
Li et al. BMC Genomics 2020, 21(Suppl 11):893
https://doi.org/10.1186/s12864-020-07296-1

RESEARCH Open Access

Deep learning for HGT insertion sites
recognition
Chen Li, Jiaxing Chen and Shuai Cheng Li*

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2020
Virtual. 9-10 August 2020

*Correspondence:
shuaicli@cityu.edu.hk
Department of Computer Science,
City University of Hong Kong,
Kowloon, Hong Kong SAR,
HongKong, China

Abstract

Background: Horizontal Gene Transfer (HGT) refers to the sharing of genetic materials
between distant species that are not in a parent-offspring relationship. The HGT
insertion sites are important to understand the HGT mechanisms. Recent studies in
main agents of HGT, such as transposon and plasmid, demonstrate that insertion sites
usually hold specific sequence features. This motivates us to find a method to infer HGT
insertion sites according to sequence features.

Results: In this paper, we propose a deep residual network, DeepHGT, to recognize
HGT insertion sites. To train DeepHGT, we extracted about 1.55 million sequence
segments as training instances from 262 metagenomic samples, where the ratio
between positive instances and negative instances is about 1:1. These segments are
randomly partitioned into three subsets: 80% of them as the training set, 10% as the
validation set, and the remaining 10% as the test set. The training loss of DeepHGT is
0.4163 and the validation loss is 0.423. On the test set, DeepHGT has achieved the area
under curve (AUC) value of 0.8782. Furthermore, in order to further evaluate the
generalization of DeepHGT, we constructed an independent test set containing
689,312 sequence segments from another 147 gut metagenomic samples. DeepHGT
has achieved the AUC value of 0.8428, which approaches the previous test AUC value.
As a comparison, the gradient boosting classifier model implemented in PyFeat
achieve an AUC value of 0.694 and 0.686 on the above two test sets, respectively.
Furthermore, DeepHGT could learn discriminant sequence features; for example,
DeepHGT has learned a sequence pattern of palindromic subsequences as a
significantly (P-value=0.0182) local feature. Hence, DeepHGT is a reliable model to
recognize the HGT insertion site.

Conclusion: DeepHGT is the first deep learning model that can accurately recognize
HGT insertion sites on genomes according to the sequence pattern.
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Background
Horizontal Gene Transfer(HGT) [1] refers to the sharing of genetic materials between
distant species that are not in a parent-offspring relationship [2]. HGT allows dif-
ferent species to share genomic fragments, thus creating a complex network among
different species [3]. It is the fundamental mechanism for the spread of antibiotic
resistance in bacteria [4, 5] and plays an important role in the evolution of bacte-
ria [6–8]. Conjugation [9], transformation [10], and transduction [11] are the three
most recognized mechanisms for HGT. Conjugation requires physical contact between
a donor cell and a recipient cell. Then the genetic material, such as conjugative trans-
posons [12], is transferred through plasmids. Transformation is the uptake of foreign
genetic material from the surrounding environment and is relatively common in bacte-
ria. Transduction is mainly mediated by phage and could occur more than 1,000 times
in specific environments [13]. Through these mechanisms, functional unit of DNA,
such as operon [14], and mobile genetic elements [15], such as transposons contain-
ing antibiotic resistance genes, could be incorporated into the genome of recipients
[12]. Therefore, HGTs improve the bacteria’s ability to adapt to changing environ-
ments. HGTs are often observed and well studied in prokaryotes. Recent research
demonstrates that around 80% of genes in prokaryotes were involved in HGT at some
point in their history [16]. HGTs could also occur between prokaryotes and eukary-
otes [17]. From prokaryotes, eukaryotes acquire genes that are helpful to detoxify novel
environments [18–20]. Moreover, through HGT, many eukaryotes benefit from the
acquisition of genes encoding biosynthetic enzymes to live in extremely nutrient-poor
environments [21, 22].

Mobile genetic elements (MGE), such as transposons, are the main agents of HGT [15].
Existing research on transposons demonstrates that the transposon ends usually have spe-
cial sequence features, such as inverted repeats [23], AT-rich [12], etc. These sequence
features make transposon easily transferred across cells by plasmids, phage, or integrative
conjugative elements (ICEs). Other agents of HGT may also have specific sequence fea-
tures [24]. These facts make it possible to recognize HGT insertion sites according to the
sequence features at the sites. Deep learning is such a powerful method to extract features
from DNA sequences. It is a class of machine learning algorithms based on artificial neu-
ral networks. It allows computational models composed of multiple processing layers to
learn representations for data with multiple levels of abstraction [25]. Starting from 2012,
deep learning has achieved great performance breakthroughs in computer vision [26, 27],
speech recognition [28], and so on. More recently, deep learning was adopted to pro-
cess DNA sequence data and Convolutional Neural Networks (CNN) is the most wildly
used deep learning model in the field of bioinformatics. In 2015, [29] proposed DeepBind
to predict DNA and RNA-binding proteins based on in vitro and in vivo assays. It per-
forms better than the state-of-the-art methods from the DREAM5 in vitro TF-DNA motif
recognition challenge [30]. Zhou and Troyanskaya [31] developed DeepSEA to predict
chromatin effects of sequence alterations with single-nucleotide sensitivity by learning
regulatory sequence codes from large-scale chromatin-profiling data. Researchers also
have used CNN models to predict functional elements in the genome, such as promoter
[32] and enhancer [33]. These applications imply that deep learning could effectively
learn features from raw DNA sequences to perform the classification task. This motivates
us to propose a deep learning model, named DeepHGT (https://github.com/lichen2018/

