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Abstract

Background: Genome-wide association studies (GWAS) have identified many individual genes associated with
brain imaging quantitative traits (QTs) in Alzheimer’s disease (AD). However single marker level association discovery
may not be able to address the underlying biological interactions with disease mechanism.

Results: In this paper, we used the MGAS (Multivariate Gene-based Association test by extended Simes procedure)
tool to perform multivariate GWAS on eight AD-relevant subcortical imaging measures. We conducted multiple
iPINBPA (integrative Protein-Interaction-Network-Based Pathway Analysis) network analyses on MGAS findings using
protein-protein interaction (PPI) data, and identified five Consensus Modules (CMs) from the PPI network. Functional
annotation and network analysis were performed on the identified CMs. The MGAS yielded significant hits within
APOE, TOMM40 and APOC1 genes, which were known AD risk factors, as well as a few new genes such as LAMA1,
XYLB, HSD17B7P2, and NPEPL1. The identified five CMs were enriched by biological processes related to disorders
such as Alzheimer’s disease, Legionellosis, Pertussis, and Serotonergic synapse.

Conclusions: The statistical power of coupling MGAS with iPINBPA was higher than traditional GWAS method, and
yielded new findings that were missed by GWAS. This study provides novel insights into the molecular mechanism
of Alzheimer’s Disease and will be of value to novel gene discovery and functional genomic studies.
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Background
Alzheimer’s disease (AD) is a debilitating and highly her-
itable disease with great complexity in its genetic con-
tributors [1]. Genome-wide association studies (GWAS)
of AD or AD biomarkers have been performed at the
single-nucleotide polymorphism (SNP) level [2–4] as
well as at the higher level (e.g., gene, pathway and/or
network) [5–8]. It is widely recognized that AD has a
complicated genetic mechanism involving multiple
genes. Different combinations of functionally related var-
iants in genes and pathways may interact to produce the
phenotypic outcomes in AD, single SNP-level and gene-
level GWAS results are unlikely to completely reveal the
underlying genetic mechanism in AD. GWAS have
greatly facilitated the identification of genetic markers
(e.g., single nucleotide polymorphisms or SNPs) associ-
ated with brain imaging quantitative traits (QTs) in AD
[9, 10]. As a complex disease, it is highly likely that AD
is influenced by multiple genetic variants [11, 12]. The
identified single-SNP-single-QT associations typically
have small effect sizes. To bridge this gap, exploring
single-SNP-multi-QT associations may have the poten-
tial to increase statistical power and identify meaningful
imaging genetic associations. With this observation, we
employ the MGAS (Multivariate Gene-based Association
test by extended Simes procedure) tool [13] to perform
multivariate GWAS on eight AD-relevant subcortical
imaging measures.
In addition, biological interactions may be important

in contributing to intermediate imaging QTs and overall
disease outcomes [14]. Network-based analysis guided
by biologically relevant connections from public
databases provides a powerful tool for improved mech-
anistic understanding of complex disorders [15–18].
Considering that the etiology of AD might depend on
functional protein-protein interaction (PPI) network, we
conduct multiple iPINBPA (integrative protein-
interaction-network-based pathway analysis) [19] net-
work analyses on MGAS findings using the PPI data,
and identify Consensus Modules (CMs) based on the
iPINBPA discoveries. Functional annotation and net-
work analysis are subsequently performed on the identi-
fied CMs.
In order to enhance the ability to recognize the aggre-

gation effect of multiple SNPs, it may be desirable to
perform association analysis at the SNP set (or gene)
level rather than at a single SNP level. This paper aims
to reveal the relationship between genetic markers and
multiple phenotypes, improve statistical power, and find
GWAS missing results by MGAS. Network analysis
could provide meaningful biological relationships to help
interpret GWAS data to further study the genetic mech-
anism of AD. A schematic framework of our analysis is
shown in Fig. 1.

