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Abstract

Background: Cotton Verticillium wilt is one of the most devastating diseases for cotton production in the world.
Although this diseases have been widely studied at the molecular level from pathogens, the molecular basis of V.
dahliae interacted with cotton has not been well examined.

Results: In this study, RNA-seq analysis was carried out on V. dahliae samples cultured by different root exudates
from three cotton cultivars (a susceptible upland cotton cultivar, a tolerant upland cotton cultivar and a resistant
island cotton cultivar) and water for 0 h, 6 h, 12 h, 24 h and 48 h. Statistical analysis of differentially expressed genes
revealed that V. dahliae responded to all kinds of root exudates but more strongly to susceptible cultivar than to
tolerant and resistant cultivars. Go analysis indicated that ‘hydrolase activity, hydrolyzing O-glycosyl compounds’
related genes were highly enriched in V. dahliae cultured by root exudates from susceptible cotton at early stage of
interaction, suggesting genes related to this term were closely related to the pathogenicity of V. dahliae.
Additionally, ‘transmembrane transport’, ‘coenzyme binding’, ‘NADP binding’, ‘cofactor binding’, ‘oxidoreductase
activity’, ‘flavin adenine dinucleotide binding’, ‘extracellular region’ were commonly enriched in V. dahliae cultured
by all kinds of root exudates at early stage of interaction (6 h and 12 h), suggesting that genes related to these
terms were required for the initial steps of the roots infections.

Conclusions: Based on the GO analysis results, the early stage of interaction (6 h and 12 h) were considered as the
critical stage of V. dahliae-cotton interaction. Comparative transcriptomic analysis detected that 31 candidate genes
response to root exudates from cotton cultivars with different level of V. dahliae resistance, 68 response to only
susceptible cotton cultivar, and 26 genes required for development of V. dahliae. Collectively, these expression data
have advanced our understanding of key molecular events in the V. dahliae interacted with cotton, and provided a
framework for further functional studies of candidate genes to develop better control strategies for the cotton wilt
disease.
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Background
Verticillium dahliae (V. dahliae), a fungal pathogen
causing Verticillium wilt, is extremely persistent in the
soil and has a broad host range [1, 2]. Microsclerotia of
V. dahliae overcome the mycostatic activity of the soil
and germinate towards roots in the presence of root ex-
udates [3]. The hyphae enter host plants by formation of

an infection structure, known as hyphopodium, to
develop a penetration peg to pierce root epidermal cells
[4]. They enter and clog the xylem vessels, resulting in
leaf curl, necrosis, defoliation, vascular tissue wilt, and
discoloration [5]. During its life cycle, cotton is conti-
nuously threatened by V. dahliae. More than half of the
cotton fields in China are affected by V. dahliae and can
lead to 30–50% reduction in yield, and even totally wipe
out the crop. Verticillium wilt is one of the most severe
cotton diseases not only in China but also in other
countries. Outbreak of the disease causes substantial
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economic loss due to significant reduction in fiber yield
and quality.
To combat the challenge of V. dahliae, resistance cot-

ton has evolved multiple layers of defense mechanisms,
including tissue composition, physiological and bio-
chemical resistance, during the long time period of co-
existence and arm race [6–10]. In recent years, with the
application of genomics, transcriptomics and proteo-
mics, great progress has been made in understanding
the molecular mechanism underlying cotton’s resistance
against V. dahliae, and a number of genes related to V.
dahliae resistance have been identified [11–16]. On the
other hand, in view of the co-evolving relationship be-
tween cotton and V. dahliae, it is also of vital import-
ance to study the molecular mechanisms determining
the pathogenicity of V. dahliae. With the completion of
genome sequencing of V. dahliae and the development
of bioinformatics tools, genomic and transcriptomic se-
quence information of V. dahliae provide us opportunity
for better understanding the pathogenicity of V. dahliae.
Analyses of V. dahliae transcriptomes during micro-
sclerotia formation and early infection stage have given
us a snapshot of the genes important for development,
microsclerotia formation and infection of V. dahliae
[17–20]. For instance, VdPKAC1, VMK1, VdMsb,
VdGARP1, VDH1, Vayg1 and VGB were found to be in-
volved in the microsclerotia formation and pathogenic
process of V. dahliae [3, 21–26]; VdSNF1 and VdSSP1
are related to cell wall degradation [27, 28]; VdNEP,
VdpevD1, VdNLP1 and VdNLP2 encode effector pro-
teins are involved in the pathogenic reaction [29–32];
VdFTF1, Vta2 and VdSge1 encode transcriptional factors
regulating pathogenic genes [33–35]. However, due to
the complexity of the pathogenic molecular mechanism
of V. dahliae, we still know little about the role of these
genes in the interaction between V. dahliae and cotton.
Successful pathogens must be able to recognize and

overcome host-plant defense responses [36]. V. dahliae
invades cotton through the root system [4, 37], there-
fore, the biological effect of the root exudates is expected
to be crucial for successful infection of V. dahliae. Not
surprisingly, root exudates have been found to be closely
related to plant resistance [38, 39]. The root exudates of
cotton are rich in amino acids and sugars. Compared
with the root exudates from the susceptible cotton culti-
vars, the root exudates from resistant cotton cultivars
lacked aspartic acid, threonine, glutamic acid, alanine,
isoleucine, leucine, phenylalanine, lysine and proline, but
contained arginine that was absent in the susceptible
cottons. No significant difference of saccharide was
found in the root exudates between the susceptible and
resistant cultivars, but the root exudates of the suscep-
tible cultivars had a much higher concentrations of glu-
cose, fructose and sucrose than that of the resistant ones

