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Abstract

Background: Long-read RNA-Seq techniques can generate reads that encompass a large proportion or the entire
mRNA/cDNA molecules, so they are expected to address inherited limitations of short-read RNA-Seq techniques
that typically generate < 150 bp reads. However, there is a general lack of software tools for gene fusion detection
from long-read RNA-seq data, which takes into account the high basecalling error rates and the presence of
alignment errors.

Results: In this study, we developed a fast computational tool, LongGF, to efficiently detect candidate gene fusions
from long-read RNA-seq data, including cDNA sequencing data and direct mRNA sequencing data. We evaluated
LongGF on tens of simulated long-read RNA-seq datasets, and demonstrated its superior performance in gene
fusion detection. We also tested LongGF on a Nanopore direct mRNA sequencing dataset and a PacBio sequencing
dataset generated on a mixture of 10 cancer cell lines, and found that LongGF achieved better performance to
detect known gene fusions over existing computational tools. Furthermore, we tested LongGF on a Nanopore
cDNA sequencing dataset on acute myeloid leukemia, and pinpointed the exact location of a translocation
(previously known in cytogenetic resolution) in base resolution, which was further validated by Sanger sequencing.

Conclusions: In summary, LongGF will greatly facilitate the discovery of candidate gene fusion events from long-
read RNA-Seq data, especially in cancer samples. LongGF is implemented in C++ and is available at https://github.
com/WGLab/LongGF.
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Background
Gene fusion is a process by which two or more distinct
genes are fused into a single gene [1]. Gene fusion could
be the results of trans-splicing events or structural vari-
ants such as chromosomal translocation, interstitial dele-
tion or chromosomal inversion. Gene fusion plays a
critical role in transcriptome diversity and may be asso-
ciated with human diseases, especially cancer. One of
the first known gene fusions was reported to induce
chronic myeloid leukemia [2], and since then, more and
more gene fusions have been found to play a critical role
in tumorigenesis [3–5], such as Ewing’s sarcoma and
synovial sarcoma [6, 7], prostate cancer [8], breast can-
cer [9], bladder cancer [10], colorectal cancer [11], ovar-
ian cancer [12], lung cancer [13] and tumors in central
nervous systems [14, 15]. Importantly, gene fusions can
be used as biomarkers for cancer diagnosis, such as in
breast cancer [16] and ovarian cancer [17], and also used
as therapeutic targets for cancer [18–21]. The ability to
target and better understand gene fusions may lead to
the development of novel targeted therapies in the
future.
Gene fusions at a transcriptome-wide scale can be

detected using RNA-seq techniques, and tens of computa-
tional methods have already been developed for this
purpose on short-read RNA-seq data, including
alignment-based and assembly-based approaches.
Alignment-based methods detect gene-fusions on short
reads mapped to annotated reference genome or tran-
scriptome, such as Arriba [22], ChimeraScan [23], Chim-
Pipe [24], deFuse [25], FusionCatcher [26], FusionHunter
[27], FusionMap [28], FusionQ [29], FusionScan [30], In-
Fusion [31], MapSplice [32], PRADA [33], SnowShoes-
FTD [34], SOAPfuse [35], Star-fusion [36], STARChip
[37], STAR-SEQR (https://github.com/ExpressionAnaly-
sis/STAR-SEQR), and Tophat-fusion [38]. Assembly-
based methods, such as BreakFusion [39], EricScript [40],
Fusion-Bloom [41], FuSeq [42], JAFFA [43], NeoFuse [44],
nFuse [45], Pizzly [46] and ShortFuse [47], predict gene-
fusions by identifying break points using assembly se-
quences from short-reads. Several review studies have
assessed different methods on both simulation data and
real short-read RNA-seq data [36, 48, 49], and evaluated
the performance in detecting gene fusions. Both align-
ment- and assembly-based methods require the availabil-
ity of specific reads in capturing informative transcript
sequence to identify fusion points. However, short-read
data (typically < 150 bp) has inherited limitations to detect
full length of gene isoforms, suffers from assembly ambi-
guity, and cannot resolve repetitive regions or low-
complexity regions. Long-read RNA-seq techniques can
generate sequenced reads with tens of thousands of bases,
and thus can capture the majority of transcriptional iso-
forms in single reads without transcriptome assembly.