Results
Participant characteristics
The subjects (N = 866) consisted of 467 males (53.9%)
and 399 females (46.1%) aged 48–91 years. Shown in
Table 1 are the demographic and clinical characteristics
of these subjects stratified by five diagnostic groups.
There is no significant difference on the APOE e4 status
in the five diagnostic groups. Significant differences are
observed in gender (p = 0.035) and education (p = 0.037).
Age is significantly different across the five groups (p <
0.001). Furthermore, eight neuroimaging phenotypes
(LAmygVol,RAmygVol,LHippVol,RHippVol, LAccum-
Vol,RAccumVol,LPutamVol,RPutamVol; see Table 2)
show the significant difference across the five diagnostic
groups (p < 0.001). Shown in Fig. 2 is the correlation
matrix of these eight phenotypes. The correlation
between LHippVol and RHippVol (r = 0.83) and that be-
tween LPutamVol and RPutamVol (r = 0.90) are among
the highest.

Multivariate genome wide association study
In multivariate genome wide association study (MGAS)
[13, 20], the top SNP hit is rs769449 from the APOE and
TOMM40 region (p = 1.19E-09) (Table 3). According to
the hypothesis that genes are the functional units in
biology [15, 21], multivariate gene-level association p-values
were also obtained by MGAS which combines p-value in-
formation in regressing univariate phenotypes on common
SNPs. Figure 3 shows the Manhattan plot of the gene-
based MGAS results. Using Bonferroni corrected p-value of
0.05 as the threshold, three genes (APOE, TOMM40,
APOC1) were significantly associated with the studied eight
subcortical measures. Table 4 shows that the top 10 gene-
level findings identified by MGAS, where APOE (p = 2.77E-
08), TOMM40 (p = 3.49E-08), and APOC1 (p = 2.09E-06)
are the well-known AD risk regions. LAMA1 (p = 3.79E-05)
was reported to encode the laminin alpha subunit associ-
ated with late onset AD in the Amish [22]. HSD17B7P2
(p = 8.40E-05) was reported to play an important role in
brain development [23]. The other five gene-level findings
in top 10 are XYLB, NPEPL1, CYP24A1, OR5B2 and
MIR7160.

Consensus modules
Consensus modules (CMs) were constructed based on
our previous work [24]. To search for subnetworks in
the multivariate GWAS finding, we ran iPINBPA ten
times by varying the random seed value from 1 to 10.
Table 5 shows the top 5 subnetworks identified in each
run, including the Dice’s coefficient value with the most
similar modules in other runs. Compared with the
standard iPINBPA method, our CM-based network
strategy was designed to identify more reliable modules
across multiple runs.
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For the overlapping subnetworks, five unique CMs
were identified (Fig. 4). CM1 contains eight genes, in-
cluding MAPK8, ATF2, TNFRSF1A, JUND, NR3C1, RB1,
IKBKB, and CDK2. CM2 contains four genes, including
IGF1R, PRKCA, INSR, and PTPRC. CM3 contains six
genes, including APP, APOE, CASP3, C3, PLTP, and
CNTF. CM4 contains five genes, including APP, APOE,
CASP3, C3, and PLTP. CM5 contains six genes, includ-
ing MED8, GATA6, HNF4A, MED1, THOC7, and PHYH
IP. The individual genes in the CMs might not demon-
strate a direct statistical significance. All the genes in an
identified module have a collective effect on the studied
QTs, and thus have the potential to provide valuable
information about the underlying biology.

Pathway analysis of consensus modules
In our work, we hypothesize that the identified trait
prioritized CMs with high replication might have strong
functional associations with the studied subcortical
volume phenotypes. We clustered the relevant pathways
for five CMs and plotted a heat map to summarize the
relationships between these pathways and CMs (Fig. 5).
Figure 5 shows that Alzheimer’s disease, Apoptosis, TNF
signaling pathway, Herpes simplex infection, MAPK

signaling pathway are the pathways significantly
enriched by one or more CMs [25]. We also observe that
CM1, CM3, CM4 enriched many interesting pathways. In
particular, CM3 demonstrates the strongest functional
association with AD (p = 4.94E-05).

