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Abstract

Background: RNA binding proteins (RBPs) play a vital role in post-transcriptional processes in all eukaryotes, such as
splicing regulation, mRNA transport, and modulation of mRNA translation and decay. The identification of RBP
binding sites is a crucial step in understanding the biological mechanism of post-transcriptional gene regulation.
However, the determination of RBP binding sites on a large scale is a challenging task due to high cost of biochemical
assays. Quite a number of studies have exploited machine learning methods to predict binding sites. Especially, deep
learning is increasingly used in the bioinformatics field by virtue of its ability to learn generalized representations from
DNA and protein sequences.

Results: In this paper, we implemented a novel deep neural network model, DeepRKE, which combines primary RNA
sequence and secondary structure information to effectively predict RBP binding sites. Specifically, we used word
embedding algorithm to extract features of RNA sequences and secondary structures, i.e., distributed representation
of k-mers sequence rather than traditional one-hot encoding. The distributed representations are taken as input of
convolutional neural networks (CNN) and bidirectional long-term short-term memory networks (BiLSTM) to identify
RBP binding sites. Our results show that deepRKE outperforms existing counterpart methods on two large-scale
benchmark datasets.

Conclusions: Our extensive experimental results show that DeepRKE is an efficacious tool for predicting RBP binding
sites. The distributed representations of RNA sequences and secondary structures can effectively detect the latent
relationship and similarity between k-mers, and thus improve the predictive performance. The source code of
DeepRKE is available at https://github.com/youzhiliu/DeepRKE/.
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Background
RNA-binding proteins (RBPs) have important functions
in many biological processes, e.g. gene regulation, RNA
editing, mRNA processing and other biological processes
[1, 2]. It is estimated that 6% -8% of the proteins in eukary-
otes are RNA binding proteins, but so far only a few RNA
binding proteins (HuR, AUF1, TTP, TIA1, CUBBP2, etc)
have been approved to be specifically involved in mRNA
stability, translation and other levels of gene regulation
[3–7]. Therefore, the identification of RBP binding sites
is crucial to understanding the mechanism of biological
processes. Recently, various of high-throughput biochem-
ical methods have been proposed to study and analyze the
proteins-RNA complexes to identify the binding sites of
RNA molecules, among which the popular ones are CLIP-
Seq [8], RNACompete [9], eCLIP [10] and PAR-CLIP
[11]. However, these techniques still cost-heavy and time-
intensive, which hampers the exploration of RBP binding
sites.

With the increasing volume of verified RBP binding
sites, quite a few studies focused on developing com-
putational prediction models based on the known RBP
binding sites. As is shown in Table 1, these methods
mostly employ RNA sequence and structural information
to predict protein-RNA interactions. For instance, RNA-
context [12] uses position weight matrix (PWM) of RNA
sequence and secondary structure profile to predict the
binding preference of RBP. RCK [13] is an extension of
RNAcontext, which uses a novel k-mer-based model to
further improve the predictive performance. GraphProt
[14] adopts the form of graph coding to integrate RNA
sequence and structure into the graph kernel to generate

Table 1 Computational methods for RBP binding preference
prediction

Method Sequence Structure Reference

RNAcontext Yes Yes [12]

GraphProt Yes Yes [14]

iONMF Yes Yes [15]

Oli Yes Yes [16]

RNAcommender Yes Yes [17]

RCK Yes Yes [13]

DeepBind Yes No [18]

Deepnet-rbp Yes No [19]

DanQ Yes No [20]

iDeepS Yes Yes [21]

iDeepV Yes No [22]

Pysster Yes Yes [23]

DLPRB Yes Yes [24]

“Yes” and “No” means whether the computational methods uses sequence and
structure information to predict the binding site

a feature vector of more than 3,000 dimensions, which is
subsequently used as the input of an SVM model to pre-
dict RBP binding preference. IONMF [15] proposes a fea-
ture representation method of orthogonal matrix eigen-
decomposition, which integrates the k-mer sequence, sec-
ondary structure, gene ontology (GO) information and
region type as input into a machine learning model to pre-
dict binding sites. Oli [16] uses k-mer frequency as input
feature into an SVM classifier to predict RNA-protein
interactions. Rather than commonly constructing a binary
classification task, RNAcommender [17] adopts recom-
mendation system to prioritize RNA against undeveloped
RNA binding proteins by disseminating available interac-
tion information based on protein domain composition
and RNA predicted secondary structure.