In the past few years, long-read RNA-Seq techniques
are increasingly recognized to improve our understanding
of transcriptomic complexity over short-read RNA-Seq.
Computational tools designed for long-read RNA-Seq
data, such as Mandalorion [50], FLAIR [51] and LIQA
[52], can identify novel transcripts and quantify isoform
specific expression levels. However, to our knowledge,
there are limited available tools to detect gene fusions on
long-read RNA-seq data. In this study, we proposed a
novel approach called LongGF to detect candidate gene
fusion events from long-read RNA-seq data. We examined
the performance characteristics of LongGF on a set of
simulation data. To further evaluate the real-world utility
of LongGF, we tested LongGF on several long-read RNA-
seq data sets: Oxford Nanopore data (via direct mRNA
sequencing) and PacBio data on the universal human
reference RNA-seq sample, as well as Nanopore data
(via full-length cDNA sequencing) of a patient with
acute myeloid leukemia (AML). We compared LongGF
against short-read gene fusion detectors, Tophat-Fusion
and STAR-Fusion, together with a hybrid method IDP-
Fusion. Our evaluation demonstrated that LongGF success-
fully detected candidate gene fusions from long-read RNA-
seq data, and some of these fusions are previously known
or can be validated by additional Sanger sequencing.

Methods
Framework of LongGF
As shown in Fig. 1 (a), the input of LongGF is a BAM
file from a long-read RNA-seq data together with a GTF
file containing the definition of known genes and their
transcriptional isoforms. The BAM file can be generated
by different long-read aligners (minimap2 [53] by de-
fault). The output of LongGF is a prioritized list of can-
didate gene fusions together with their supporting long
reads. LongGF has several steps to detect gene fusions
from the BAM file: get multiple mapped long reads (i.e.,
reads that map to multiple genomic locations), obtain
candidate gene pairs, find gene pairs with non-random
supporting long reads, and output prioritized list of can-
didate gene fusions ranked by the number of supporting
reads.

Get multiple mapped long reads
Given an input BAM file for a RNA-seq data set, we
check each mapped record, and filter those long reads
which have no supplementary alignment. In BAM for-
mat, a long read may have more than 1 significant align-
ment records in different genomic positions (as shown
in Fig. 1 where both long read 1 and long read 2 have 2
alignment records), and one of them is considered as
primary alignment, yet others are considered as supple-
mentary alignments if mapped bases in the long read in
this alignment have less overlap with mapped bases in
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the primary alignment, or as secondary alignment other-
wise. Secondary alignments are thus filtered in LongGF,
because upstream sequence and downstream sequence
around the fusion points of gene fusion are from two in-
dependent genes and would have no substantial overlap.
Thus, only primary and supplementary alignments are
considered in this step.

Obtain candidate gene pairs of multiple mapped long reads
For each alignment record for a long read, the mapped
genomic positions in a reference genome are compared
against a corresponding gene definition with genomic
coordinates of exon for each transcript of genes (as

shown in Fig. 1 where long reads 2, 3 and 4 are mapped
to different genes). If the size of the overlap of the
mapped positions and the exons for a transcript is larger
than a user-defined threshold, this alignment record is
considered to be associated with the transcript. If a long
read has more than 1 significant overlap against 2 inde-
pendent genes, the gene pairs together with the align-
ment information are summarized; otherwise, it is
filtered out as shown in Fig. 1(b). Meanwhile, to filter
out noises, some genes or long reads below are not con-
sidered: (1) pseudogenes in a GTF gene definition file or
two genes whose genomic coordinates have significant
overlap: Assume two genes i and j whose starting

Fig. 1 Illustration of the computational procedure used by LongGF. a A flowchart on LongGF, where the dashed boxes represent inputs. In panel
(b) to (f), filled rectangles denote exons of gene and different colors denote different genes. The size of exons and bins are not proportional for
demonstration purpose only. Pattern filled regions in long reads represent mapped bases in long reads. Information with red cross is not used for
further analysis. b alignment against no gene; c two genes with significant overlap; d two alignments of a long read overlap significantly; e two
alignments of a long read are far away; f two alignments of a long read are used for further analysis; g bin(window) pairs for two genes (in blue
and in green) with the same aligned long reads. Dotted vertical lines help determine how alignment ends fall into bins