[40]. Root exudates from the resistant and susceptible
cottons inhibited and promoted the growth of V. dah-
liae, respectively [40–42]. However, we know nothing
about the molecular basis behind this observation.
In this study, we investigated the effects of root exu-

dates from cotton cultivars susceptible, tolerant or re-
sistant to V. dahliae on the development of the
pathogen and performed a time course expression ana-
lysis of V. dahliae genes using RNA-seq to (1) compare
transcriptomic profiles of V. dahliae in response to root
exudates from cottons with different level of V. dahliae
resistance, (2) identify biological processes in V. dahliae
affected by different root exudates based on analysis of
Gene Ontology (GO) terms of the differentially
expressed genes, and (3) identify genes involved in the
initial steps of roots infection and likely in pathogenesis
of V. dahliae. We expect that identification of patho-
genic genes in V. dahliae would provide us clues to
develop novel strategies for breeding novel cotton
germplasm resistant to V. dahliae and/or effective
crop management schemes to minimize the infection of
V. dahliae.

Methods
Cotton cultivars and V. dahliae strain
Two Upland cotton (G. hirsutum L.) cultivars Xinluzao
8 (X) and Zhongzhimian 2 (Z), and one Sea island (G.
barbadense L.) cultivar Hai7124 (H) used in this study
were collected from the Institute of Cotton Research of
Chinese Academy of Agricultural Sciences (Anyang,
China) and Shihezi Academy of Agricultural Sciences
(Shihezi, China). The 3 cotton cultivars were authorized
for only scientific research purpose, and were deposited
in the original institutes and College of Agriculture in
Shihezi University. The highly virulent V. dahliae strain,
V991, was provided and confirmed by the Institute of
Cotton Research of Chinese Academy of Agricultural
Sciences (Anyang, China). The growth conditions of the
cotton cultivars, the preparation of V.dahliae spore
suspensions for infection assays and determination of
Disease Index after inoculation were described pre-
viously [43, 44].

Collection of root exudates
Xinluzao 8, Zhongzhimian 2 and Hai7124 are suscep-
tible, tolerant and resistant to V. dahliae, respectively.
Cotton seeds were surface sterilized by immersion in 1%
(w/v) NaClO and rinsed three times with sterile distilled
water. After germination in petri dish, the seeds were
sown in sand that were treated by soaking in dilute
suphuric acid and sterilized by high temperature. For
each cultivar 18 germinated seeds were evenly planted in
2 pots and were grown in a greenhouse with a photo-
period of 16 h light/8 h darkness at 28 °C. The cotton
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seedlings were fed with Hoagland nutrient solution every
3 days (3d). After 45d, the plants were removed from
sand, and the sand was immersed with 2 L distilled water
to sufficiently dissolve root exudates. The water solution
was then filtered with a bacterial filter (0.22 μm in diam-
eter) and concentrated to 0.5 L in a freeze dryer.

V. dahliae strain culture
V. dahliae strain, V991, was maintained in 20% glycerol
at − 80 °C at the Key Laboratory of Oasis Eco-agriculture
in Shihezi University. The stored conidia of V991 were
incubated on a potato–dextrose agar plate for 1 week
and then inoculated into Czapek broth for 5d at 25 °C
180 rpm under dark donditions. The fresh conidia and
spores were then collected to be used in the root exud-
ate treatment experiments. For each cultivar, 0.5 g of
V991 conidia and spores were suspended in 5 mL of root
exudates. After cultured for 6, 12, 24 or 48 h at 25 °C
220 rpm in 10mL centrifugal tubes, V991 conidia and
spores (Vd-X-6, Vd-X-12, Vd-X-24, Vd-X-48, Vd-Z-6,
Vd-Z-12, Vd-Z-24, Vd-Z-48, Vd-H-6, Vd-H-12, Vd-H-
24 and Vd-H-48) were collected for RNA extraction.
The same amount of V991 conidia and spores sus-
pended in water and cultured for 0, 6, 12, 24 or 48 h
were done in parallel (Vd-0, Vd-W-6, Vd-W-12, Vd-W-
24 and Vd-W-48). Each time point had two biological
replicates. In total, 34 samples were collected and used
in RNA-seq.