Recently, deep learning [25] has achieved remarkable
success in many fields, such as image processing [26], nat-
ural language processing [27] and speech recognition [28],
and thus drawn greater attention from bioinformaticians
[29]. Through multiple hidden layers that perform feature
transformation in the deep neural network, the feature
representation in the original space is mapped into a new
feature space, which makes the task of interest smoother.
Based on the set of verified RBP binding sites, more and
more studies use deep learning to predict RBP binding
sites. When constructing the input of the neural net-
work, most methods adopt one-hot coding, e.g., the four
nucleotides A, C, G, and T are encoded as (0, 0, 0, 1), (0, 1,
0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), and thus a RNA sequence
of length L is transformed into a matrix of size 4*L. Deep-
Bind [18] is the first to use CNN (Convolutional Neural
Network) [30] to predict protein-DNA/RNA binding pref-
erences based on one-hot coding of nucleotide sequences.
DanQ [20] and iDeepS [21] also adopt one-hot encoding
of nucleotide sequences as input of deep learning mod-
els to predict protein-RNA binding preferences. Of note,
iDeepS additionally makes use of the information of RNA
secondary structure profiles. Pysster [23] exploits a novel
strategy to expand the one-hot coding to predict protein-
RNA binding preferences. It combines RNA sequence and
secondary structure alphabet into an extended alphabet
composed of arbitrary characters, which integrates RNA
Sequence and structure input strings. Then, the proposed
string is encoded as one-hot and used as the input. How-
ever, a fatal disadvantage of traditional one-hot coding
is the problem of curse of dimensionality. Accordingly,
deep-rbps [19] uses k-mer frequency coding to encode
sequence, secondary structure and tertiary structure into
a unified feature representation, which is subsequently
fed into a multi-modal DBN [31] to predict RBP bind-
ing sites and motifs. In general, k-mer frequency coding
greatly reduces the dimension of the input of deep neural
network. Taking 4-mer peptide for example, in all pos-
sible cases, only a total of 256 kinds of 4-mer (AAAA,
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AAAC ... TTTT) peptide are required to be counted the
frequencies included in the sequence, resulting to a 256-D
final vector. While k-mer frequency coding can effectively
reduce the dimension, it ignores the position informa-
tion of the sequence that is actually important for the
prediction of RBP sites. Moreover, k-mer frequency cod-
ing does not consider contextual correlation. Inspired by
the field of natural language processing, DNA2vec [32],
BioVec [33], seq2vec [34], and Gene2Vec [35] heuristically
use word2vec [36] to obtain a distributed representation
from genomic sequences without supervision. iDeepV
[22] applies the word embedding method to learn dis-
tributed representation of k-mers, and greatly improves
the prediction accuracy.

In this paper, we present a novel deep neural net-
work, DeepRKE, which consists of CNN and bidirectional
LSTM, to infer latent RBP binding sites. We used the word
embedding model to build distributed representations of
RNA sequences and secondary structures, and input them
into a deep neural network to predict RBP binding sites.
The skip-gram algorithm [37] uses the input of current
word to predict the surrounding context words, and can
effectively capture the contextual information. Thereby,
we used skip-gram algorithm to learn a k-dimensional
distributed representation of RNA sequence and RNA
secondary sequence in a low-dimensional space. Deep-
RKE has the following contributions: 1) k-mer embedding
is used to represent both RNA sequence and RNA sec-
ondary structure instead of traditional one-hot encoding.
2) We use three CNN modules, two modules are used
to extract the features of RNA sequence and secondary
structure respectively, and the third module is used to cap-
ture the relationship between sequence and structure. 3)
DeepRKE can handle the sequences with variable length.
We evaluated DeepRKE on two large-scale benchmark
datasets, and also assessed its performance on sequences
with fixed length and variable length. The experimen-
tal results demonstrated that deepRKE achieved better
performance than five competitive methods.