https://github.com/lichen2018/DeepHGT
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DeepHGT), which learns sequence features to recognize HGT insertion sites on reference
sequences.

In order to train DeepHGT, we should get DNA sequences at HGT insertion sites.
We utilize a traditional alignment tool LEMON [34] which is based on split reads re-
alignment [35] and DBSCAN [36] to detect and label HGT insertion sites. Then we could
collect DNA sequences at the detected HGT sites. In order to prove the specialty of Deep-
HGT, we also compare its performance with other machine learning models implemented
in PyFeat [37]. PyFeat generates features from DNA sequences to train machine learn-
ing models. The generated features include zCurve, gcContent, ATGC ratio, Cumulative
Skew, Chou’s Pseudo composition, gap-based K-mer frequency, and so on. These features
could capture the frequency distributions of various permutations of the base nucleotide
in the sequences [37].

As described in the “Methods” section, by utilizing LEMON we collect a set of 1,556,694
sequence segments from 262 metagenomic samples [38]. 50% of the set are positive sam-
ples that are extracted at HGT insertion sites on reference genomes. The remaining
sequences are negative samples. The set is randomly partitioned into three subsets: 80%
of them as the training set, 10% as the validation set, and the remaining 10% as the test
set. DeepHGT has achieved Area under the Curve of ROC (AUC) value of 0.8782 and
Average-Precision (AP) value of 0.899 in the test set. Compared to the performance of
four machine learning models implemented in PyFeat, features learned by DeepHGT are
more discriminant than those generated by PyFeat and make DeepHGT achieve better
performance. Besides, 125 correctly classified positive test sequences at HGT insertion
sites contain palindromic subsequences. For each sequence, any continuous subsequence
can be treated as a local feature. We define HGT-Index to measure the contribution of its
local feature to the prediction value of the sequence. Statistic test results demonstrate that
palindromic subsequences, which are typical sequence patterns in MGE, are significantly
local features. In addition, to further evaluate the generalization of DeepHGT, we obtain
an independent test set of 689,312 sequence segments from 147 metagenomic samples
[39] using LEMON. The ratio between positive and negative samples is 1:1. DeepHGT
has achieved the AUC value of 0.8428 and the AP value of 0.8743, which supports the
good generalization of DeepHGT. So DeepHGT can accurately recognize HGT insertion
sites on genomes according to sequence pattern.

Results
Percentage distribution of positive samples at species/genus level

The 778,347 positive sequences extracted from 262 metagenomic samples belong to 3,070
species and 711 genera. Table 1 summarized the percentage distribution of the top 10
most abundant species/genera. As we can see, Microbacterium esteraromaticum is the
species to which the greatest number of positive sequences belong. Its percentage is only
13.13%. The percentages of the other nine species are less than 10%. Furthermore, we
calculate the percentage distribution of the 3,070 species. Its standard variance is 0.30%.
Microbacterium is the genus to which the greatest number of sequences belong. Its per-
centage is 14.38%. The standard variance for the percentage distribution of the 711 genera
is 0.92%. Therefore, sequences are evenly distributed across the 3,070 species and 711
genera. In another word, sequences are not enriched to a small number of species/genus.
Therefore, the dataset is balanced at the appropriate species/genus level. Since this dataset

https://github.com/lichen2018/DeepHGT
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Table 1 Percentage distribution of Top 10 most abundant species/genera to which positive samples
belong

Top 10 Species Percentage (%) Top 10 Genera Percentage (%)

Microbacterium esteraromaticum 13.13 Microbacterium 14.38

Mycolicibacterium monacense 7.36 Bacteroides 12.35

Mycobacterium sp. 852002-51961_SCH5331710 3.08 Bifidobacterium 8.00

Faecalibacterium prausnitzii A2-165 2.39 Mycolicibacterium 7.73

Collinsella aerofaciens ATCC 25986 1.97 Mycobacterium 6.21

Collinsella sp. 4_8_47FAA 1.94 Collinsella 5.89

Gemmiger formicilis 1.69 Clostridium 3.23

Collinsella sp. TF06-26 1.64 Faecalibacterium 2.70

Bifidobacterium longum 1.55 Alistipes 2.49

Bacteroides caccae 1.50 Roseburia 2.37

is mainly used to train and validate DeepHGT, we call this dataset as the positive train-
ing dataset. The 344,656 positive sequences extracted from 147 metagenomic samples
in the independent test set belong to 2,139 species. Appendix Table 7 compares the two
percentage distributions of the top 10 most abundant species to which sequences in the
positive training dataset and the independent positive test dataset belong. As we can see
sequences in the two datasets have very different composition at species level.