RNA extraction
Total RNA of V. dahliae was isolated using the RNA
simple total RNA kit (Tiagen, Beijing, China) according
to the manufacturer’s protocol. All RNA samples were
treated with RNase-free DNase I. Degradation and con-
tamination of RNA were assessed by using agarose gel
electrophoresis. The RNA purity and integrity were
determined by a NanoDrop® 2000 spectrophotometer
(Thermo Scientific, Wilmington, DE, USA) and an
Agilent 2100 bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA). The RNA concentration was measured
by a Qubit® 2.0 Fluorometer (Thermo Scientific, Wil-
mington, DE, USA). High quality RNA samples were
chosen for RNA-Seq analyses.

RNA-Seq library construction and sequencing
RNA-Seq library preparation and sequencing were per-
formed at Novogene Bioinformatics Technology Co.,
Ltd. (Beijing, China) using the standard Illumina proto-
cols. Briefly, mRNAs were enriched from 1.5 μg total
RNA by using magnetic beads with Oligo (dT), and then
fragmented by adding fragmentation buffer. The short
fragments were used as templates to synthesize the first
stranded cDNAs with random hexamers. Double-
stranded cDNAs were then synthesized by using DNA

Polymerase I and RNase H and purified with AMPure
XP beads. The purified double-stranded cDNAs was
then end repaired, added A tail and ligated with sequen-
cing adapters. The products were enriched with PCR to
create the final cDNA libraries. Finally, the library was
sequenced on the Illumina Hiseq™ 4000 platform (Illu-
mina, San Diego, CA, USA, 2010).

RNA-Seq data analysis and identification of differentially
expressed genes
Raw reads were pre-processed by removing low quality
sequences and adaptor using Trimmomatic [45]. The
Q30 values, GC content, and sequence duplication levels
were calculated for the clean data. All downstream ana-
lysis used the clean data with high quality. The resulting
high-quality clean reads were then aligned to V. dahliae
sequence from genome database (http//www.broadinsti-
tute.org/annotation/genome/Verticillium dahliae/
Blast.html) using the HISAT software [46]. Following
alignment, raw read counts for each V. dahliae gene
were generated and normalized to FPKM (fragments per
kilobase of exon model per million mapped fragments)
[47]. The expression level of each gene was analyzed
using the union model implemented in the HTSeq soft-
ware [48]. Differentially expressed genes (DEGs) were
identified by using the DEGseq software with the follow-
ing criteria: a fold change> 2.0 and an adjusted p value<
0.05 [49]. Gene ontology (GO) term enrichment analysis
of DEGs was performed based on the Wallenius non-
central hyper-geometric distribution using the GOseq
software [50].

qRT-PCR confirmation of differentially expressed genes
Total RNA from V. dahliae was isolated as mentioned
above. One microgram of total RNA was used for first-
strand cDNA synthesis with the M-MLV reverse tran-
scriptase (TaKaRa, Dalian) according to the manufac-
turer’s instructions. The cDNAs were then used as
templates for quantitative real-time PCR (qRT-PCR) ex-
periments. The gene specific primers used in qRT-PCR
are listed in Table 1, and the V. dahliae tubulin gene
was used as an internal control. The qRT-PCR assays
were performed with SYBR Premix Ex Taq (TaKaRa) on
a LightCycler 480 system (Roche, USA). All reactions
were measured in triplicate. The relative expression ratio
of each gene was calculated from the cycle threshold
(CT) values using the 2-ΔΔCT method.

Results
Identification of cotton resistance to V. dahliae infection
In this study, three cotton cultivars with different level
of V. dahliae resistance were selected for collection of
root exudates. As can be seen from the Fig. 1, severe leaf
wilt disease symptoms and premature defoliation were
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Table 1 Primers used in qRT-PCR to validate RNA-seq data

Accession no. Gene description Primiers

VDAG_10074 tubulin 5' TCCACCTTCGTCGGTAACTC 3'

5' GCCTCCTCCTCGTACTCCTC 3'

VDAG_01193 high-affinity nicotinic acid transporter 5' GTGCCATCTCCGGCTTCATC 3'

5' TTGCGTTGTCACCCTTCTCG 3'

VDAG_01866 xylosidase/arabinosidase 5' CAGCTCCGTGCTCAATGTGCC 3'

5' TCCAACTGAGATGCCCGCCTT 3'

VDAG_03038 periplasmic trehalase 5' GGCAACAACCTCACTCGC 3'

5' GCACTACGGCTACCAAACTTCT 3'

VDAG_03526 alpha-glucuronidase 5' GTGACGGCGGACAACTCTAC 3'

5' TGCACGCCCTTGAATGTAAT 3'

VDAG_04513 hexose transporter protein 5' TCAACATTGCCATCCAGGTC 3'

5' CGAAGCACAGCTCGAAGAAG 3'

VDAG_07563 sugar transporter STL1 5' AGTGCCCGTCGTCTACTTCTT 3'

5' GTTCTTGCCGTAACGCCTC 3'

VDAG_08286 alpha-glucosides permease MPH2/3 5' GTATCGGCCAGACCAACCA 3'

5' CATCGCCACCATTTAACCC 3'

VDAG_09088 MFS transporter 5' AGGAGAAGAAGGCCGTCGTG 3'

5' CCGTAAAGATTGCCGTGGTC 3'