Results
In this part, First we evaluated DeepRKE with other five
state-of-the-art methods on two large-scale benchmark
datasets RBP-24 [13] and RBP-31 [38]. Next, We deleted
the secondary structure profile from the input, and then
only used the sequence as the input of DeepRKE to judge
the impact of RNA secondary structure on the prediction
ability from the final prediction effect. In addition, we also
evaluated the performance improvement of Deep- RKE by
using distributed representation or not, as well as one-hot
encoding. Finally, for more insights into the performance
improvement by BLSTM, we compare DeepRKE with a
variant using only CNNs without BLSTM layer.

DeepRKE learning framework
We implemented the learning framework of DeepRKE
to infer RNA-proteins binding site on RNAs, as shown
in Fig. 1. First, we used RNAShapes [39] to predict
the RNA secondary structure. Second, we used the
word2vec algorithm to learn distributed representation
of 3-mers of RNA sequences and secondary structure
sequences. The distributed representations were used as
the input of two CNNs (one is for RNA sequence and
the other is for secondary structure) to transform fea-
tures of sequences and structure, respectively. Next, we
combined the output features and fed them into another
CNN, which was followed by a bidirectional LSTM and
two fully connected layers. Finally, a sigmoid function
was used to predict the probability of RBP binding
sites.

Performance comparison to counterpart methods
We evaluated DeepRKE with other multiple existing
methods on two large-scale benchmark datasets, includ-
ing RBP-24 [14] and RBP-31 [40]. The RBP-24 dataset
contains RNA sequences with variable length ranging
from 150 to 375, while the RBP-31 dataset contains
fixed-length RNA sequences with 101 nucleotides. The
counterpart methods are GraphProt, deepnet-rbp, Deep-
Bind, iDeepS and iDeepV. Note that iDeepV and Deep-
Bind use only sequences, while DeepRKE, iDeepS and
GraphProt use both sequences and secondary structures.
DeepBind and iDeepS use one-hot encoding to repre-
sent RNA sequence, DeepRKE and iDeepV use distributed
representations of RNA sequence.

First, we conducted the performance evaluation on the
RBP-24 dataset with GraphProt, deepnet-rbp, DeepBind
and iDeepV that can handle variable sequences. Table 2
shows the number of training and test samples gained by
each biochemical assay included in the RBP-24 dataset,
as well as the corresponding AUC performance measures
(detailed results are shown in Additional file 1). It can be
found that among the 24 RBPs, the average AUC of Deep-
RKE is 0.934, higher than that of the secondary method
DeepBind which is 0.917. GraphProt obtained the worst
performance 0.887. More importantly, DeepRKE obtains
the best AUCs on 18 out of total 24 sets of RBPs. It
is worth noting that the performance of the four deep
learning-based methods perform far more superior to
the GraphProt that is traditional machine learning-based.
iDeepV adopts the distributed representation, but merely
uses RNA sequences. As a result, its performance is better
than GraphProt and deepnet-rbp, but worse than Deep-
RKE. For example, on ALKBH5 and C17ORF85, DeepRKE
obtains the AUC values of 0.740 and 0.824, which is an
increase of 15% and 11% compared to the AUCs of 0.643
and 0.74 achieved by iDeepV, respectively. For some RBPs,
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Fig. 1 The illustrative flowchart of DeepRKE learning framework. First, we use RNAShapes to predict the RNA secondary structure from primary
sequences. Second, word embedding algorithm is used to learn the distributed representations of 3-mers from primary sequences and secondary
structures. Third, the learned distributed representations are fed into two CNNs (one is for RNA sequence and the other for secondary structures) to
transform sequence and structure features, which are in turn input into a CNN module and a bidirectional LSTM layer followed by two fully
connected layer. Finally, we use a sigmoid classifier to predict the probability of being RBP binding sites

DeepRKE greatly boost the prediction performance, e.g.
DeepRKE increases the AUC values by 18% and 14%
compared to GraphProt on Ago2 and TIAL1.