Liu et al. BMC Genomics Page 3 of 122020, 21(Suppl 11):793



positions are S1 and S2 (S1 < S2), and ending positions
are E1 and E2, if E1 − S2 > 0, the two genes have sig-
nificant overlap, as shown in Fig. 1 (c). Please note
that we do not consider these pseudogenes in the
analysis by default, and in LongGF, users can specify
whether to use pseudogenes in gene fusion detection;
and (2) a long read sequence whose mapped bases of
two alignment records do not have an appropriate gap:
for example in a long read sequence, the mapped bases
from M1 to M2 are used in one alignment record, and
bases from M3 to M4 are used in another alignment rec-
ord, M3 >M1, if M3 −M2 is larger than a threshold (such
as 20, as shown in Fig. 1 (e)) or less than − 20, as shown in
Fig. 1 (d), the two alignment records do not have an ap-
propriate gap. In Fig. 1, long reads 2 and 3 are excluded
and long read 4 (Fig. 1 (f)) is used for further analysis.
Please note that alignments shown in Fig. 1 (c) need users’
further investigation for potential gene fusions, while
alignments such as those in Fig. 1 (d) and Fig. 1 (e) may
indicate complex gene fusions or implicate the presence
of potential structural variants.

Find gene pairs with non-random supporting long reads
Each gene pair generated above is associated with a set
of long reads together with their alignment information.
Those alignments may not be consistent due to align-
ment errors or sequencing errors. A consistent support
is summarized using the process as shown in Fig. 1 (g):
first, aligned genomic positions are discretized into a
window with w bp and two adjacent windows have w/2
bp overlap; second, each gene pair is then associated
with all possible window pairs; third, for each long read
associated with this gene pair, if the fusion points of the
two alignment records fall into a window of a gene and
into a window of the other gene, the number of support-
ing long reads for this window pair is increased by 1;
then, each window pair is associated with the number of
supporting long reads together with the fusion points of
two alignment records of long reads; fourth, for the win-
dow pair with maximum supporting long reads, the av-
eraged genomic position of fusion points is considered
as the fusion points of this potential fused gene. By de-
fault, one breakpoint is shown in the output for a gene
pair, but users can specify the parameters in LongGF to
output more breakpoints for each gene pair to facilitate
downstream analysis to refine breakpoints.

Output prioritized list of candidate gene fusions
From a BAM file, multiple candidate gene fusions are
detected, and each is associated with a list of a pair of
two alignment records on long reads. We rank the po-
tential fused genes according to the number of support-
ing long reads. More reliable gene fusion events usually
have more supporting long reads. We also allow the

extraction of reads in specific locations, so that users
can easily examine the reads and alignments in
visualization tools such as IGV, to visually validate
whether the candidate fusion events are reliable.

Datasets for evaluations
To evaluate the performance, we applied LongGF to sev-
eral existing long-read RNA-seq data sets using Oxford
Nanopore long-read techniques (PRJNA639366 and
PRJNA40456 in NCBI Short Read Archive), including
one direct mRNA sequencing data set, one full-length
cDNA sequencing data set, as well as additional long-
read RNA-seq data using PacBio sequencing techniques.
We also simulated tens of long-read RNA-seq data sets.
The description of the datasets is given below.