Fig. 1 Disease symptoms of V991 infection on Xinluzao 8, Zhongzhimian 2 and Hai 7124. The photograph was taken at 20 days post-inoculation.
a. Disease symptoms of V991 infection on Xinluzao 8. b. Disease symptoms of V991 infection on Zhongzhimian 2. c. Disease symptoms of V991
infection on Hai 7124. d. Disease index of V991 on Xinluzao 8 (X), Zhongzhimian 2 (Z) and Hai 7124 (H). Different capital letters indicate
significant differences (p < 0.01) using Duncan’s multiple range test
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visually apparent for Xinluzao 8, moderate but typical
leaf wilt symptoms were observed in Zhongzhimian 2,
whereas only weak wilt disease symptoms were observed
in Hai 7124 at 20 days post inoculation. Compared with
Xinluzao 8, Zhongzhimian 2 and Hai 7124 exhibited
various degrees of resistance to V991 infection with sig-
nificantly reduced Disease Index in inoculated seedlings
(Fig. 1d). According to our results about identification of
cotton resistance to V. dahliae and previous reports
[43, 51], Xinluzao 8, Zhongzhimian 2 and Hai7124
were used as cultivars of susceptible, tolerant and
resistant to V. dahliae, respectively.

RNA-seq and transcriptome profiles of V. dahliae
To explore the transcriptomic profiling of V991 interact-
ing with root exudates from cotton cultivars with differ-
ent level of V. dahliae resistance, we generated a total of
34 RNA-seq datasets, 24 from V. dahliae treated by cot-
ton root exudates (Vd-X-6, Vd-X-12, Vd-X-24, Vd-X-48,
Vd-Z-6, Vd-Z-12, Vd-Z-24, Vd-Z-48, Vd-H-6, Vd-H-12,
Vd-H-24 and Vd-H-48, each with two replicates), 8 from
V. dahliae treated by water (Vd-W-6, Vd-W-12, Vd-W-
24 and Vd-W-48, each with two replicates) and 2 from
untreated V. dahliae, i.e. Vd-0.
An overview of the sequencing results is outlined in

Table 2. After discarding the low-quality reads, the total
number of clean reads per library ranged from 13 to 22
million, and clean bases ranged from 1.97 to 3.22 Gb.
Between 11,657,068 and 19,529,825 of these reads were
uniquely mapped to the V. dahliae reference genome.
The genic distribution of the uniquely mapped reads
indicated that most reads (>88.2%) were mapped to
exons, and the others were distributed between in-
trons (0.2–0.3%) and intergenic regions (6.7–11.6%)
(Additional file 3: Table S1). The Pearson’s correl-
ation coefficients (R2) of FPKM distribution between
the two biological replicates for each sample were
high in each treatment (R2 = 0.945–0.987, p<0.001),
indicating a good level of reproducibility of the RNA-seq
data (Additional file 1: Figure S1). The RNA-seq results
were also confirmed to be reliable by qRT-PCR using 8
randomly selected genes (Table 1, Fig. 2) (Additional
file 2: Figure S2). For example, the expression levels
of these genes peaked at 6 h in Vd-X, but showed no
obvious change in Vd-H and Vd-W.
Based on hierarchical clustering using the FPKM

values of all genes, it was found that the 17 samples were
classified into two groups (Fig. 3). Group I contained all
the Vd-6 (Vd-X-6, Vd-Z-6, Vd-H-6 and Vd-W-6) and
Vd-12 (Vd-X-12, Vd-Z-12, Vd-H-12 and Vd-W-12)
samples as well as Vd-H-24 and Vd-W-24. The expres-
sion profiles of these 10 samples were close to that of
Vd-0 (CK), which was also clustered in group I. Group
II contained all the four Vd-48 (Vd-X-48, Vd-Z-48, Vd-

H-48 and Vd-W-48) samples and two Vd-24 (Vd-X-24
and Vd-Z-24) samples. The clustering tree indicated that
the gene expression patterns of the two early time points
(Vd-6 and Vd-12) were very similar but clearly different
from that of the latest time point (Vd-48). The four Vd-
24 samples were clustered into the two groups, but were
distinct from other samples in the same group by form-
ing a sub-group, suggesting that 24 h could be a transi-
tion point regarding the effect of root exudates on the
growth of V. dahliae.