On RBP-31 dataset, we also compared DeepRKE to
iDeepS and Oli’s method [16]. The AUC values of each

method are shown in Additional file 2. The average AUCs
of six competitive methods on 31 set of RBPs are illus-
trated in Fig. 2, where the performance of DeepRKE is
significantly superior to other 5 methods with the average
AUC of 0.873.
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Table 2 Performance comparison between DeepRKE, GraphProt, deepnet-rbp, DeepBind and iDeepV on RBP-24 dataset

RBP #positives #negatives GraphProt deepnet-rbp DeepBind iDeepV DeepRKE

ALKBH5 PAR-CLIP 1213 1197 0.680 0.714 0.668 0.643 0.740

C17ORF85 PAR-CLIP 1860 1849 0.800 0.820 0.755 0.740 0.824

C22ORF28 PAR-CLIP 9369 9136 0.751 0.792 0.809 0.823 0.832

CAPRIN1 PAR-CLIP 8140 7901 0.855 0.834 0.888 0.824 0.869

Ago2 HITS-CLIP 48,095 44,251 0.765 0.809 0.879 0.886 0.900

ELAVL1 HITS-CLIP 8595 8436 0.955 0.966 0.980 0.966 0.978

SFRS1 HITS-CLIP 19,438 17,195 0.898 0.931 0.929 0.905 0.945

HNRNPC iCLIP 21,472 19,794 0.952 0.962 0.979 0.979 0.978

TDP43 iCLIP 92,031 75,079 0.874 0.876 0.930 0.935 0.954

TIA1 iCLIP 18,049 16,135 0.861 0.891 0.929 0.941 0.942

TIAL1 iCLIP 42,332 36,652 0.833 0.870 0.922 0.929 0.946

Ago1-4 PAR-CLIP 36,902 31,310 0.895 0.881 0.919 0.925 0.932

ELAVL1 PAR-CLIP(B) 9464 9283 0.935 0.961 0.961 0.962 0.980

ELAVL1 PAR-CLIP (A) 27,275 23,974 0.959 0.966 0.972 0.973 0.978

EWSR1 PAR-CLIP 16,292 14,720 0.935 0.966 0.969 0.962 0.971

FUS PAR-CLIP 34,581 31,480 0.968 0.980 0.983 0.976 0.988

ELAVL1 PAR-CLIP(C) 125,202 113,686 0.991 0.994 0.989 0.990 0.996

IGF2BP1-3 PAR-CLIP 8539 6838 0.889 0.879 0.939 0.923 0.943

MOV10 PAR-CLIP 13,793 12,987 0.863 0.854 0.899 0.896 0.920

PUM2 PAR-CLIP 9116 8227 0.954 0.971 0.964 0.965 0.965

QKI PAR-CLIP 10,276 9142 0.957 0.983 0.973 0.965 0.975

TAF15 PAR-CLIP 7298 6606 0.970 0.983 0.978 0.978 0.985

PTB HITS-CLIP 44,574 43,700 0.937 0.983 0.944 0.936 0.953

ZC3H7B PAR-CLIP 20,962 20,018 0.820 0.796 0.875 0.883 0.914

Mean AUC 0.887 0.902 0.917 0.913 0.934

Note: boldface is the best experimental results for this experiment

Fig. 2 Performance comparison between DeepRKE, iDeepV, iDeepS, DeepBind and GraphProt on RBP-31 dataset. All methods are run on the same
training and independent test set across 31 set of RBPs (x-axis)
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Note that the current state-of-the-art method iDeepS
gets an average AUC of 0.86, which is still slightly worse
than DeepRKE. In fact, our method performs better
than iDeepS on quite a few sets of RBPs. For example,
DeepRKE increases the AUC by 8.2%, 5.1%, 5%, 11%,
7.5% on the Ago/EIF, Aog2-MNase, Ago2-1, IGFBP1-3
and MOV10, respectively. Moreover, we compared Deep-
RKE with GraphProt, which is a structure profile-based
method and demonstrates better performance than RNA-
context [12]. GraphProt has the average AUC of 0.82,
which is inferior to 0.873 of DeepRKE. Remarkably, Deep-
RKE achieves better AUCs than GraphProt in all experi-
ments. The average AUC of Oli is 0.77, which is signifi-
cantly lower than DeepRKE. Oli even obtains the perfor-
mance close to random guessing on some sets of RBPs,
e.g. on Ago2-MNase its AUC is only 0.512.

In summary, DeepRKE achieves significant perfor-