Overview of DeepHGT

We propose DeepHGT as illustrated in Fig. 1. DeepHGT is a deep residual neural
network [40], which contains four residual blocks. Each residual block contains two
Conv+BN+Relu sub-blocks and one skip-connection, which directly connects the input
and output of the residual block, here Conv denotes the Convolutional layer, BN denotes
the Batch Normalization layer [41], and Relu denotes the ReLU activation layer. In gen-
eral, as we increase the number of layers in the neural network, its performance on both
training and test data will decrease, this is called the degradation problem [40]. By adding
skip-connection to skip some layers, the residual neural network is equal to the inte-
gration of multiple neural networks with different depths. This solves the degradation
problem and makes the residual neural network go deeper to extract more mid-level and
high-level features than shallow models. These extra features also enable the residual neu-
ral network to achieve better performance than shallow models. In order to improve the
generalization performance of DeepHGT, we add one Dropout layer [42] behind each
residual block. Dropout is an efficient trick to reduce overfitting during training. By
randomly dropping hidden nodes, the training process is equivalent to training a large
number of neural networks with different architectures in parallel. This makes DeepHGT
learn more robust features thus better generalize to new data.

DeepHGT is implemented by using Keras and contains 2,119,297 trainable parame-
ters. We set the length of the input sequence as 100 [43] and convert each sequence to a
100 × 4 matrix using the one-hot encoding method, where each position corresponds to
a four-element vector with one nucleotide’s bit set to one [33]. All convolutional layers in
DeepHGT have the same number of filters 128 and the same kernel size 4 × 1 with slide
step 1. The first two Dropout layers have the same dropout rate 0.1, the dropout rate of
the third Dropout layer is 0.25, and the dropout rate of the last Dropout layer is 0.5. By
setting the dropout rate small in lower Dropout layers, we could maintain most low-level
features. The large dropout rate in higher Dropout layers is helpful for learning useful
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Fig. 1 Overview of DeepHGT

high-level features. Right behind the last Dropout layer is a fully connected layer, which
contains 128 units. Since our task is a binary classification problem, the output layer is
a Sigmoid function. We don’t apply the pooling layer in DeepHGT since we found that
pooling layers reduce the spatial dimensions of feature vector by a factor of 2, which leads
to the loss of too much feature information and decreases the performance of DeepHGT
in experiments.

DeepHGT predicts HGT insertion sites

We set the batch size as 120 and utilize Stochastic Gradient Descent (SGD) to mini-
mize the objective loss function of DeepHGT. The learning rate is 0.001. Since our task
is to predict whether the input sample is positive, we set the loss function as binary
cross-entropy. The number of epochs for training is 2,900. By changing the number of
residual blocks in DeepHGT, we get other four deep learning models as comparisons.
Their performance is measured by AUC and precision-recall curve. The precision-
recall curve shows the tradeoff between precision and recall for different thresholds and
Average-Precision (AP) is the weighted mean of precisions achieved at each threshold.

The set of 1,556,694 sequence is randomly partitioned into three subsets: 80% of them
as the training set, 10% as the validation set, and the remaining 10% as the test set. The
DeepHGT is trained on one NVIDIA Tesla V100 GPU. Figure 2 illustrates the evolution
of training and validation loss during the training process of DeepHGT. During the first
200 epochs, both of train loss and validation loss decrease fast, this demonstrates that
DeepHGT efficiently learns useful sequence features from the training dataset to distin-
guish positive and negative samples. Since we have utilized data augmentation methods
on the training set and not on the validation set, this makes the training set become more
diverse and contain more hard samples to train. Therefore, the training loss is larger than
the validation loss during 2,000 epochs. After 2,200 epochs, the validation loss fluctuates
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Fig. 2 Training and validation loss evolution during the training of DeepHGT

around 0.423, while the training loss continues to decrease rapidly and become lower than
validation loss. This is because DeepHGT gets stuck in a local minimum, and continuing
training makes DeepHGT overfit the training data without achieving better performance
on the validation set. Therefore, we stop the training process after 2,900 epochs.