Identification of differentially expressed genes (DEGs)
DEGs would offer insights into the metabolic and regu-
latory changes in V. dahliae when interacting with root
exudates from cottons with different V. dahliae resist-
ance, we thus identified DEGs (p<0.05, fold change >2.0)
in each interaction using Vd-0 (CK) as a control. Re-
garding the treatments (root exudates or water), the lar-
gest number of DEGs was found in Vd-X vs CK (4602),
followed by Vd-Z vs CK (3896), Vd-H vs CK (3227), and
Vd-W vs CK (2392) (Table 3), suggesting that V. dahliae
responded to all kind treatments, but responded more
strongly to root exudates from the susceptible cultivar
(X) than to those from the tolerant (Z) and resistant cul-
tivars (H). Regarding the effect of treated time, the gen-
eral trend for Vd-X vs CK, Vd-H vs CK and Vd-W vs
CK was that the number of DEGs increased with the in-
creased time of treatment, but for Vd-Z vs CK, there
were more DEGs at 24 h than other time points. In all
three treatments with root exudates, it seemed there
were more up-regulated DEGs than down-regulated
DEGs at 6 h, but more down-regulated DEGs than up-
regulated ones at other time points (12 h, 24 h and 48 h)
(Table 3).
To determine the genes of V. dahliae interacted with

root exudates, the up-regulated genes in Vd-X, Vd-Z,
Vd-H and Vd-W samples in the group I were examined,
respectively. By combining up-regulated DEGs in Vd-6
vs CK and Vd-12 vs CK, a total of 339, 302, 327 and 168
DEGs were acquired in Vd-X vs CK, Vd-Z vs CK, Vd-H
vs CK and Vd-W vs CK, respectively (Fig. 4a, b, c, d).
These DEGs (339, 302, 327, 168) were combined to-
gether to get 631 DEGs (Fig. 4e). Although Vd-H-24 h
and Vd-W-24 h were clustered in the groupI, they were
analyzed separately because the number of up-regulated
genes in Vd-H-24 h (422) and Vd-W-24 h (301) were ob-
viously greater than other samples in group I (Table 3).
By combining up-regulated DEGs in Vd-H-24 h vs CK
(422) and Vd-W-24 h vs CK (301), a total of 580 DEGs
were obtained (Fig. 4f).
The up-regulated genes in Vd-X, Vd-Z, Vd-H and Vd-

W samples in the group II were also examined, respect-
ively. By combining up-regulated DEGs in Vd-24 vs CK
and Vd-48 vs CK, a total of 1301 and 1283 DEGs were
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acquired in Vd-X vs CK and Vd-Z vs CK (Fig. 4g, h), re-
spectively. When these DEGs (1301, 1283) were com-
bined together with DEGs in Vd-H-48 vs CK (716) and
Vd-W-48 vs CK (367) comparisons, a total of 1652
DEGs were obtained (Fig. 4i).

Gene ontology analyses of DEGs
To further understand the function of these DEGs, we
performed gene ontology (GO) analyses to classify the
up-regulated genes in group I and group II samples, re-
spectively. For the group I, up-regulated DEGs (631)

were mainly enriched in molecular function category
(Fig. 5a; Additional file 4: Table S2). ‘hydrolase activity,
hydrolyzing O-glycosyl compounds’ (p = 1.22E-05),
‘hydrolase activity, acting on glycosyl bonds’ (p = 2.15E-
05) and ‘oxidoreductase activity’ (p = 0.000309) were the
top three significantly enriched terms in the molecular
function category. ‘transmembrane transport’ (p = 3.77E-
05), ‘carbohydrate metabolic process’ (p = 0.001034),
‘oxidation-reduction process’ (p = 0.001933) were the top
three significantly enriched terms in the biological
process category. ‘extracellular region’ (p = 0.000219) is

Table 2 Summary of RNA-seq reads generated in the study

Sample name Raw reads Clean reads Clean bases Error rate (%) Q20 (%) Q30 (%) GC content (%)