mance on both RBP-24 and RBP-31 datasets. DeepRKE
not only outperforms the current methods for predict-
ing RBP binding sites, but also successfully handles input
sequences with variable length, which fails to be addressed
by iDeepV and iDeepS.

RNA secondary structure impacts predictive power
The results in Table 2 has somewhat demonstrated the
importance of RNA secondary structure, e.g., the methods
that adopts the secondary structure information com-
monly outperform those use only sequence information.
The proposed deep learning framework allows us to more
strictly investigate the impact of RNA structure on perfor-
mance, namely, whether and what extend the secondary

structure can contribute to the prediction of RBP binding
site. Accordingly, we removed the secondary structural
profiles from input, and then took only the sequence as
the input of our model. For clarity, we referred to this sim-
plified model as DeepRKE-, indicating that RNA structure
information is not taken into account.

As shown in Table 1 and Fig. 3a, DeepRKE- achieves an
average AUC of 0.924 on RBP-24 dataset, which is lower
that of DeepRKE 0.934. We observed significant decrease
in performance (with AUC score reduced by >1%) in
eight RBPs, i.e. ALKBH5, C17ORF85, CAPRIN1, SFRS1,
TIA1, ELAVL1(B), MOV10, ZC3H7B. Especially, on the
two proteins ALKBH5 and CAPRIN1, AUC decreases by
3% and 6%, respectively. As shown in Fig. 3b, on RBP-
31 dataset, DeepRKE- achieves an average AUC of 0.863
over 31 sets of RBPs, which is still worse than that of
0.873 achieved by DeepRKE. On the two proteins Ago2-
MNase and ELAVL1-MNase, AUC decreases by 6% and
5%, respectively. The result implies that RNA secondary
structure significantly contributes to the prediction of
RBP binding sites.

Distributed representation significantly improves
performance
Rather than traditional one-hot encoding, DeepRKE
adopts distributed representations of RNA sequence to
capture the high-order dependencies among nucleotides,
leading to dimension-reduced feature vectors. To justify
the advantage of distributed representation in identify-
ing binding site of RNA-binding proteins, we removed the
secondary structural profiles (as it can not be represented

Fig. 3 Performance comparison of the models with or without distributed representation of sequences and secondary structural profiles. The
performance was evaluated in terms of AUROC on RBP-24 and RBP-31 dataset. DeepRKE is our proposed model, DeepRKE- model is without RNA
secondary structure, and DeepRKE- - is without RNA secondary structure and distributed representation of sequence, using one-hot encoding
instead. a-b Performance comparison between DeepRKE and DeepRKE- on two datasets. c-d Performance comparison between DeepRKE- and
DeepRKE- - on two datasets. e-f Performance comparison between models with only CNN laryer and CNN+BiLSTM layer on two datasets
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by one-hot encoding) and took one-hot encoding of RNA
sequence as the input of deep learning framework. For
convenience, we referred to this model as DeepRKE- -,
indicating that both RNA secondary structure and dis-
tributed representations of RNA sequence are excluded
when constructing the input.