Long-read sequencing of universal human reference RNA-
seq data
We analyzed two long-read datasets, using Nanopore
sequencing and PacBio sequencing, for Universal Human
Reference (UHR) RNA which comprises of mixed RNA
molecules from a diverse set of 10 cancer cell lines with
equal quantities of DNase-treated RNA from adenocarcin-
oma in mammary gland, hepatoblastoma in liver, adeno-
carcinoma in cervix, embryonal carcinoma in testis,
glioblastoma in brain, melanoma, liposarcoma, histocytic
lymphoma in histocyte macrophage, lymphoblastic
leukemia and plasmacytoma in B lymphocyte. This refer-
ence sample from MicroArray Quality Control [17, 54, 55]
project has been utilized in many studies. For example,
Gao et al [56] sequenced this UHR RNA sample and
treated it as reference to measure the technical variations
of scRNA-seq data. Also, the qRT-PCR measurements of
gene/isoform expressions from this sample were used to
benchmark and optimize computational tools [57–61].
Direct mRNA sequencing protocol was used to generate
Nanopore sequencing data, and we used Guppy for base-
calling. In total, there are ~476,000 long reads with ~557
MB bases. We aligned the Nanopore RNA-seq data against
a reference genome (hg38) using minimap2 [53], and 95%
long reads (89% of total bases) were mapped, demonstrat-
ing very high sequencing and basecalling quality. Addition-
ally, PacBio has used Iso-seq generated FLNC (full-length
non-chimeric) long-read sequencing data for the UHR
RNA samples [62]. In total, there are 6,775,127 long reads
with 13.7 GB bases. We aligned PacBio long reads against
hg38 using minimap2 [53], and 94% long reads with 95%
bases were mapped. On the UHR RNA-seq data, the 6
well-known gene fusions used for our benchmarking study
on short-read sequencing data include BCAS4-BCAS3,
BCR-ABL1, ARFGEF2-SULF2, RPS6KB1-
TMEM49(VMP1), TMPRSS2-ERG, and GAS6-RASA3.
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Nanopore cDNA sequencing of a patient with AML (acute
myeloid leukemia)
AML is a type of cancer where abnormal myeloblasts
are made by bone marrow. Full-length double-stranded
cDNA were generated from total RNA by 1D strand-
switching RT protocol and the cDNA sample was se-
quenced using GridION Nanopore sequencer with
Guppy basecalling. In total, there are 8,061,683 long
reads with 6.6 GB bases. We aligned the data against a
reference genome (hg38) using minimap2 [53], and 63%
long reads (73% bases) were mapped, indicating moder-
ate sequencing and basecalling quality. There is a gene
fusion between RUNX1T1 and RUNX1 in this patient
from previous cytogenetic studies, but with unknown
genomic positions of the breakpoints.

Simulation of long-read RNA-seq data
We simulated tens of long-read RNA-seq data sets to
evaluate the performance of LongGF for gene-fusion
detection based on RefSeq gene annotation. To simulate
a realistic dataset with known gene fusions, we used
NanoSim to generate long-read RNA-seq data [63].
NanoSim simulator program captures the technology-
specific features of long-read data and allows for adjust-
ments upon improvement of Nanopore sequencing
technology. The use of NanoSim facilitates the evaluation
of LongGF in gene-fusion detection under a realistic set-
ting. To simulate Nanopore RNA-seq reads using Nano-
Sim, the human reference genome sequence (hg19, NCBI
build 37) was downloaded from UCSC Genome Browser
(https://genome.ucsc.edu/). We characterized parameters
for NanoSim using an existing datasets generated from hu-
man reference RNA samples. We simulated 10 Nanopore
RNA-seq samples (500,000 reads per sample). To make our
simulated datasets more realistic, for each sample, we in-
cluded 100 gene-fusions and assigned expressions to them
based on gene expression distribution of a real RNA-seq
dataset (expression TPM: 50 gene-fusions > 1000; 50 gene-
fusions ranges from 10 to 1000). Specifically, for each gene-
fusion, we first selected two isoform transcripts from two
different genes and assigned fusion points randomly to cut
each transcript into two parts (5′ end and 3′ end parts).
Next, we combined the 5′ end and 3′ end parts from two
different genes together to construct a simulated gene-
fusion. The expression level of each gene-fusion was calcu-
lated based on the average expression between two genes
from the UHR data set. Given annotated gene-fusions and
expressions, we generated Nanopore reads using NanoSim.
These simulated RNA-seq reads were then mapped to the
hg19 reference human genome using minimap2 [53]. Then,
we analyzed 10 samples respectively to detect gene fusion
events, and compared them to the artificially created gene
fusions.

Results
Performance on simulation datasets
The characteristics of the simulated data are shown in
Fig. 2 (a)(b)(c). The median read length is 1091 bp and
the average mapping rate across 10 simulated datasets is
99%. The coverage plot of the simulated data is similar
to a real study, demonstrating positional biases and full-
length coverage of isoforms. For all underlying gene fu-
sions, the median number of supporting reads is 42.
Since the ground truth is known, these simulated data-
sets facilitate the performance evaluation of LongGF.
We explored several measures to quantify the accuracy

of gene fusion detection by LongGF on simulation data-
sets. First, we measured the recall (power) of our
method by calculating the proportion of correctly pre-
dicted gene fusions among known (artificially introduced
during simulation) gene fusions. Second, we measured
the precision of LongGF by calculating the proportion of
correctly predicted gene fusions among all predicted
gene fusions. Last, we evaluated the overall performance
of LongGF using F1 score which is a weighted average
of precision and recall values (F1 score ¼ 2∙ precision∙recall

precisionþrecall).