Vd-X-6a 20,755,066 19,829,720 2.97G 0.03 94.52 86.95 58.14

Vd-X-6b 20,008,568 19,162,740 2.87G 0.03 95.13 88.19 58.81

Vd-X-12a 20,745,450 19,871,376 2.98G 0.03 94.57 87.09 57.72

Vd-X-12b 17,752,478 15,961,608 2.39G 0.02 97.07 91.35 58.61

Vd-X-24a 18,562,576 17,673,746 2.65G 0.03 94.78 87.43 58.56

Vd-X-24b 18,713,224 17,855,894 2.68G 0.03 94.55 86.95 58.54

Vd-X-48a 22,863,130 21,469,914 3.22G 0.03 94.65 87.59 51.86

Vd-X-48b 21,450,220 20,335,092 3.05G 0.03 94.82 87.74 53.99

Vd-Z-6a 19,384,506 18,572,808 2.79G 0.03 94.54 86.96 58.28

Vd-Z-6b 18,947,746 16,766,560 2.51G 0.02 95.94 89.19 58.19

Vd-Z-12a 19,116,156 16,262,760 2.44G 0.02 96.47 90.18 58.60

Vd-Z-12b 15,846,552 13,820,768 2.07G 0.02 97.05 90.95 56.33

Vd-Z-24a 22,527,850 19,634,838 2.95G 0.02 97.92 93.16 58.10

Vd-Z-24b 22,678,986 19,618,638 2.94G 0.02 97.87 93.04 57.99

Vd-Z-48a 18,786,644 18,043,658 2.71G 0.02 94.62 87.75 51.51

Vd-Z-48b 16,083,890 15,364,870 2.3G 0.02 94.84 88.07 53.31

Vd-H-6a 17,277,272 15,290,714 2.29G 0.03 96.78 90.34 56.08

Vd-H-6b 23,964,812 21,120,448 3.17G 0.02 97.89 93.15 58.23

Vd-H-12a 16,150,508 13,729,988 2.06G 0.02 97.11 90.87 58.16

Vd-H-12b 22,302,818 19,253,012 2.89G 0.02 97.81 92.96 56.86

Vd-H-24a 14,972,868 13,927,336 2.09G 0.03 96.72 90.13 57.15

Vd-H-24b 14,514,160 13,125,772 1.97G 0.03 96.76 90.26 56.60

Vd-H-48a 18,826,776 16,337,922 2.45G 0.02 96.20 89.63 46.23

Vd-H-48b 17,007,508 14,591,964 2.19G 0.02 95.70 89.13 53.93

Vd-W-6a 15,061,222 13,654,598 2.05G 0.03 96.88 90.43 57.86

Vd-W-6b 22,050,470 21,031,720 3.15G 0.02 96.27 90.86 56.02

Vd-W-12a 22,264,268 21,134,386 3.17G 0.02 96.08 90.46 55.72

Vd-W-12b 20,529,690 19,622,372 2.94G 0.02 95.78 89.43 57.29

Vd-W-24a 15,761,394 15,360,174 2.3G 0.02 94.86 88.07 54.29

Vd-W-24b 23,275,930 22,685,328 3.4G 0.02 95.71 89.64 58.51

Vd-W-48a 18,328,720 17,868,854 2.68G 0.02 94.97 88.46 48.13

Vd-W-48b 22,437,742 21,421,106 3.21G 0.03 94.41 87.08 57.12

Vd-0a (CKa) 16,237,488 15,825,126 2.37G 0.02 95.37 88.77 58.51

Vd-0b (CKb) 14,193,496 13,833,776 2.08G 0.02 95.30 88.54 58.72
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the most significantly enriched term in the cellular com-
ponent category. The enriched terms of 580 DEGs in
Vd-H-24 vs CK combined with Vd-W-24 vs CK com-
parisons (Fig. 5b; Additional file 4: Table S2) were simi-
lar to that of 631 DEGs (Fig. 5a), suggesting that Vd-H-
24 and Vd-W-24 were at the same stage of V. dahliae
development as the other samples in group I. Therefore,
it can be inferred that the response of V. dahliae to
island cotton was more prolonged compared with
upland cotton.
For DEGs (1652) that were up-regulated in the group

II, the GO terms changed greatly compared with the
group I (Fig. 5c; Additional file 4: Table S2). These

DEGs were mainly enriched in biological process cat-
egory. ‘translation’ (p = 1.67E-10), ‘peptide biosynthetic
process’ (p = 4.18E-10) and ‘peptide metabolic process’
(p = 6.47E-10) were the top three significantly enriched
terms in the biological process category. ‘structural con-
stituent of ribosome’ (p = 3.70E-12) was the most signifi-
cantly enriched term in molecular function category.
‘ribosome’ (p = 6.66E-12) and ‘ribonucleoprotein com-
plex’ (p = 1.81E-06) were the significantly terms enriched
in the component category.
It was notable that some genes were related to hydro-

lase activity, hydrolyzing O-glycosyl compounds and
transmembrane transport which have been reported to

Fig. 2 The qRT-PCR analyses of the expression of 8 DEGs selected from all DEGs. The 8 DEGs included VDAG_03038 encoding periplasmic
trehalase, VDAG_03526 encoding Alpha-glucuronidase, VDAG_04513 encoding hexose transporter protein, VDAG_05015 encoding beta-
galactosidase, VDAG_07563 encoding sugar transporter STL1, VDAG_08212 encoding lactose permease, VDAG_08286 encoding alpha-glucosides
permease MPH2/3, VDAG_09088 encoding MFS transporter. The V. dahliae tubulin gene (VDAG_10074) was used an internal control. All reactions
were measured in triplicate. The expression ratio of the gene was calculated from cycle threshold (CT) values using the 2-ΔΔCT method
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be closely related to the pathogenicity of fungi, such as
cell wall-degrading enzymes, sugar transporter and MFS
transporter [52–55]. This GO terms were significantly
enriched in samples of group I, suggesting that these
samples were at the critical stage of V. dahliae-cotton
interaction (6 h and 12 h). Therefore, V. dahliae samples
at 6 h and 12 h were used for further analysis.
In order to find the differences of V. dahliae interacted

with different root exudates, we further performed the
GO analyses to classify the up-regulated genes in Vd-X
vs CK (339), Vd-Z vs CK (302), Vd-H vs CK (327), Vd-
W vs CK (168), respectively (Fig. 6). In addition to Vd-
W vs CK (Fig. 6; Additional file 5: Table S3), it was
found that ‘transmembrane transport’ was the most
significantly enriched term in all the other comparisons
examined (Fig. 6a, b, c). Additionally, the enriched GO
terms ‘coenzyme binding’, ‘NADP binding’, ‘cofactor