Figure 3c-d shows the performance comparison
between DeepRKE- and DeepRKE- - on dataset RBP-
24 and RBP-31. We can see that the performance of
DeepRKE- is better than DeepRKE- - on RBP-24 dataset,
except for the CAPRIN1 protein. Specifically, DeepRKE-
achieves an average AUC of 0.863, which is better than
0.841 of DeepRKE- - on RBP-31 dataset. DeepRKE-
performs significantly better than DeepRKE- - on some
proteins, e.g. Ago/EIF, Ago2-2, eIF4AIII-1, hnRNPL-2.
The results suggest that the distributed representations of
RNA sequence can significantly improve the performance
for identifying binding site of RNA-binding proteins.

BiLSTM helps to improve prediction accuracy
In our proposed learning framework, BiLSTM is used
to identify long-term dependent information of the
extracted sequence and secondary structure feature [38].
For further evaluation of the performance enhancement
by BiLSTM, we compared DeepRKE with a variant model
using only CNN models that removes the BiLSTM layer.
For the sake of fairness, we used the same parameters
and architecture for CNN layer, including filter size, ker-
nel size, learning rate and maxpool1d size. The results are
shown in Fig. 3e-f, where DeepRKE achieves better perfor-
mance than the CNN-only model on the two datasets. In
particular, DeepRKE achieves an average AUC of 0.934 on
RBP-24 dataset, which is better than that of 0.916 achieved
by the CNN-only variant. Similarly, DeepRKE achieves an
average AUC of 0.873 on RBP-31 dataset, which is still bet-
ter than an average AUC of 0.863 of the CNN-only variant.
The results suggest BiLSTM can effectively improve the
performance of predicting protein-RNA binding sites.

Discussion
In this paper, we demonstrated that distributed repre-
sentation can significantly improve the predictive abil-
ity in modeling protein-RNA binding. In fact, we can
also obtain the distributed representations by using UTR
sequences, and thus our method is not limited to the
application of RBP-24 and RBP-31 benchmark datasets.

With the incorporation of biLTSM layer and secondary
structure information, our method outperforms all coun-
terpart methods in predicting protein-RNA binding sites.
However, we can make advantage of RNA tertiary struc-
ture or region type to further improve the performance,
similar to deepen-rbp [19], iDeep [41]. Compared to
the CNN-only model, we also confirmed the advantage
of recurrent neural networks in capturing high-order

interdependence of sequences and secondary structures.
In addition, we can also take the correlation between RBPs
into consideration in the construction of our model, as
done in protein-lncRNA interactions prediction [42] and
protein-protein interactions prediction [43].

Note that only a small fraction of RNA sequences have
been detected by CLIP-seq assays, the vast majority of
sequences are not found so far. Therefore, the number of
negative samples is much higher than that of positive sam-
ples in the real world. However, we built balanced training
sets in this study, for that imbalanced datasets often lead
to biased machine learning models with preference on
overwhelming class (e.g. most of sequences are classified
to negative samples), which makes trained models useless.
More verified RBP binding sites are expected to improve
the predictive power of computational models.

Although DeepRKE achieves state-of-the-art perfor-
mance, it can not identify the binding motifs directly
from learned convolve filters. We plan to extend Deep-
RKE to identify the binding motifs in our future work. For
example, we can use the DeepRKE model to assign bind-
ing potential scores to all sequences of interest, and then
select high-confidence candidates to extract the binding
motifs.

