pareto front have a
lower H3K27me3 Z score and simultaneously a higher
H3K4me3 Z score. The second Pareto front is determined
in the same way after removal of the first Pareto front, etc.
Fig. 1c shows an example of the resulting rank ordering.
The Additional file 1 gives more details and an example
application of intePareto.

Results
Evaluation of intePareto using publicly available data
RNA-Seq and ChIP-Seq data
We evaluate intePareto based on publicly available RNA-
Seq and ChIP-Seq data from a study of Tet methylcytosine
dioxygenase 2 (Tet2) knockout mouse embryonic stem
cells (mESCs) that are compared to wild type mESCs
[32]. With Tet2 assumed to be involved in the regu-
lation of DNA methylation at enhancers, we expected
to find congruent changes between the epigenomes and
transcriptomes of Tet2 knockout and wildtype mESCs.
For each cell type, the data consists of biologically repli-
cated RNA-Seq data and ChIP-Seq data for histone marks
H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3
and H3K36me3 (see Additional file 1 for details).

Data processing
The raw RNA-Seq data in FASTQ format was aligned and
quantified with Kallisto (version 0.43.1) [14] against a ref-
erence transcriptome downloaded from the ENSEMBL

database [33]. The outputs of this step are estimated
counts of reads and TPM values for each gene of a given
cell condition. The raw ChIP-Seq data in FASTQ format
was aligned with BWA (0.7.17) [18] also against a refer-
ence genome from ENSEMBL. The resulting files were
sorted and the corresponding index files were built with
Samtools (version 0.1.19) [19].

Analysis with intePareto
We know that the histone marks H3K4me3, H3K27me3,
and H3K9me3 are enriched at gene promoter regions
[34, 35]. Other marks such as H3K4me1 and H3K27ac
are often associated with gene enhancers as well as active
promoter regions, while H3K36me3 is associated with the
gene body [34–36]. To define the epigenetic signal for
marks that are prevalent at gene promoters we counted
the number of ChIP-Seq reads falling into the promoter
region of specific genes. For H3K36me3 we counted the
total number of reads that fall into the genomic body.

Matching of RNA-Seq and ChIP-Seq data was performed
with highest strategy as described in “Implementation”
section (also see Additional file 1). We demonstrate that
our matching strategy captures meaningful epigenetic and
transcriptomic signals, by showing that the gene expres-
sion is positively correlated with the signal of active marks,
and negatively correlated with the signal of repressive
marks (Fig. 2) [37, 38]. The matched data was inte-
grated (doIntegration function), followed by a prioritiza-
tion (doPareto function) based on Pareto optimization.
The optimization task was devised such that it priori-
tizes genes having high positive Z-scores for active his-
tone marks (H3K4me1, H3K4me3, H3K27ac, H3K36me3)
and low negative Z-scores for repressive histone marks
(H3K9me3, H3K27me3). The resulting list of genes were
sorted according to ascending fronts (Additional file 2).

Downstream analysis of the output of intePareto
Gene Ontology (GO) enrichment analysis [39] of the top
genes resulting from Pareto optimization by intePareto
shows (Fig. 3a) that all enriched GO terms are known
functional characteristics of Tet2 according to the data
source [32] and other research. Specifically, Tet2 can influ-
ence the cell differentiation and proliferation of ESCs
through altering of the methylation status of DNA, espe-
cially in neurogenic differentiation [32, 40], and the devel-
opment of the heart [41, 42] and other organs [43].
Figure 3b is the heatmap of the 14 genes in the first
Pareto front. There are distinct patterns between the up-
regulated and down-regulated genes. The clustering den-
drogram at the top of the heatmap hints at the functional
similarity of H3K27me3 and H3K9me3, and the func-
tional similarity of H3K4me1, H3K4me3, H3K27ac, and
H3K36me3. This is in line with previous reports about the
function of these histone marks [37, 38]. It is worth noting
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Fig. 2 Heatmap of correlation matrix. Heatmap shows correlation matrix of all RNA-Seq and ChIP-Seq samples. Sample names marked in red are
RNA-Seq samples. Sample names marked in black are ChIP-Seq samples

Fig. 3 Top genes detected by intePareto. a Top 10 GO terms that are enriched for genes detected by intePareto in the first 5 Pareto fronts. b Genes in
the first Pareto front. The logFoldChange of RNA-Seq (lFC.RNA-Seq) is calculated by DESeq2 in tet2 knockout condition over wild type. The Z score is
calculated by intePareto
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that the gene Eif2s3y, which was recently confirmed as
strongly down-regulated [44] in Tet2 knockdown mESC,
was not significantly down-regulated in RNA-Seq data
alone. However, it popped up in the top two Pareto fronts
of our integrative analysis. This also highlights the benefits
of integrative analysis of both data types, which can reduce
false negatives or false positives from analyses based on a
single sample or data type.