Discussion
In this work, we performed multivariate genome wide
association study (MGAS) of eight AD-relevant subcor-
tical ROIs, using 866 samples in the ADNI database. To
the best of our knowledge, this is the first MGAS on the
quantitative traits of eight subcortical ROIs. In our
MGAS, we confirmed associations at multiple genes pre-
viously associated with AD, such as APOE (p = 2.77E-08,
rs769449), TOMM40 (p = 3.49E-08, rs769449), APOC1
(p = 1.18E-06, rs4420638), as well as identified a few
novel associations shown in Table 4. Table 4 also shows
that the associations to individual subcortical QTs (e.g.
APOE, TOMM40, APOC1: associated to LAmygVol,
RAmygVol, LHippVol and RHippVol) have a range of
different significances.
XYLB (p = 6.72E-05, rs196376) had been reported to

be associated with neurological diseases such as ischemic
stroke [26]. We observed that this gene is associated to

Fig. 1 An overview of the proposed analysis framework. a Multivariate genome wide association analysis of eight subcortical imaging measures.
b Network-based analysis of MGAS findings using the CM-based network strategy. c Functional enrichment analysis of the identified consensus
modules (CMs)
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Table 1 Demographic information and total number of participants involved in each analysis

CN (N = 183) SMC (N = 95) EMCI (N = 281) LMCI (N = 177) AD (N = 130) p-values

Age (years) 74.29(6.01) 72.20(5.67) 71.35(7.30) 71.87(7.98) 74.56(8.07) p < 0.001

Gender(M/F) 92/91 39/56 159/122 99/78 78/52 0.035

Education (years) 15.78(2.69) 16.81(2.55) 16.07(2.66) 16.31(2.89) 15.78(2.69) 0.037

APOE e4 allele prensent 62(34%) 37(39%) 108 (38%) 64(36%) 45 (35%) 0.161

LAmygVol
(i.e., QT for GWAS)

1377.2 (230.40) 1434.48(202.03) 1387.06(257.16) 1258.07(286.96) 1081.93 (229.42) p < 0.001

RAmygVol
(i.e., QT for GWAS)

1425.05 (221.11) 1494.02 (210.39) 1450.03 (255.77) 1327.93 (282.28) 1178.03 (240.54) p < 0.001

LHippVol
(i.e., QT for GWAS)

3626.23 (497.63) 3730.98 (529.42) 3573.44 (558.02) 3243.94 (635.34) 2912.15 (518.08) p < 0.001

RHippVol
(i.e., QT for GWAS)

3679.88 (500.54) 3824.23 (487.64) 3663.93 (535.43) 3319.32 (641.19) 2985.63 (540.11) p < 0.001

LAccumVol
(i.e., QT for GWAS)

463.51 (100.88) 481.37 (92.49) 474.07 (93.96) 447.91 (101.37) 417.88 (96.74) p < 0.001

RAccumVol
(i.e., QT for GWAS)

490.44 (95.69) 506.76 (93.38) 508.65 (107.70) 474.41 (105.41) 429.57 (96.56) p < 0.001

LCaudVol 3442.57 (505.06) 3411.83 (518.23) 3477.88 (572.20) 3460.31 (518.58) 3429.95 (698.19) 0.0851

RCaudVol 3583.43 (528.08) 3539.56 (545.67) 3640.80 (623.54) 3588.41 (540.35) 3577.51 (697.23) 0.608

LPallVol 1602.48 (204.00) 1592.57 (196.97) 1633.63 (211.56) 1587.56 (220.94) 1584.27 (231.88) 0.101

RPallVol 1413.36 (189.35) 1434.79 (177.66) 1444.59 (192.61) 1433.18 (202.08) 1414.99 (217.48) 0.444

LPutamVol
(i.e., QT for GWAS)

4788.04 (636.56) 4788.21 (687.42) 4939.46 (750.31) 4733.41 (671.80) 4479.92 (688.84) p < 0.001

RPutamVol
(i.e., QT for GWAS)

4586.97 (599.25) 4584.27 (604.70) 4708.87 (752.76) 4522.97 (669.07) 4327.07 (687.91) p < 0.001

LThalVol 6060.0 (714.50) 6064.96 (868.69) 6072.55 (604.95) 6054.47 (745.24) 5953.05 (718.64) 0.592