Figure 2 (d) (e) shows the distribution of supporting
read counts at different events (true positive, false positive)
and the summary statistics of LongGF (supporting read
detection threshold ≥2) based on 10 simulations respect-
ively. 37% (10 out of 27) of false positives have supporting
read count less than 10. Clearly, LongGF has consistently
high precisions (> 93%) across all simulation data sets, in-
dicating that the false positive rate is well controlled. The
recall values for LongGF range from 86 to 93%. 3 gene fu-
sions (3%) were missed by longGF across 10 simulations
on average. Most of these false negative gene fusions have
low expression (TPM< 50 on average), leading to limited
number of long reads that are mapped to the fusion point
between genes. For example, the expression of a missed
gene fusion was only 13.2 TPM, and there was no simu-
lated read that is mapped to the fusion point. Accounting
for both precision and recall values, F1 scores remain high
(> 90%) for all 10 simulated datasets.
Next, we evaluated the impact of the read coverage on

the accuracy of gene fusion detection. We simulated four
other datasets with the fusions from the sample with the
lowest F1 score (90.8%) above, and the 5 datasets for this
sample have different total read coverages(2M, 1M, 500
k, 100 k and 50 k reads respectively). Then, we calculated
recall, precision and F1 score for each dataset. As shown
in Fig. 2 (f), for datasets with less number of reads, the
performance becomes generally lower. Compared to the
original dataset with 500 k reads, the performance mea-
surements (recall, precision, F1 score) of 2M reads were
improved by 8.4, 2.1 and 5.7% respectively. Meanwhile,
the measurements (recall, precision, F1 score) dropped
by 18.5, 10.8 and 14.5% when read coverage decreased
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from 500 k to 50 k. This is not surprising because on
lower coverage data, less number (or none) of the
reads are mapped to the fusion breakpoint between
two genes, which makes it more difficult for LongGF
to detect candidate gene fusion events. Precision is
less sensitive to the change of sequencing depth than
recall. In summary, LongGF performed robustly (re-
call: 88.6%, precision: 95.8%, F1 score: 91.9% in aver-
age) in detecting gene fusions using simulation data
with ~ 500 k reads.

Evaluation on the UHR RNA sample by direct mRNA
sequencing
UHR sample contains a mixture of RNA from 10 differ-
ent cancers and is a widely used benchmarking material
to evaluate computational tools for transcriptome ana-
lysis. We previously sequenced the sample using Oxford
Nanopore direct mRNA sequencing protocols and gen-
erated ~476,000 long reads with ~ 557M bases. After
aligning the data against hg38 with minimap2 [53], we
detected gene fusions using LongGF with the minimum

Fig. 2 Performance evaluation of LongGF from simulation study. a Read coverage plots of UHR data (red) and simulated data(blue) for a random
gene. b Read length distribution from simulated data. c Distribution of supporting read counts at true gene fusion point from simulated data. d
The measurements (F1, precision and recall) of LongGF based on 10 simulations. e The number of supporting reads at true positive (TF) and false
positive (FP). f The measurements (F1, precision and recall) of LongGF across different total read coverages based on the same simulation dataset
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mapped length of 100 bp, minimum overlap size of 100
bp between mapped bases and exons of a transcript and
w = 50. The results are shown in Table 1 with the
threshold of 2 for minimum supporting long reads. In
Table 1, there are the 6 detected gene fusions, and 4 of
them are among the 6 known gene fusions on UHR
which were previously used for evaluating short-read
gene fusion detectors. In particular, the top 1st gene fu-
sion is shown in Fig. 3 in IGV plots where 9 long reads
support the gene fusion very well.