Figure 3a and b illustrate the Receiver OperatingCharacteristic (ROC) and Precision-
Recall curves of DeepHGT and the other five deep learning models with different
architectures. 1#Res_Block denotes that the deep residual model contains 1 residual
block, 2#Res_Block denotes that the deep residual model contains 2 residual blocks, and
so on. CNN_model has the same number of convolutional blocks as DeepHGT without
skip-connections. DeepHGT contains 4 residual blocks as shown in Fig. 1. DeepHGT
has achieved the highest AUC value of 0.8782 and the AP value of 0.8994. As we can
see, by increasing the number of residual blocks, the deep learning model achieves bet-
ter performance, which means that deeper models can learn more high-level features
and get better generalization than shallow models. DeepHGT has better performance
than CNN_model, which validates skip-connections are useful to prevent overfitting.
Therefore, designing deep learning models with proper architectures is important to
achieve good performance. Figure 3c and d compare the performance of DeepHGT
and four machine learning models implemented in PyFeat including Naive Bayes [44]
(PyFeat_NB), Adaboost Classifier [45] (PyFeat_AB), Random Forest [46] (PyFeat_RF), and
Gradient Boosting Classifier [47] (PyFeat_GB). PyFeat extract features from training and
test datasets. The features are then used to train and test the four machine learning mod-
els. Their parameters are set in PyFeat. Compared to the four models in PyFeat, DeepHGT
has achieved the best performance, although PyFeat_GB has achieved AUC value 0.694
and AP value 0.76 based on the features extracted by PyFeat. Table 2 compares the accu-
racy of DeepHGT and other methods. DeepHGT achieved the highest accuracy score of
0.794. Therefore, sequence features learned by DeepHGT are more general and efficient
than those extracted by PyFeat. And this also makes DeepHGT achieve better classifier
performance than the other four models in PyFeat.
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Fig. 3 a and b compare ROC and Precision-Recall curves of DeepHGT and the other five deep learning
models. DeepHGT has achieved the highest AUC value 0.878 and AP value 0.899. c and d compare the
performance of DeepHGT and four machine learning models implemented in PyFeat: Naive Bayes
(PyFeat_NB), Adaboost Classifier (PyFeat_AB), Random Forest (PyFeat_RF), and Gradient Boosting Classifier
(PyFeat_GB)

We then perform the Pairwise Delong test on AUCs of these models. The null hypoth-
esis is that two ROC curves have the same AUC values. Small p-value denotes two AUC
values are significantly different, which means the two models have significantly different
performance. As illustrated in Appendix Table 8, all pairwise Delong test results have a
p-value of less than 0.05, which means all models have significantly different performance.

DeepHGT predicts HGT insertion sites in different species

The test dataset consists of samples from several species, such as Streptomyces griseofus-
cus, Oscillibacter sp. ER4, Roseburia inulinivorans, Acidovorax sp. SD340, etc. We divide
positive test samples into subsets based on species to which samples belong. Since each
subset contains only positive samples from the same species, we randomly extract the
same number of negative samples from reference sequences of the species. We then use
these test subsets to evaluate the AUC values of DeepHGT on predicting HGT insertion
sites in different species as illustrated in Fig. 4. AUC values for species Acidovorax sp.
SD340, Mycolicibacterium monacense and Streptomyces griseofuscus approach to 1.

Table 2 Comparison of accuracy of DeepHGT and other methods

1#Res_Block 2#Res_Block 3#Res_Block CNN_model DeepHGT
0.761 0.772 0.773 0.781 0.794

PyFeat_rf PyFeat_ab PyFeat_gb PyFeat_nb DeepHGT
0.597 0.636 0.653 0.500 0.794
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Fig. 4 AUC values of DeepHGT on predicting HGT insertion sites in different species

DeepHGT learns palindromic pattern at HGT insertion sites

The Repetitive Extragenic Palindromic (REP) sequence including an inverted repeat may
have single or multiple adjacent copies [48]. A DNA sequence is considered as palin-
dromic if it is equal to its reverse complement. For example, the DNA sequence CGTTG-
GCAACG is palindromic because its complement is GCAACCGTTGC, and reversing
the complement gives CGTTGGCAACG, which is equal to the original sequence. The
palindromic pattern makes REP sequences specific targets for some insertion sequence
elements such as ISPsy8 in Pseudomonas syringae DC3000, ISPa11 in P. aeruginosa PA01,
and so on [49]. This also demonstrates that REP elements are hot spots for specific trans-
position [50], which plays an important role in HGT, and contribute to genome instability,
bacterial evolution, and speciation [51].

To test whether DeepHGT has learned sequence patterns such as palindromic
subsequences as a significant local feature to recognize HGT insertion sites. First,
we should measure the importance of palindromic patterns in the prediction pro-
cess. We choose an optimal threshold to select correctly classified positive samples
from the test dataset since the prediction value made by DeepHGT for each test
sample is between 0 and 1. The optimal threshold in our experiment is set as
0.4935, which is calculated according to Youden’s J statistic [52]. From the correctly
classified positive samples, each of which has true label as 1 and prediction value
larger than the optimal threshold, we find 125 samples containing palindromic
subsequence Spalin={si, i = 1, ..., 125}, such as the palindromic sequence TAAAAA-
GATAAGTTGAATATTCAACTTATCTTTTTA in the positive sample AACAAGG-
AATTGGATTATAAAATTGTAAAAAGATAAGTTGAATATTCAACTTATCTTTTTA-
TTTCACGTCTATTTATCTTAAAACCTATTTTTTCTTCTATTTCTTTTAGCTGAT-
TTTCA. Then, for each sample si in Spalin, we measure the importance of its palindromic
subsequences in affecting the prediction result. By comparing palindromic subsequences
to randomly selected subsequences, we could test whether palindromic subsequences are
significant important local features learned by DeepHGT.