binding’, ‘oxidoreductase activity’, ‘flavin adenine di-
nucleotide binding’, ‘extracellular region’ were com-
monly found in Vd-X (339), Vd-Z vs CK (302) and Vd-
H vs CK (327) comparisons. However, ‘hydrolase activ-
ity, hydrolyzing O-glycosyl compounds’ was the most
significantly enriched term in Vd-X vs CK (339) (Fig.
6a), but was not obviously enriched in Vd-Z vs CK
(302), Vd-H vs CK (327) and Vd-W vs CK (168)
(Fig. 6b, c, d).
We also performed GO analyses to classify the up-

regulated genes in Vd-X vs CK (1301), Vd-Z vs CK
(1283), Vd-H vs CK (716), Vd-W vs CK (367), respect-
ively (Fig. 7; Additional file 6: Table S4). As expected,
the GO enriched terms of the up-regulated genes in Vd-
X vs CK (1301), Vd-Z vs CK (1283), Vd-H-48 vs CK
(716), Vd-W-48 vs CK (367) were very similar. It was
found that ‘translation’, ‘peptide biosynthetic process’

Fig. 3 Hierarchical clustering of samples was performed using FPKM values of all genes identified in V. dahliae. The log10 (FPKM+ 1) values were
normalized and clustered. Red and blue bands represent high and low gene expression genes, respectively. The color ranges from red to blue,
indicating that log10 (FPKM + 1) is from large to small
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and ‘peptide metabolic process’ were the top three sig-
nificantly enriched terms in the biological process cat-
egory. ‘ribosome’, ‘ribonucleoprotein complex’ and
‘intracellular non-membrane-bou’ were the top three sig-
nificantly enriched term in the component category.
‘structural constituent of ribosome’ and ‘structural mol-
ecule activity’ were the significantly terms enriched in
molecular function category. No ‘transmembrane trans-
port’ and ‘hydrolase activity, hydrolyzing O-glycosyl
compounds’ Go enriched terms were found in these
samples of group II, again suggesting that 6 h and 12 h
were the critical stage of V. dahliae-cotton interaction,
while 24 h and 48 h were not.

Genes response to root exudates from different cotton
cultivars in V.dahliae
GO analyses for the up-regulated DEGs found that
transmembrane transport was the most significantly
enriched GO term in Vd-X vs CK (339), Vd-Z vs CK
(302), Vd-H vs CK (327) comparisons, but not enriched
in Vd-W vs CK (168), suggesting that genes related to
this term were closely related to the initial steps of the
roots infections. Several other GO enriched terms,
‘coenzyme binding’, ‘NADP binding’, ‘cofactor binding’,
‘oxidoreductase activity’, ‘flavin adenine dinucleotide
binding’, ‘extracellular region’ were commonly enriched
in Vd-X vs CK (339), Vd-Z vs CK (302), Vd-H vs CK
(327), suggesting that genes related to these GO terms
were also required for the initial steps of the roots infec-
tions. Although the main enriched GO terms were simi-
lar, the DEGs were quite different in Vd-X vs CK (339),

Vd-Z vs CK (302) and Vd-H vs CK (327). Only 57 genes
(Fig. 4e) were found to be commonly up-regulated in
Vd-X, Vd-Z and Vd-H at the early stages of interaction.
The Heatmap of 57 genes indicated that the expression
level of these genes were obviously up-regulated in Vd-
X, Vd-Z, and Vd-H at one or two time points of cul-
tured, but not obviously up-regulated in Vd-W (Fig. 8a).
These genes were considered as potential candidates for
involvement in the initial steps of the roots infections.
The 57 genes included 31 genes with known functions
(Table 4), and 26 genes with unknown functions. Of 31
genes with known functions, it is notable that 7 genes
were related to transmembrane transport (Fig. 8b; Add-
itional file 7: Table S5), including 4 sugar transporter
genes (VDAG_09835, VDAG_02051, VDAG_03649,
VDAG_09983), 1 pantothenate transporter liz1 gene
(VDAG_02269), 1 DUF895 domain membrane protein
gene (VDAG_07864) and 1 Inner membrane transport
protein yfaV gene (VDAG_00832) (Table 4). Few genes
have been reported to be related to pathogenicity of V.
dahliae, such as a gene encoding cyclopentanone 1,2-
monooxygenase [18], two genes encoding thiamine
transporter protein [56, 57]. Functional analysis for these
candidate genes may be useful for the study of the
molecular basis of V. dahliae interacted with cotton.