RThalVol 6081.58 (684.84) 6056.69 (722.49) 6176.78 (663.50) 6128.47 (732.28) 5980.53 (750.51) 0.098

AD Alzheimer’s disease, ADNI Alzheimer’s Disease Neuroimaging Initiative, CDR–SOB clinical dementia rating–sum of boxes, CN cognitively normal, SMC significant
memory concern, EMCI early mild cognitive impairment, LMCI late mild cognitive impairment
Number (%) or mean (s.d.) is shown in each entry. P-values are computed using one-way ANOVA (*except for gender using chi-square test)

Table 2 14 FreeSurfer subcortical ROIs

Phenotype ID Description Region

LAmygVol the volume of the left amygdala Subcortical (temporal)

RAmygVol the volume of the right amygdala

LHippVol the volume of the left hippocampus

RHippVol the volume of the right hippocampus

LAccumVol the volume of the left accumbens Subcortical (striatum/basal ganglia)

RAccumVol the volume of the right accumbens

LCaudVol the volume of the left caudate

RCaudVol the volume of the right caudate

LPallVol the volume of the left pallidum

RPallVol the volume of the right pallidum

LPutamVol the volume of the left putamen

RPutamVol the volume of the right putamen

LThalVol the volume of the left thalamus Subcortical (thalamus)

RThalVol the volume of the right thalamus
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RAmygVol, LHippVol and RHippVol. LAMA1 (p =
3.79E-05, rs656734) encodes one of the alpha 1 subunits
of Laminin, which has been demonstrated to be
expressed in the hippocampal neuronal cell layers [27].
NPEPL1 was confirmed to be a potential direct target of
miR-19a in a breast cancer study [28] and miR-19a was
up-regulated in primary motor cortex and hippocampus
in the brain of amyotrophic lateral sclerosis mice at late
disease stage [29]. In our study, we found that NPEPL1
was associated to LPutamVol (PLPutamVol = 2.13E-05) and
RPutamVol (PRPutamVol = 3.39E-03). In Table 4, the
hippocampus and amygdala volumes were associated
with multiple genes. While CYP24A1 was associated
with none of eight studied QTs, it was identified in
MGAS to have an overall association with all eight QTs.
The statistical efficacy of MGAS of the detected gene as-
sociations appears to be more powerful than univariate
phenotype models. Given that OR5B2 and MIR7160

have not been reported to be related to AD or AD
related biomarkers, it warrants further investigation to
examine their roles on AD in independent cohorts.
Because we found that different subnetworks could be

identified by using different random seed values, we
present the consensus modules discovered by an en-
hanced iPINBPA strategy. The genes for the CMs might
not show a direct individual statistical significance but
demonstrated a collected effect on the studied pheno-
types. We assessed the significance of each identified
consensus module (Table 6). CM1 (Score = 3.32, p =
9.00E-04) contains totally 8 genes, including KEGG AD
genes TNFRSF1A. CM2 (Score = 1.41, p = 0.16) contains
totally 4 genes without reaching the significance level.
CM3 (Score = 4.37, p = 1.24E-05) contains 6 genes, in-
cluding KEGG AD genes APOE APP, and CASP3. CM4

(Score = 4.32, p = 1.56E-05) contains 5 genes, including
KEGG AD genes APOE, APP, and CASP3. CM5 (Score =
1.89, p = 5.88E-02) contains 6 genes with a marginal
significance. The genes in the significant CMs warrant
further investigation. The consensus module strategy
applied to the iPINBPA framework yielded more stable
results than the standard iPINBPA.
The intersection of CM3 and CM4 yielded five genes,

including APP, APOE, CASP3, C3, and PLTP. The C3
gene was shown to contribute to the pathogenesis of
demyelinating disease by directly or indirectly chemoat-
tracting encephalitogenic cells to the CNS [30]. The
PLTP gene was reported to play an important role in Aβ
metabolism and it is an interesting topic to further eluci-
date functions of PLTP in AD susceptibility. Table 7
shows the top ten pathways enriched by the intersection
genes. Among these genes, the APP, APOE, and CASP3
genes are known AD risk factors. Several significant
pathways were observed, including Alzheimer’s disease (p-