In general, deep learning models transform and combine local features, which are
extracted from input data through convolution layers, to make a prediction. As for one
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DNA sequence, any continuous subsequence can be treated as a local feature. However,
not all local features are of equal importance in determining the prediction result. There-
fore, we define the HGT-Index (HI) to measure the contribution of local features to the
prediction value of the sequence. For sequence S, we record its prediction value made by
DeepHGT as l. Then for any local feature or local subsequence fi, we set the output of
this local subsequence in the first convolutional layer as 0 and record the corresponding
prediction value of the sequence as li. So the HGT-Index HIi for fi is defined as follows,

HIi = |l − li| (1)

By setting the output of the local subsequence in the first convolutional layer as 0, Deep-
HGT could not learn any feature information from this region. The local subsequence
could not contribute to the final prediction. It also does not have any coincide with other
important sequence features learned by DeepHGT. So |l0 − li| measures the contribution
of the local subsequence fi to the prediction.

From each sample si in Spalin, we randomly select one palindromic subsequence fi and
compute its HGT-Index HIpalin

i , the length of fi is at least 10 bp. As a comparison, we ran-
domly select a subsequence f 0

i with equal length no matter it is palindromic. The HGT-
Index of f 0

i is HI0
i . This generates two sets of HGT-Index HIpalin=

{
HIpalin

1 , ..., HIpalin
125

}

and HI0=
{

HI0
1 , ..., HI0

125
}

. The null hypothesis is that HIpalin and HI0 have identical aver-
age values, which denotes that palindromic subsequences and random subsequences are
consistent with each other. We calculate the T-test for the means of HIpalin and HI0. The
T-test result is t-statistic=2.65864, P-value=0.00835, which rejects the null hypothesis.
Therefore, palindromic subsequences are significantly important local features learned
by DeepHGT to make the prediction.

We collect 6 palindromic sequences from REP sequences found in [49]. In order to
test whether the 6 palindromic sequences contribute significantly to the prediction of
DeepHGT, for a palindromic sequence spalin, we randomly select a sequence S from
our test data set and record its prediction value l, then we randomly select a sub-
sequence s of S and replace it with spalin. Now we have a modified sequence Spalin
containing spalin. We feed Spalin into DeepHGT and record prediction value lpalin. The
HGT-Index of spalin is

∣∣l − lpalin
∣∣. As a comparison, we generate a randomized DNA

sequence snull. s, spalin, and snull have equal length. We replace s with snull to get another
modified sequence Snull. The prediction value of Snull is lnull. So the HGT-Index of snull
is |l − lnull|. We repeat these operations 5000 times and get two sets of HGT-Index
HIpalin={

∣∣∣l1 − l1
palin

∣∣∣ , ...,
∣∣∣l5000 − l5000

palin

∣∣∣} and HInull={
∣∣l1 − l1

null
∣∣ , ...,

∣∣l5000 − l5000
null

∣∣}. The null
hypothesis is that HIpalin and HInull have identical average values, which means that there
is no difference between the palindromic sequence and a random sequence in affect-
ing the prediction of DeepHGT. Table 3 illustrates the statistical tests of 6 palindromic
sequences found in Insertion Sequence elements. As we can see the three palindromic
sequences found in ISPa11, ISRm22, ISPpu9, and ISRm19 significantly contribute to the
prediction of DeepHGT.

Evaluation of DeepHGT in an independent set of metagenomic samples

To further evaluate the generalization of DeepHGT, the set of 689,312 sequences obtained
from 147 metagenomic samples [39] is used as an independent test. Figure 5a and b com-
pare ROC and Precision-Recall curves of DeepHGT and the other five models. DeepHGT
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Table 3 Statistical test of 6 palindromic sequences in Insertion Sequence elements