Conclusion
In this paper, we present a novel deep neural network
model, DeepRKE, to predict RBP binding sites. Deep-
RKE combines the primary RNA sequence and secondary
structure into a unified learning framework. The novelty
of DeepRKE lies in that we use the skip-gram model in
word2vec to learn the distributed representation of RNA
sequences and RNA structure. Also, we introduced the
BiLSTM layer into the deep learning model to capture the
high-order interdependence of sequences and secondary
structures. We evaluated DeepRKE on two RBP bind-
ing benchmark sets derived from the CLIP-seq, and the
results demonstrated that DeepRKE achieves better AUCs
than other competitive methods. Our results suggest that
distributed representation of k-mers sequence helps to
improve the prediction performance for identifying the
binding sites of RNA-binding protein. The BiLSTM layer
also contributes significantly to the enhancement of pre-
dictive ability.

Methods
Datasets
Two large-scale datasets derived from human CLIP-seq:
RBP-24 and RBP-31 are used as the benchmark datasets.
The detail of the datasets are as below:

1) RBP-24 dataset is used by GraphProt [14] as the
training and test set. It consists of 24 experiments
covering 21 RBPs, and the RNA sequences are
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variable length ranging from 150 to 375. For each
experiment, the positive sites are downloaded from
do-RiNA [40], the negative sites are created by
shuffling the coordinates of binding sites within all
genes with at least one binding site using bedtools
shuffle [44]. We further randomly select a third of
the original training data as validation set, and the
remaining two-thirds as training set, and the
independent testing set is the same test set used in
GraphProt. The numbers of training positives and
negatives of each experiment are listed in Table 2.

2) RBP-31 dataset includes training and test samples
with fixed-length RNA sequences of 101 nucleotides
collected in iONMF [15], which can be downloaded
from https://github.com/mstrazar/ionmf. In this
dataset, the CLIP-seq data consists of 19 proteins
with 31 experiments, and their annotations are based
on human assembly hg19. As described in iONMF,
each nucleotide within clusters of interaction sites
derived from CLIP-seq is considered as binding sites.
To reduce redundancy, the positive binding sites
with the highest cDNA count and without
consecutive sites on genome are further randomly
selected. Finally, among those sites with less than 15
nucleotides apart, one site with the highest cDNA
counts was selected as the positive sample. The
negative sites were sampled from genes that were not
identified as an interacting partner in any of 31
experiments. As a result, 4,000 cross-linked sites are
used for training, 1,000 samples for validation, and
other 1,000 samples for independent test.

In addition, as DeepRKE requires RNA secondary struc-
tural sequence as input, we fed RNA sequence into
RNAShapes [39] to obtain the dot parenthesis diagram,
which is subsequently used as the input of EDeN to obtain
the RNA secondary structure sequence. The RNAshapes
have six generic shapes: stems (S), multiloops (M), hair-
pins (H), internal loops (I), dangling end (T) and dangling
start (F).

Distributed representation of k-mer sequences
Word2Vec is a model proposed for learning seman-
tic knowledge from a large number of textual cor-
pora in an unsupervised manner, which is widely used
in natural language processing. We extend the usage
of word2vec to obtain the distribution representation
of k-mer sequences. Based on the theory of distribu-
tion hypothesis, distributed representation is a strat-
egy to obtain the semantic representation of words by
using the symbiotic matrix. Word embedding is a multi-
dimensional vector of real value which is mapped from
the vocabulary words or phrases. It can capture the poten-
tial relationship between context and the target word.

Generally, Word2Vec provides two architectural options:
CBOW and skip-gram. CBOW can predict the current
word based on the surrounding context, while the skip-
gram uses the current word to predict the surrounding
context. In this paper, we use skip-gram to learn the
distributed representation of k-mers.

Given word sequence s1, s2, s3.....sk , skip-gram learns the
word representations using the co-occurrence informa-
tion of words within a context window. It maximizes the
following objective function:

1
k

k∑

i=1

∑

−m≤j≤m,j �=0
logp

(
St+j | Sj

)
(1)

where m is the context window size, and the conditional
probability p is defined as follows:

p (So | Sc) =
exp

(
v′T

so vsc

)

∑V
s=1 exp

(
v′T

s vsc

) (2)

where V is the size of vocabulary, vsc is word vector of
the center word, vs and v′

s is the input and output vector
representation of word s, respectively.