Fig. 2 Phenotypic correlations between 8 subcortical volumes traits, volumes

Table 3 The top 10 SNPs identified by MGAS

SNP Position PSNP Chr Gene PMGAS

rs769449 45,410,002 1.19E-09 19 APOE 2.77E-08

rs405509 45,408,836 2.01E-04 19 APOE 2.77E-08

rs439401 45,414,451 1.99E-01 19 APOE 2.77E-08

rs584007 45,416,478 2.25E-01 19 APOE 2.77E-08

rs445925 45,415,640 2.62E-01 19 APOE 2.77E-08

rs769449 45,410,002 1.19E-09 19 TOMM40 3.49E-08

rs2075650 45,395,619 2.19E-06 19 TOMM40 3.49E-08

rs157582 45,396,219 8.54E-05 19 TOMM40 3.49E-08

rs1160985 45,403,412 6.88E-06 19 TOMM40 3.49E-08

rs405509 45,408,836 2.01E-04 19 TOMM40 3.49E-08

PSNP is the p-value of top 10 snp identified by MGAS; Chr: Chromosome; PMAGS

is the p-value of top 10 gene identified by MGAS
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Fig. 3 A Manhattan plot showing the gene-level p values in multivariate GWAS study of 8 subcortical volumes. The blue line corresponds to
p = 10− 5; the red line corresponds to p = 10− 7

Table 4 The top 10 FDR corrected genes identified by MGAS in 8 subcortical ROIs

NO. Gene PMGAS Chr SNP PLAmygVol PRAmygVol PLHippVol PRHippVol PLAccumVol PRAccumVol PLPutamVol PRPutamVol