Insertion Sequence elements palindromic sequence p-value

ISPsy8 TGCCGACGCAGAGCGTCGCA 0.4304

ISPsy8 GGACGCGGAGCGTCC 0.3625

ISPa11 GGCGATCGCGCGATCGCC 1.0934e−10

ISPpu9 GCGGGCTAACCCGC 5.9209e−14

ISRm22 CCTTCCCCCGCGCGGGGGAAGG 8.0776e−7

ISRm19 ACCTTTCCCCGAGCGGGCGAAG 0.0068

has achieved the highest AUC value 0.8448 and AP value 0.8743, which are a little lower
than previous test results. Figure 5c and d compare the performance of DeepHGT with
four machine learning models implemented in PyFeat. PyFeat_GB has achieved AUC
value 0.686 and AP value 0.738 which are worse than DeepHGT. Table 4 compares the
accuracy of DeepHGT and other methods. DeepHGT achieved the highest accuracy score
of 0.762. As illustrated in Appendix Table 9, all pairwise Delong test results have a p-value
of less than 0.05. So all models have significantly different performance. These experi-
mental results demonstrate that DeepHGT has learned general sequence patterns that are
shared by various HGT insertion sites on reference sequences. So DeepHGT could still
achieve better performance than other models in this independent dataset. DeepHGT is
a powerful model to accurately recognize HGT insertion sites.

Fig. 5 a and b compare ROC and Precision-Recall curves of DeepHGT and the other five deep learning
models. DeepHGT has achieved the highest AUC value 0.8448 and AP value 0.8743. c and d compare the
performance of DeepHGT and four machine learning models implemented in PyFeat
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Table 4 Comparison of accuracy of DeepHGT and other methods for an independent set of
Metagenomic samples

1#Res_Block 2#Res_Block 3#Res_Block CNN_model DeepHGT

0.725 0.738 0.742 0.752 0.762

PyFeat_rf PyFeat_ab PyFeat_gb PyFeat_nb DeepHGT

0.580 0.588 0.604 0.500 0.762

Some applications of DeepHGT

Likelihood of bacteria genomes harboring HGT insertions sites

Compared to LEMON, DeepHGT does not need next-generation sequenced (NGS) data
as input. DeepHGT could recognize HGT insertion sites on raw DNA sequences accord-
ing to sequence features. For reference bacteria genomes in NCBI, we could utilize
DeepHGT to calculate their likelihood of harboring HGT insertions sites. For each ref-
erence, we use a 100 bp slide window to extract subsequences. The stride length is 50
bp. The subsequences are then feed into DeepHGT to get prediction values P = {Pi, i =
1, ..., n}. The likelihood of the reference is the mean value of P. Table 5 shows some
references with high likelihood. These bacteria maybe more easily to receive adaptive
advantages through HGT and are worthy of further research.

Find bacterial genes enriched with potential HGT insertion sites

To find genes enriched with potential HGT insertion sites, we collect bacterial genes avail-
able from NCBI. For each bacterial gene, we use a 100 bp slide window on the gene region
to extract subsequences. The stride length is 10 bp. The subsequences are then feed into
DeepHGT to get prediction values G = {Gi, i = 1, ..., n}. The likelihood of the gene is
Ḡ = 1

n
∑n

i=1 Gi. If Ḡ > 0.5, we regard the gene is enriched with potential HGT inser-
tion sites. Finally, we collect 1,404 genes. We then perform Gene Ontology (GO) analysis
for these genes. Table 6 shows some biologic processes associated with the most number
of genes enriched with potential HGT insertion sites. As we can see 48 genes are asso-
ciated with translation, whose efficiency is closely related to HGT [57]. Besides, 5 genes
are associated with DNA integration, which is the integration mechanism of transferred
genes.

Find potential hotspot of HGT insertion sites

By utilizing DeepHGT to scan reference bacteria genomes, we could find regions enriched
with potential HGT insertion sites. For a reference sequence, we apply DeepHGT to cal-
culate the distribution of potential HGT insertion sites over it. For each nucleotide of the
reference, we extract a 100 bp subsequence, which has the nucleotide in the middle, as the
input of DeepHGT. If the prediction probability is larger than 0.5, the nucleotide position
is treated as one potential HGT insertion site. Then we slide a window over the reference

Table 5 Likelihood of harboring HGT insertions sites for reference bacteria genomes in NCBI

Genus Accession Likelihood References

Streptomyces

NZ_JOJH01000630.1 0.535

[53, 54]NZ_LMFT01000033.1 0.997

NZ_LYOT01000881.1 0.999

Mycobacterium

NZ_MVHE01000390.1 0.871

[55, 56]NZ_MVIC01000125.1 0.984

NZ_LZSE01000001.1 0.999
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Table 6 Biologic processes associated with the most number of genes enriched with HGT insertion
sites

GO ID Biologic Process Gene count

GO:0006412 translation 48

GO:0005975 carbohydrate metabolic process 15

GO:0006355 regulation of transcription, DNA-templated 12

GO:0032259 methylation 10

GO:0009116 nucleoside metabolic process 7

GO:0045454 cell redox homeostasis 6

GO:0015074 DNA integration 5

sequence and utilize DeepHGT to get the number of potential HGT insertion sites in
each window. The window size is l = 100 and the number of potential HGT insertion
sites in each window is n, then we use r = n

l to measure the rate of HGT insertion sites
in one sliding window. In our experiment, we set r > 0.2 to filter out windows with low
likelihood.