Note that it is likely that more than 6 true gene fu-
sions are present in the UHR sample which is composed
of 10 different cancers, but we only used the 6 well
known fusions for evaluation of LongGF on UHR Nano-
pore data as the short-read gene fusion detectors did.
That is, 2 gene fusions detected by LongGF (possible
false positives) are not in the known gene fusion list, and
one of them is mapped against a reference region which
appears more than 1 times, and thus, this may represent
a genuine gene fusion event that was missed by previous

Table 1 Candidate gene fusions detected by LongGF on long-read RNA-seq data for universal human reference mRNA sample and
for a patient with AML. “A:B” denotes a gene fusion of gene A and gene B. The 6 known gene fusions for ‘UHR Nanopore’ rows are
used for evaluating gene fusion detection, but additional gene fusions may be present for UHR samples

Gene fusion Datasets #Supporting
reads

Read
coverage

Fusion points (hg38 coordinate) Benchmark

Breakpoint 1 Breakpoint 2

BCAS4:BCAS3 UHR
Nanopore

8 23 chr20:50,795,173 chr17:61,368,325 Yes

MGAT5:IGLC7 7 12 chr2:134,120,290 chr22:22,922,718

GAS6:RASA3 2 8 chr13:11,3826,995 chr13:113,981,855 Yes

ARFGEF2:SULF2 2 5 chr20:48,922,009 chr20:47,736,942 Yes

AP3D1:JSRP1 2 41 chr19:2,127,153 chr19:2,252,480

VMP1:RPS6KB1 2 78 chr17:59,838,294 chr17:59,910,610 Yes

BCAS4:BCAS3 UHR
PacBio

206 520 chr20:50795172 chr17:61368324 Yes

ARFGEF2:SULF2 70 389 chr20:48922011 chr20:47736941 Yes

FGFR1:NSD3 42 53 chr8:38457533 chr8:38381797 In [64]

LDLR:ZNF333 36 51 chr19:11108452 chr19:14701590 In [64]

SMARCA4:CARM1 28 1126 chr19:10986591 chr19:10904949 In [64]

VMP1:RPS6KB1 26 2601 chr17:59838295 chr17:59910609 Yes

GAS6:RASA3 22 103 chr13:113826995 chr13:113981856 Yes

GANAB:B3GAT3 20 33 chr11:62627352 chr11:62620496 In [65]

RPS6KB1:DIAPH3 19 2738 chr17:59930173 chr13:59666845 In [64]

NUP214:XKR3 19 39 chr9:131199013 chr22:16808083 In [64]

MYH6:HOMEZ 15 27 chr14:23386622 chr14:23285911 In [38]

PAPOLA:AK7 15 78 chr14:96502599 chr14:96437835 In [64]

CBX3:CCDC32 14 26 chr7:26201744 chr15:40561981 In [64]

MYH9:EIF3D 14 65 chr22:36387806 chr22:36526134 In [64]

DCAF6:SEMA4A 14 885 chr1:167951860 chr1:156153370

ZBTB45:UBE2M 11 35 chr19:58518739 chr19:58557605

RSBN1:AP4B1 10 15 chr1:113811708 chr1:113899869

GCN1:MSI1 10 65 chr12:120190297 chr12:120347515 In [64]

ESR1:CCDC170 9 29 chr6:151702003 chr6:151573171 In [64]

NUP210L:GATAD2B 8 501 chr1:154027597 chr1:153922729 In [64]

ABL1:BCR 8 298 chr9:130854065 chr22:23290408 Yes

ZFP64:ATP1A1 8 18 chr20:52052134 chr1:116396734

GOPC:ROS1 8 13 chr6:117566853 chr6:117321395 In [64]

RUNX1T1:RUNX1 A patient with AML 9 2373 chr8:92,017,366 chr21:34,859,474 Yes

NBEAL1:RPL12 8 7244 chr2:203,190,790 chr9:127,451,392
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studies. Meanwhile, since 2 false negative events, includ-
ing the well known BCR-ABL1 gene fusion, are not de-
tected by us, we further examined the sequence data on
the genomic region of the BCR-ABL1 gene fusion. We
found that the failure to identify BCR-ABL1 gene fusion
may be due to the low expression of this fusion in the
transcriptome: as shown in short-read RNA-seq data of
UHR [38], BCR-ABL1 is ~ 6 times less expressed than
BCAS4-BCAS3 gene fusion (with 9 supporting long
reads in UHR Nanopore RNA-seq data), and ~ 4 times
less expressed than GAS6-RASA3 (with 2 supporting
long reads in UHR Nanopore RNA-seq data) and ARFG
EF2-SULF2 gene fusion (with 2 supporting long reads in
UHR Nanopore RNA-seq data). Given that the UHR
sample is a mixture of 10 different cancer cell lines, it is
expected that known gene fusions such as BCR-ABL1 in
one cell line will have relatively low allele fraction in the
data; therefore, in the long-read RNA-seq data generated
by us, we do not have enough coverage on the BCR-
ABL1 gene fusion and we were not able to detect this fu-
sion by LongGF.
We further evaluated LongGF on a higher coverage