1 APOE 2.77E-08 19 rs769449 3.98E-06 1.38E-04 5.77E-07 9.52E-09 1.58E+ 00 1.48E+ 00 2.11E+ 00 2.44E+ 00

2 TOMM40 3.49E-08 19 rs769449 3.98E-06 1.38E-04 5.77E-07 9.52E-09 1.58E+ 00 1.48E+ 00 2.11E+ 00 2.44E+ 00

3 APOC1 1.18E-06 19 rs4420638 3.09E-05 3.46E-05 7.70E-06 5.23E-07 6.99E-01 1.34E+ 00 3.06E+ 00 2.71E+ 00

4 LAMA1 3.79E-05 18 rs656734 2.62E-05 8.64E-07 3.11E-04 5.53E-04 5.64E+ 00 2.45E+ 00 4.27E+ 00 5.26E+ 00

5 XYLB 6.72E-05 3 rs196376 1.80E-02 6.61E-04 8.64E-05 6.63E-06 2.06E-02 5.68E-01 9.22E-01 7.13E-02

6 HSD17B7P2 8.40E-05 10 rs12221164 3.42E+ 00 4.05E+ 00 5.92E+ 00 5.09E+ 00 1.16E-04 1.02E-01 7.86E+ 00 7.93E+ 00

7 NPEPL1 8.63E-05 20 rs2426778 5.96E-01 3.89E+ 00 7.38E-01 2.17E+ 00 7.32E+ 00 2.09E-02 2.13E-05 3.39E-03

8 OR5B2 9.40E-05 11 rs11229440 1.62E+ 00 8.20E-01 3.90E-01 1.05E+ 00 1.67E+ 00 8.30E-03 2.22E-04 9.52E-05

9 MIR7160 1.10E-04 8 rs6558595 8.22E-01 7.69E+ 00 3.07E-01 1.13E+ 00 8.50E-02 1.68E+ 00 3.49E-05 3.67E-04

10 CYP24A1 1.20E-04 20 rs3787555 2.10E-01 4.75E+ 00 3.64E+ 00 2.19E+ 00 7.80E+ 00 1.75E+ 00 1.71E-01 9.55E-01

PMAGS is the p-value of top 10 genes identified by MGAS; Chr: Chromosome; PLAmygVol is the p-value of top 10 genes associated to LAmygVol; PRAmygVol is the p-
value of top 10 genes associated to RAmygVol; PLHippVol is the p-value of top 10 genes associated to LHippVol; PRHippVol is the p-value of top 10 genes associated
to RHippVol; PLAccumVol is the p-value of top 10 genes associated to LAccumVol; PRAccumVol is the p-value of top 10 genes associated to RAccumVol; PLPutamVol is the
p-value of top 10 genes associated to LPutamVol; PRPutamVol is the p-value of top 10 genes associated to RPutamVol, Bold font indicates p-value < 0.000001, Italic
font indicates p-value< 0.00001
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value = 2.50E-05, FDR = 1.54E-03), Legionellosis (p-value =
1.90E-04, FDR = 7.03E-03), Pertussis (p-value = 3.63E-04,
FDR = 8.40E-03), Serotonergic synapse (p-value = 8.02E-
04, FDR = 1.28E-02), Tuberculosis(p-value = 2.00E-03,
FDR = 1.92E-02), Herpes simplex infection (p-value =
2.13E-03, FDR = 1.92E-02) and so on. It has been reported
that Legionella pneumonphila, one species of Legionella,
is an intracellular microorganism that causes Legionello-
sis. This type of pulmonary infection is usually associated
with neurological dysfunction [31]. Serotonergic neuro-
transmission and synapse activity are highlighted as pri-
mary pathological factors in neuropsychiatric symptoms
[32, 33]. Pertussis toxin inhibits the apoptosis and DNA
synthesis caused by FAD APP mutants which precedes
FAD APP-mediated apoptosis in neurons and inhibition
of neuronal entry into the cell cycle inhibits the apoptosis

[34]. Apoptotic pathways and DNA synthesis are activated
in neurons in the brains of individuals with AD.
Due to the limited number of samples available to us,

in this work we were only able to perform a discovery
study. In the future, when more data become available
replication studies in independent cohorts warrant in-
vestigation to validate the identified CMs.

Conclusion
In this study, we performed MGAS analysis to explore the
multivariate imaging genetic association effects for a set of
AD-related subcortical measures. In addition, we con-
ducted the iPINBPA network analysis to discover consen-
sus modules related to these imaging phenotypes from a
protein-protein interaction network. The MGAS analysis
identified several genes associated with the studied

Table 5 The characteristics of the identified consensus modules in 10 iPINBPA runs

CM RunA Ta: the top subnetwork in RunA. Sb: the most similar subnetwork to Ta in RunB