Figure 6 illustrates the distribution of potential HGT insertion sites predicted by
DeepHGT over a reference sequence NZ_LZST01000177.1, which belongs to species
Mycolicibacterium monacense. As we can see, regions with a high rate of potential HGT
insertion sites are randomly distributed across the reference sequence. Some regions are
close together. These regions are potential hot spots of HGT insertion sites and deserve
more research to explore their relationship with HGT.

Conclusion
In this paper, we propose a deep residual model named DeepHGT to predict HGT inser-
tion sites on reference sequences. By utilizing LEMON, which is based on the traditional
alignment technology to detect HGT breakpoints, we obtained two independent sets of
sequence segments to train and test DeepHGT. On these two sets, DeepHGT outper-
forms PyFeat. Since DeepHGT recognizes HGT insertion sites on reference sequence
according to sequence patterns, DeepHGT is not affected by sequencing coverage. So
DeepHGT is a reliable model to recognize the HGT insertion site. It could help us detect
potential HGT sites for further analysis. As we collect more HGT insertion sites and use
them to train DeepHGT, it could learn more and accurate general sequence features about
HGT insertion sites.

Fig. 6 The distribution of potential HGT insertion sites predicted by DeepHGT over a reference sequence
NZ_LZST01000177.1, which belongs to species Mycolicibacterium monacense
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Discussion
DeepHGT is the first deep learning model which could recognize HGT sites directly on
bacterial genomes. DeepHGT is a very complicated model since it contains 2,119,297
trainable parameters. So, to make DeepHGT achieve powerful performance, we con-
struct a very large data set to train DeepHGT. In our experiments, the main reason for
DeepHGT achieving better AUC and AP values than other machine learning methods
implemented in Pyfeat is that DeepHGT could learn more discriminant sequence fea-
tures than the ones defined in Pyfeat. These features learned by DeepHGT should be
treated as data-driven features. Furthermore, compared to LEMON, the main advantage
of DeepHGT is that it need not paired-end DNA sequencing reads as input. So, by run-
ning DeepHGT on bacteria genomes and their coding genes available from NCBI, we
could calculate the likelihood of bacteria genomes harboring HGT insertions sites and find
bacterial genes enriched with potential HGT insertion sites. These preliminary results
help us further research the mechanism, function, and benefit of HGT. This is also our
future work.

Methods
Dataset

We collect bacterial reference sequences from the National Center for Biotechnology
Information (NCBI) to construct a reference sequence set. It contains 109,419 bacterial
reference sequences, which belong to 16,093 bacterial species. We index all references
together to generate the Burrows-Wheeler Transform (BWT) indexes. LEMON is based
on the traditional alignment method which takes shotgun metagenomic reads and the ref-
erence sequence set as inputs to detect and label HGT breakpoints. Based on the detected
HGT breakpoints we collect 100 bp DNA sequences at HGT insertion sites on bacterial
reference sequences. Each sequence has one HGT insertion site in the middle.

As illustrated in Fig. 7a, S is a sequenced strain, which consists of a harbor sequence
R1 and one horizontal transferred segment T from reference sequence R2. B is a HGT
breakpoint on strain S, which is supported by one paired-end read and two split reads.
Two split reads a1 and b2 are clipped on the B, which means that one portion a′

1 of a1
is aligned to left side of B1, and the other portion a′′

1 of a1 is aligned to right side of B2
as illustrated in Fig. 1b. Reads c1 and c2, which belong to one paired-end read, are on

Fig. 7 S is a sequenced strain, which contains one transferred segment T from reference sequence R2. B is a
HGT breakpoint, which is supported by one paired-end read and two split reads a1 and b2. Through LEMON
pipeline, we detect two HGT insertion sites B1 and B2 on references R1 and R2 respectively. For each split
read, one portion of it is aligned to the left side of B1 and the other portion is aligned to the right side of B2.
We then extract two 100 bp sequences s1 and s2 as input data of DeepHGT. B1 and B2 are in the middle of s1

and s2 respectively
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the two sides of B. Since HGT denotes the insertion of foreign gene, the sequences on
two sides of B are belong to two different reference sequences, so B is corresponding to
two breakpoint positions B1 and B2 on references R1 and R2 respectively as shown in
Fig. 7b. We define B1 and B2 as HGT insertion sites. We then extract two 100 bp sequences
s1 and s2, which have B1 and B2 in the middle respectively, as input data of DeepHGT.
LEMON pipeline in Fig. 7 denotes the process of detecting HGT insertion sites from raw
paired-end reads [34]. Firstly, we apply BWA software for mapping raw reads against the
reference genomes. Then we utilize samtools to extract split reads and unique mapping
reads. The mapping quality of unique reads is 20. The unique mapping reads and split
reads are inputs of LEMON. LEMON utilizes paired-end reads to get candidate regions
for HGT insertion sites and split reads to infer the precise insertion site positions on
reference sequences. Each HGT insertion site is supported by at least one pair-end read
and one split read. For example, the insertion sites B1 and B2 in Fig. 7b are supported by
two split reads a1, b2 and one paired-end read c1 − c2. Sequences s1 and s2 are treated as
positive samples. To get negative samples, we randomly extract 100 bp DNA sequences
from regions that are at least 10,000 bp away from the nearest HGT insertion sites on
reference sequences. So there is no overlap between positive and negative samples.