PacBio long-read data on the UHR sample that was se-
quenced by PacBio [62]. The results were shown in

Table 1. It can be seen from Table 1 that LongGF is able
to detect the BCR-ABL1 gene fusion and other known
gene fusions detected on the Nanopore data. In particu-
lar, the BCR-ABL1 gene fusion only has 8 supporting
long reads compared against other known gene fusions
(206, 69, 26 and 22 supporting reads for BCAS4-BCAS3,
ARFGEF2-SULF2, VMP1-RPS6KB1 and GAS6-RASA3,
respectively), which supports our speculation that the
low-coverage issue is the reason why LongGF on Nano-
pore data missed this gene fusion. Additionally, LongGF
on the PacBio long-read data detects 23 gene fusions
with > = 8 supporting long reads. We thus checked other
detected gene fusions using Mitelman databases (Mitelman
databases contains many gene fusions in cancers manually
culled from the literature) [64] and other online resources
[65]. We found that 19 gene fusions were reported in the
literature. In contrast to short-read data, only 3 of top 20
detected gene fusions by STAR-Fusion [36] and 6 of top 20
detected gene fusions by Tophat-Fusion [38] were reported
in the literature. Although this is not a direct comparison
of the tools to detect gene fusions on long-read and short-
read datasets, this analysis suggests that LongGF on long-
read high-coverage data likely identify more reliable gene
fusions with much less false positives.

Fig. 3 Examination of BCAS4-BCAS3 fusion in the Nanopore direct mRNA sequencing data on the UHR sample. a The IGV plot for the gene
fusion at the genomic region around BCAS4. b The IGV plot for the gene fusion at the genomic region around BCAS3. The vertical dotted line
indicates the genomic location where breakpoint occurs
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Evaluation on a breast cancer dataset
Moreover, we compared LongGF with IDP-Fusion [66],
a gene fusion detector using hybrid data (both long-read
and short-read sequencing data), on the MCF-7 breast
cancer dataset. Among a set of 71 fusion gene events
validated by either PCR and/or Sanger sequencing [66],
LongGF and IDP-Fusion detected 25 and 24 events, re-
spectively. The recall of LongGF in detecting fusion
genes is comparable to IDP-Fusion on this long-read
data on breast cancer, but IDP-Fusion uses both long-
read and short-read data. LongGF also detected more
potential novel gene fusions (ACTB:H3F3B, SLC25A24:
NBPF6, STMN1:ACTG1), and these genes were re-
ported to be associated with breast cancer [67–71].

Therefore, compared to hybrid-based gene fusion de-
tector, LongGF yields comparable accuracy for fusion
gene detection.

Evaluation on a patient with AML by long-read cDNA
sequencing
To further evaluate the performance of LongGF on real
datasets, we analyzed a long-read cDNA sequencing data
generated on blood sample from a cancer patient af-
fected with AML. We detected gene fusions using
LongGF on this long-read RNA-seq data with the mini-
mum mapped length of 500 bp, minimum overlap size of
100 bp between mapped bases and exons of a transcript,
and w = 50. The results are shown in Table 1 with

Fig. 4 Examination of RUNX1T1-RUNX1 fusion in Nanopore long-read RNA-Seq data and Sanger sequencing data on a patient with AML. a The
IGV plot for the gene fusion at the genomic region around RUNX1T1. b The IGV plot for the gene fusion at the genomic region around RUNX1. c
the result from Sanger sequencing. The vertical dotted line indicates the genomic location where breakpoint occurs. The Sanger sequence in (c)
is the complementary of the sequences in (a) and (b)
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minimum supporting reads of 5, where 2 gene fusions
are detected. One detected gene fusion is RUNX1T1:
RUNX1 (as shown in Fig. 4 (a) and (b)), which has been
found to be associated with AML [72]. We note that al-
though the same gene fusion was previously known by
cytogenetic analysis on this patient, the exact breakpoint
location is not known for this patient. We then validated
this gene fusion using Sanger sequencing (as shown in
Fig. 4 (c)), and we found that the breakpoints of the two
genes are chr8:92,017,373 and chr21:34,859,474, respect-
ively. Compared with the results reported by LongGF,
the inferred breakpoint at chr21 is exactly the same as
the Sanger sequencing result, yet the inferred break-
points at chr8 is only 6 bp away from Sanger sequencing
result. Altogether, our analysis demonstrated that
LongGF can detect gene fusions and infer relatively pre-
cise breakpoints using long-read RNA-seq data.