RunB 1 2 3 4 5 6 7 8 9 10

1 TN11 Rank of Sb in RunB TN11 TN12 TN13 TN14 TN15 TN16 TN17 TN18 TN19 TN1,10

DC(x, y) 1 0.87 0.63 0.38 0.87 0.53 0.44 0.57 0.92 0.51

2 TN21 Rank of Sb in RunB TN21 TN22 TN23 TN24 TN25 TN26 TN27 TN28 TN29 TN2,10

DC(x, y) 1 0.77 0.58 0.71 0.95 0.59 0.47 0.7 0.77 0.38

3 TN31 Rank of Sb in RunB TN31 TN32 TN33 TN34 TN45 TN36 TN37 TN38 TN49 TN4,10

DC(x,y) 1 0.89 0.89 1 0.74 0.74 0.77 0.89 0.89 0.44

4 TN41 Rank of Sb in RunB TN41 TN32 TN33 TN34 TN45 TN36 TN37 TN38 TN49 TN3,10

DC(x,y) 1 0.61 0.61 0.7 0.96 0.67 0.67 0.7 0.7 0.36

5 TN51 Rank of Sb in RunB TN51 TN62 TN53 TN74 TN75 TN86 TN67 TN88 TN89 TN4,10

DC(x, y) 1 1 1 1 1 1 1 1 0.96 0.52

Fig. 4 Consensus modules identified by CM-based network strategy. Different CMs are showed by different colors. The blue color indicates genes
in CM1; green color indicates genes in CM2; cyan color indicates genes in CM3; red color indicates genes in CM4; and yellow color indicates genes
in CM5.The genes appearing in multiple CMs have multiple colors. For example, the genes APOE, APP, CASP3, C3, PLTP are in both CM3 and CM4
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imaging phenotypes, including APOE, TOMM40, APOC1,
LAMA1, XYLB, HSD17B7P2 and others. The statistical
power of coupling MGAS with iPINBPA was higher than
traditional GWAS method, and yielded findings missed by
GWAS. In this work, we reported top five consensus mod-
ules based on MGAS results. Network-based analysis can
take into account information on biological relationships
to interpret GWAS data. Our results suggested several
susceptible genes and network modules for further investi-
gation and replication to better understand the genetic
mechanism of Alzheimer’s Disease.

Methods
Subjects and data
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial mag-
netic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). For up-to-date
information, see www.adni-info.org.
Baseline 3 T MRI scans, demographic information, and

diagnosis for the ADNI-1 and ADNI-GO/2 cohorts were
downloaded [35]. MRI scans were analyzed using FreeSur-
fer version 5.1 for brain segmentation. We examined the
volume measures of 14 subcortical ROIs; see Tables 1-2.
We performed analysis of variance (ANOVA) to evaluate

Fig. 5 Functional annotation of the five identified consensus modules (CM1-CM5) using KEGG pathways. The five consensus modules were treated as five
gene sets, and went through pathway enrichment analysis based on the KEGG pathway database. The enrichment results at a nominal statistical threshold
of p< 0.05 are shown. -log10(p) values are color-mapped and displayed in the heat map. Heat map blocks labeled with “x” reach the nominal significance
level of p< 0.05. Only top enrichment findings are included in the heat map, and so each row (pathway) has at least one “x” block

Table 6 The properties of Consensus Modules identified from the PPI network

Consensus Module Nodes Score P-value

CM1 MAPK8, ATF2, TNFRSF1A, JUND, NR3C1, RB1, IKBKB, CDK2 3.32 9.00E-04

CM2 IGF1R, PRKCA, INSR, PTPRC 1.41 1.59E-01

CM3 APP, APOE, CASP3, C3, PLTP, CNTF 4.37 1.24E-05

CM4 C3, PLTP, APP, APOE, CASP3 4.32 1.56E-05

CM5 MED8, GATA6, HNF4A, MED1, THOC7, PHYHIP 1.89 5.88E-02

Scores were computed by using the adjusted network score
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the diagnostic effect on 14 volume measures. Using the sig-
nificance level of p < 0.05, we focused on the volume mea-
sures of eight subcortical ROIs (i.e., LAmygVol, RAmygVol,
LHippVol, RHippVol, LAccumVol, LPutamVol, RPutam-
Vol; see Table 2) in subsequent genetic association studies.
Genotyping data of both ADNI-1 and ADNI-GO/2 co-

horts were downloaded, and then quality controlled and
combined as described in [36]. A total of 866 non-
Hispanic Caucasian participants with both complete sub-
cortical imaging measurements and genotyping data were
included in the study. The study sample (N = 866) in-
cluded 183 cognitively normal (CN), 95 significant mem-
ory concern (SMC), 281 early MCI (EMCI), 177 late MCI
(LMCI) and 130 AD subjects. The demographic and clin-
ical characteristics of participants, stratified by the diagno-
sis, are shown in Table 1.

Multivariate genome wide association study
GWAS was performed to examine the main effects of 563,
980 SNPs on eight subcortical measures as quantitative
traits (QTs). Linear regression model was performed using
PLINK to examine the association between each SNP-QT
pair (https://www.cog-genomics.org/plink2) [37]. An addi-
tive genetic model was tested with age, gender and brain
volume as covariates. We computed the correlation matrix
(8 × 8 matrix) for the QT data containing eight imaging
phenotypes (Fig. 2). We applied the MGAS (Multivariate
Gene-based Association test by extended Simes proced-
ure) tool to all 563,980 SNPs and examined their multi-
variate gene-based associations with eight imaging QTs
[13]. A Manhattan plot was generated using R (http://
www.r-project.org) to visualize the gene-level MGAS re-
sults for our work (Fig. 3).We obtained one multivariate
gene-based p-value PMGAS as follows.