Data augmentation

Data augmentation is an efficient technique to improve modern deep learning perfor-
mance on image classification. Through a series of operations on images, the technique
will expand the training set, which can aid deep learning models in learning robust fea-
tures and achieve better performance. Therefore, to make DeepHGT fight overfitting and
get better generalization in DNA sequence learning, we have tried two data augmentation
methods as illustrated in Fig. 8. The first method in Fig. 8.a is shifting sampling positions
near HGT insertion sites within a small region (±5bp) to get a vast amount of augmented
training samples. Since the region is very small, the augmented samples contain most
sequence information of HGT insertion sites. The second method in Fig. 8.b is to ran-
domly change a small number of nucleotides for each training sample. The maximum
number of nucleotides that are randomly changed is 10. Since most nucleotides of one
sequence are retained, this method will not change the sequence pattern but increase the
diversity of training samples, which helps DeepHGT to learn robust sequence features.
The two augmentation methods are applied to all positive and negative training samples
to generate augmented positive and negative training samples, which are used as the input
of DeepHGT. In our experiments, these two techniques could improve around 0.01∼0.02
AUC value.

Fig. 8 Two data augmentation methods. In (a), R is reference sequence. B is the HGT insertion site, which is in
the middle of training sequence s. s1 and s2 are augmented training samples, which are sampled from near
the HGT insertion site B within a small region. In (b), through randomly changing nucleotides in s, we get the
augmented training sample s′ , which retains most nucleotides of s
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Appendix

Table 7 The two percentage distributions of the top 10 most abundant species to which sequences
in the positive training dataset and the independent positive test dataset belong

The positive training dataset Percentage (%) The independent positive test
dataset

Percentage (%)

Microbacterium
esteraromaticum

13.13 Faecalibacterium prausnitzii
A2-165

7.69

Mycolicibacterium monacense 7.36 Microbacterium
esteraromaticum

4.84

Mycobacterium sp.
852002-51961_SCH5331710

3.08 Prevotella copri DSM 18205 4.38

Faecalibacterium prausnitzii
A2-165

2.39 Mycobacterium sp.
852002-51961_SCH5331710

3.5

Collinsella aerofaciens ATCC
25986

1.97 Mycolicibacterium monacense 3.04

Collinsella sp. 4_8_47FAA 1.94 Bacteroides stercoris ATCC 43183 2.53

Gemmiger formicilis 1.69 Roseburia faecis 2.33

Collinsella sp. TF06-26 1.64 Roseburia intestinalis L1-82 2.01

Bifidobacterium longum 1.55 Gemmiger formicilis 1.56

Bacteroides caccae 1.50 Acinetobacter sp. AR2-3 1.48

Table 8 Pairewise Delong test on AUCs of DeepHGT and other methods for test data set

1#Res_Block 2#Res_Block 3#Res_Block CNN_model DeepHGT
1#Res_Block – < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16

2#Res_Block – – 0.000239 < 2.2e−16 < 2.2e−16

3#Res_Block – – – < 2.2e−16 < 2.2e−16

CNN_model – – – – < 2.2e−16

DeepHGT – – – – –

PyFeat_AB PyFeat_GB PyFeat_NB PyFeat_RF DeepHGT
PyFeat_AB – < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16

PyFeat_GB – – < 2.2e−16 < 2.2e−16 < 2.2e−16

PyFeat_NB – – – < 2.2e−16 < 2.2e−16

PyFeat_RF – – – – < 2.2e−16

DeepHGT – – – – –

Table 9 Pairewise Delong test on AUCs of DeepHGT and other methods for an independent set of
Metagenomic samples

1#Res_Block 2#Res_Block 3#Res_Block CNN_model DeepHGT
1#Res_Block – < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16

2#Res_Block – – < 2.2e−16 < 2.2e−16 < 2.2e−16

3#Res_Block – – – < 2.2e−16 < 2.2e−16

CNN_model – – – – < 2.2e−16

DeepHGT – – – – –

PyFeat_AB PyFeat_GB PyFeat_NB PyFeat_RF DeepHGT
PyFeat_AB – < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16

PyFeat_GB – – < 2.2e−16 < 2.2e−16 < 2.2e−16

PyFeat_NB – – – < 2.2e−16 < 2.2e−16

PyFeat_RF – – – – < 2.2e−16

DeepHGT – – – – –
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