Discussion
Gene fusion is a well-known strategy used by cells to
generate new genes in transcriptome, and many existing
studies have found that some gene fusions contribute to
the initiation or progression of different human cancer.
Although short-read RNA-seq techniques provide a way
to detect gene fusions for transcriptome data, long-read
RNA-seq techniques represent theoretically better solu-
tions to overcome the limitations of short-read tech-
niques. However, it is not straightforward to detect gene
fusions from noisy long-read RNA-seq data, and in this
study, we propose LongGF to detect gene fusions from
long-read RNA-seq data efficiently and effectively.
LongGF is implemented in C++ and is very fast to run,
and it only takes several minutes and < 3GB memory on
50,000 long reads from a transcriptome for gene fusion
detection. Our evaluation also showed that LongGF
can accurately detect true gene fusions on simulation
datasets and four real datasets. Thus, LongGF is a
useful tool for long-read RNA-seq data analysis, espe-
cially on cancer samples.
However, there are some limitations in LongGF. First,

LongGF cannot detect gene fusions with unknown
genes, since LongGF requires a pre-defined definition of
all genes/exons in a GTF file. Therefore, this version of
LongGF only detects candidate gene fusions from two
known genes. To allow the detection of gene fusions in-
volving novel genes/exons, users can modify the stand-
ard GTF file and include additional genes/exons.
Second, LongGF may generate false positive predictions
on gene fusions when dealing with homologous genes in
the genome. That is, if several genes in a transcriptome
share similar sequences (possibly part of the transcript
sequence), it will be difficult to distinguish which gene
the fused gene comes from. For example, if gene A and
gene B have similar sequence and part of gene A is fused

with part of gene C for a hybrid gene D, it is hard to find
whether the gene D is formed from gene A and gene C,
or gene B and gene C. Third, LongGF may miss gene fu-
sions from very short genes. In LongGF, we require an
alignment is long enough to be significant and that an
alignment has substantial overlap with a gene for further
analysis. If only a smaller fraction (< 100 bp) of a gene is
involved in a gene fusion, it is hard to distinguish the
fusion candidates from sequencing/alignment noises. In
LongGF, although users can set smaller thresholds to get
gene fusions with smaller segments, they will generate
more candidate fusion events and need to filter noisy
candidates in the results.
With full-length transcriptome sequencing, we expect

that long-read RNA-seq data (Oxford Nanopore and
PacBio) will greatly facilitate gene fusion detection by
overcoming many technical limitations of short reads.
Compared to PacBio (either with traditional library or
HiFi library preparation protocols), at fixed cost, Oxford
Nanopore may be a more promising platform in gene fu-
sion detection while generating data with higher error
rate. This is because Nanopore currently has lower per-
base cost of data generation, and our real data analysis
showed that sequencing data with high read coverage
can improve detection accuracy significantly. For Nano-
pore RNA-seq, there are two types: direct mRNA se-
quencing and cDNA sequencing. Compared to direct
mRNA sequencing, cDNA sequencing allows samples to
be amplified and requires less amount of starting mate-
rials, making it attractive in some cases. With more ma-
terials for sequencing (possibly in multiple flow cells),
this can increase the read coverage at fusion breakpoint,
and facilitate LongGF to detect gene fusions with low
expression or low allele fraction (such as the BCR-ABL1
fusion discussed earlier). Additionally, we will conduct
more comparison of the performance between LongGF
with existing short read tools, for samples where both
short-read and long-read sequencing data are available
and the sample is available for experimental validation.
We expect that we may find fusion events that are
missed by short-read sequencing approaches, even when
the sequencing coverage in short-read data is very high,
if part of the fusion event falls under repetitive genomic
regions.

Conclusion
In summary, LongGF is a fast and effective computa-
tional tool to detect candidate gene fusions from long-
read RNA-seq data. With the advancement of long-read
sequencing techniques, we expect that LongGF will sig-
nificantly contribute to the discovery of disease-causal
gene fusions in the studies of human genetic diseases
and cancer.
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