Comparison with existing approach
To evaluate the performance of intePareto, we com-
pared our results to those of an integrative analysis with
a recently published hierarchical Bayesian model-based
clustering approach (“model-based approach”) [11], and
to the analysis of RNA-Seq alone (Additional file 3). As
quality metric for the comparisons, we used the enrich-
ment score of interesting GO terms. For a set of genes
(G; e.g. high-priority genes assigned to Pareto front 1), we
define the enrichment score for GO term i as the fraction
fi = |G∩GOi|/|G|, with GOi the set of all genes annotated
with GO term i.

The GO terms of interest were those confirmed in pre-
vious research such as “neurogenesis” [32, 40], “cardiac
chamber development” [41, 42], “mammary gland for-
mation” [43, 45], and “limb morphogenesis” [46]. Both
our integrative approach and the model-based approach
found that the genes in the top-ranked genes were
enriched in “neurogenesis” (Fig. 4a) and “limb morpho-
genesis” (Fig. 4d). Analysis based on RNA-Seq alone did
not find this enrichment. intePareto also found that the
top-ranked genes are more enriched in “cardiac chamber
development” (Fig. 4b) and “mammary gland formation”
(Fig. 4c) as they should be. These functions were not
identified by RNA-Seq analysis alone or the model-based
approach. An alternative to GO enrichment, that yields
complementary information, is pathway enrichment.

Discussion and conclusions
Integrative methods such as those implemented in
intePareto can collect more evidence from the increas-
ing amount of HT-Seq data of different modalities, such
as RNA-Seq and ChIP-Seq data. This will hopefully allow

Fig. 4 Comparison of intePareto with a model-based clustering approach and analysis of RNA-Seq alone. (a-d) In each of the four panels, the first
point from the left on the red line marks the number of genes (x-axis) in the first two (Since there are only 14 genes in the first Pareto front shown in
Fig. 3b) Pareto fronts together with the enrichment score (y-axis) of the respective GO term in that Pareto front. Accordingly, the second point refers
to the genes in the first three Pareto fronts, etc. Assume that the first i Pareto fronts comprise a total ni genes, then the corresponding point on the
black line takes the first ni genes, ranked by q-value obtained from the differential gene expression analysis based on RNA-Seq data alone. Note that
the red line from the intePareto analysis always lies above the black line, indicating a stronger enrichment of the relevant GO terms in the integrated
data compared to RNA-Seq data alone. The blue triangles mark the corresponding values of the existing integrative analysis method
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deeper insight into molecular mechanisms underlying
processes like cell differentiation or disease progression.
The approach chosen here can be generalized to fur-
ther HT-Seq data types, e.g. from DNA methylation or
chromatin accessibility.

Another use of intePareto lies in quality control. Specif-
ically, the correlation matrix (Fig. 2) that is generated in
the analysis procedure can be used to check ChIP-Seq data
quality, which is still not straightforward [47–49]. Such
quality checks prior to detailed data analysis and inter-
pretation can avoid errors caused by low-quality ChIP-seq
data, and point to possible reasons of failure.

As mentioned above, our approach can be extended in
several directions. For instance, improvements are possi-
ble if the relationship between distal (even transchromos-
mal) regulatory elements like enhancers, and their target
genes are clarified.

However, it is also true that our approach has inher-
ent limitations. Gene regulation is of such a complexity
[50–52] that it probably cannot be completely mapped on
a simple approach as that proposed here. We would have
to jointly consider the multitude of effects of chromatin
remodelers [53, 54], transcription factor co-occupancy
[55, 56], different combination of histone modification
marks [4, 57], DNA methylation [58], and even RNA
modifications [59, 60], which are laborious to capture
and profile simultaneously [61]. Nevertheless, we think
that a robust, easy-to-use approach such as intePareto
that exploits subsets of these genomic modalities is a
valuable addition to the toolbox of basic and applied
genomics.

Availability and requirements
Project name: intePareto
Project home package: https://cran.r-project.org/web/
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https://github.com/yingstat/intePareto (development ver-
sion)
Operation system(s): Platform independent
Programming language: R (≥3.6.0)
License: GPL (≥2)
Restrictions to use by non-academics: None
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