Because of the computational infeasibility, the logp(S0 |
Si) is approximated using negative sampling:

logσ
(

v′T
so vsc

)
+

k∑

i=1
Esi∼Pa(s)

[
logσ

(
−v′T

si vsc

)]
(3)

where σ = 1/(1 + exp(−x)).
Recently, BioVec [34], seq2vec [33], dna2vec [32] and

Gene2Vec [35] have also successively applied Word2Vec
to encode biological sequences, and so did we. Specifi-
cally, we consider each k-mer as a word, each sequence
as a sentence, all dataset sequences as corpus, as a result,
we can learn the distributed representation of k-mers by
using skip-gram algorithm. We split all sequences into 3-
mer form. For example, the sequence AUUGC has 5 bp
and its secondary structure is FHSIH, we can convert it
to AUU,UUG,UGC,FHS,HSI,SIH. Based on the 3-mers
derived from all training sequences, we trained the skip-
gram algorithm using negative sampling, to predict the
context of the targeted k-mer. Finally, we obtained the dis-
tributed representation for 43=64 (sequences) and 53=125
(structures) with 3-mers.

Learning framework of DeepRKE
Convolutional neural network: In our method, we
employ three CNNs as feature extractors [45], which take
as input the distribution representation of k-mer derived
from RNA sequences and structures. The convolutional
layer learns the weight parameters of the convolution fil-

https://github.com/mstrazar/ionmf
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ters, and outputs the matrix inner product between the
input matrix and filters. After convolution, a rectified lin-
ear unit (ReLU) is applied to sparsify the output of the
convolution layer and keep only positive matches to avoid
the vanishing gradient problem [46]. Finally, a max pool-
ing operation is used to reduce the dimensionality and
yield invariance to small sequence shifts by pooling adja-
cent positions within a small window. DeepRKE includes
three CNN modules, two of which are used to extract the
features of RNA sequences and structures, respectively,
and the third is designed to extract the high-order features
between sequences and structures. The convolution ker-
nel size of each CNN module is 8,16,32, and maxpooling
size is 2.

Long Short Term Memory networks: In order to fur-
ther detect long-term interdependence of sequence and
secondary structure, we introduced a bidirectional long
and short-term memory network (BiLSTM) [47] into our
model. Compared to traditional recurrent neural net-
works (RNNs), LSTM has advantages in addressing the
gradient vanishing or exploding, as well as capturing
long-term dependency. Especially, BiLSTM exploits the
contextual information on both sides.

As LSTM iterates over each element of input, it firstly
determines what information the forgetting gate layer
should exclude based on previous input. The input gate
layer is then used to determine what information should
be stored for the next layer and update the current
state value. Finally, the output gate layer determines
which parts of the state value should be output. Tak-
ing a sequence {x}T

t=1 as input, the LSTM have the hid-
den states {h}T

t=1, cell states {C}T
t=1, and it outputs a

sequence {o}T
t=1. The above steps can be formulated as

follows:

ft = σ
(
Wf xt + Uf ht−1 + bf

)
,

it = σ (Wixt + Uiht−1 + bi) ,
ct = ft � ct−1 + it � tanh (Wcxt + Ucht−1 + bc) ,
ot = σ (Woxt + Uoht−1 + bo) ,
ht = ot � tanh(ct)

(4)

where � denotes element-wise multiplication, the σ is the
Logistic Sigmoid function and tanh is the tanh function
to force the values to be between -1 and 1. Wf , Wi, Wo,
Uf , Ui and Uo are the weights and bf , bi, bc and bo are
the bias.

In DeepRKE, a bidirectional LSTM (BiLSTM) is used to
scan from left to right and from right to left, concatenating
the output in each direction as a final output for subse-
quent classification. The number of neurons in this layer
was set to 32, thereby the output size is 64.
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