PMGAS ¼ min
qep j

qej

 !

Here, qe represents the effective number of p-values within
a gene, qej represents the effective number of p-values among
the top j p-values where j runs from 1 to 8 × 563,980, and pj
represents the j-th p-value in the list of ordered p-values.
PMGAS is the smallest weighted p-value within a gene associ-
ated with the null hypothesis that none of the eight pheno-
types are related to the 563,980 SNPs within the gene, and
the alternative hypothesis that at least one of the eight phe-
notypes is related to at least one of the 563,980 SNPs. We
identified 1386 genes with p-value< 0.05 [13, 38].

Identifying consensus models using iPINBPA
This study used the protein-protein interaction (PPI) data
from the Human Protein Reference Database (HPRD, http://
www.hprd.org) [39], containing 9617 proteins and 39,240 in-
teractions. Gene-level p-values obtained from MGAS of sub-
cortical imaging phenotypes were mapped to the PPI
network. Then the network was followed by an iPINBPA (in-
tegrative protein-interaction-network-based pathway ana-
lysis) procedure [19] to identify enriched PPI network
modules. Consensus modules (CMs) were identified using
the following approach based on our prior study [24].
Briefly, building on our prior study, we focus on ana-

lyzing the top 5 subnetworks (TN1, TN2, TN3, TN4,
TN5) in each iPINBPA run. Let TNij be the top i-th sub-
network identified in the j-th run, where i ∈ {1, 2,…, 5}
and j ∈ {1, 2, ...10}. We first find SNn(TNij), which is the
most similar subnetwork to TNij in the n-th run, where
n ∈ {1, 2,…, 10}\{j}. Clearly, we have.
SNn(TNij) = argmaxsn DC(TNij, sn),
where sn is any subnetwork enriched in Run n, and

DC(x, y) indicates the dice coefficients between two
subnetworks x and y. Consequently, for Run j, we define
its i-th consensus module CMij as follows.

CMij ¼ TNij∩ ⋂
i¼1;2;:::5

j¼1;2;:::10
SNn TNij

� �� �
; n∈ 1; 2:::10f gn jf g

Table 7 The pathway of genes appearing in all five consensus modules

NO. Pathway p-value FDR Genes

1 Alzheimer’s disease 2.50E-05 1.54E-03 CASP3, APOE, APP

2 Legionellosis 1.90E-04 7.03E-03 CASP3, C3

3 Pertussis 3.63E-04 8.40E-03 CASP3, C3

4 Serotonergic synapse 8.02E-04 1.28E-02 CASP3, APP

5 Tuberculosis 2.00E-03 1.92E-02 CASP3, C3

6 Herpes simplex infection 2.13E-03 1.92E-02 CASP3, C3

7 Viral carcinogenesis 2.51E-03 1.92E-02 CASP3, C3

8 Apoptosis - multiple species 1.32E-02 2.94E-02 CASP3

9 Amyotrophic lateral sclerosis (ALS) 2.03E-02 3.92E-02 CASP3

10 Staphylococcus aureus infection 2.23E-02 4.12E-02 C3
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Namely, CMij is the intersection of TNij and its most
similar subnetworks identified in all the other runs. In
our empirical study, we will report the consensus
modules based on Run 1, i.e., CMi1 as the i-th consensus
module.

Functional analysis
Cytoscape 3.4 [40] was used to visualize the identified
CMs. We used ToppGene online tool (https://toppgene.
cchmc.org/) for functional enrichment analysis. The
ToppGene suite is an advanced bioinformatics tool, it
could detect and arrange candidate genes through a
comprehensive assessment of a variety of factors, includ-
ing gene ontology (GO) annotating, phenotype, signaling
pathway and protein interactions from a specific list of
genes [41]. In this case, the top 10 findings of our multi-
variate gene-based association analysis were analyzed for
functional enrichment. For the identified CMs, we also
performed functional enrichment analysis using the
ToppGene Suite.
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