Genes response to root exudates from susceptible cotton
cultivar in V. dahliae
GO analyses for the up-regulated DEGs found that
‘hydrolase activity, hydrolyzing O-glycosyl compounds’
was the most significantly enriched term in molecular

Table 3 Statistics of differentially expressed genes of samples vs Vd-0 (CK)

Comparisons Number of DEGs

Up-regulated Down-regulated Total

Vd-X vs CK Vd-X-6 h vs CK 209 93 302 4602

Vd-X-12 h vs CK 199 102 301

Vd-X-24 h vs CK 814 1104 1918

Vd-X-48 h vs CK 948 1133 2081

Vd-Z vs CK Vd-Z-6 h vs CK 181 43 224 3896

Vd-Z-12 h vs CK 193 279 472

Vd-Z-24 h vs CK 887 1128 2015

Vd-Z-48 h vs CK 820 1212 1185

Vd-H vs CK Vd-H-6 h vs CK 253 155 408 3227

Vd-H-12 h vs CK 171 306 477

Vd-H-24 h vs CK 422 178 600

Vd-H-48 h vs CK 716 1026 1742

Vd-W vs CK Vd-W-6 h vs CK 61 114 175 2392

Vd-W-12 h vs CK 134 189 479

Vd-W-24 h vs CK 301 178 626

Vd-W-48 h vs CK 367 745 1112
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function category in Vd-X (339) (p = 8.78E-05) (Fig. 6a),
but not in Vd-Z (302), Vd-H (327), Vd-W (168) (Fig. 6b,
c, d) suggesting that genes related to this term would be
contribute to the pathogenesis of V. dahliae. A total of
20 genes related to this term were found in Vd-X (339),
including 16 genes (1–16) reported to be related to cell
wall degradation (Table 5) [58].
A total of 121 DEGs unique to Vd-X (Fig. 4e) whose

expression were up-regulated only in root exudates from
susceptible cotton cultivar (X) were thought to be the
candidate genes related to pathogenesis of V. dahliae. The
Heatmap of 121 genes indicated that the expression level
of these genes were obviously up-regulated in Vd-X, and
only few genes were also up-regulated in Vd-Z, Vd-H, and

Vd-W at one or two time points of cultured (Fig. 9a). The
121 DEGs included 68 genes with known functions
(Table 6), 57 genes with unknown functions. Of 68 DEGs
with known functions, it is notable that 9 genes related to
hydrolase activity, hydrolyzing O-glycosyl compounds
(Fig. 9b; Additional file 8: Table S6) encode cell wall-
degrading proteins, including endo-1,4-beta-xylanase
(VDAG_03790, VDAG_06165), xylosidase/arabinosidase
(VDAG_01866), mixed-linked glucanase (VDAG_07983),
glucanase (VDAG_09516), trehalase (VDAG_03038),
Alpha-glucosidase (VDAG_01555), Alpha-glucuronidase
(VDAG_03526), Alpha-N-arabinofuranosidase (VDAG_
03553), 13 genes were related to transmembrane trans-
port, including 6 sugar transporter genes (VDAG_07141,

Fig. 4 Overview of serial analysis of up-regulated DEGs identified in samples vs CK (Vd-0). a. Venn diagram of up-regulated DEGs in Vd-X-6 vs CK
and Vd-X-12 vs CK. b. Venn diagram of up-regulated DEGs in Vd-Z-6 vs CK and Vd-Z-12 vs CK. c. Venn diagram of up-regulated DEGs in Vd-H-6 vs
CK and Vd-H-12 vs CK. d. Venn diagram of up-regulated DEGs in Vd-W-6 vs CK and Vd-W-12 vs CK. e. Number of up-regulated DEGs identified in
Vd-X vs CK (339), Vd-Z vs CK (302), Vd-H vs CK (327) and Vd-W vs CK (168). f. Venn diagram of up-regulated DEGs in Vd-H-24 vs CK and Vd-W-24
vs CK. g. Venn diagram of up-regulated DEGs in Vd-X-24 vs CK and Vd-X-48 vs CK. h. Venn diagram of up-regulated DEGs in Vd-Z-24 vs CK and
Vd-Z-48 vs CK. i. Number of up-regulated DEGs identified in Vd-H-48 h (716), Vd-W-48 h vs CK (367), Vd-X vs CK (1201) and Vd-Z vs CK (1283). The
Venn diagram in (a, b, c, d, e, f) represent serial analysis of up-regulated DEGs by comparing V. dahliae samples in the groupIwith CK. The Venn
diagram in (g, h, i) represent serial analysis of up-regulated DEGs by comparing V. dahliae samples in the groupIIwith CK
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VDAG_04513, VDAG_08286, VDAG_09121, VDAG_
07563, VDAG_03714), 3 vitamin transporter genes
(VDAG_01193, VDAG_09734, VDAG_08086), 2 oligo-
peptide transporter (VDAG_06060, VDAG_05125), 1
MFS transporter gene (VDAG_09088), 1 quinate

permease gene (VDAG_02089). Functional analysis for
these candidate genes may be useful for the study of the
pathogenicity molecular basis of V. dahliae.
Additionally, GO analysis of 66 DEGs unique to Vd-Z

(Fig. 10a) and 109 DEGs unique to Vd-H (Fig. 10b;

Fig. 5 The most enriched GO terms of the up-regulated DEGs in V. dahliae samples vs CK. a. The most enriched GO terms of 631 up-regulated
genes in samples of groupI (Vd-X, Vd-Z, Vd-H and Vd-W at 6 h and 12 h of cultured). b. The most enriched GO terms of 580 up-regulated genes
in samples of groupI (Vd-H-24 h and Vd-W-24 h). c. The most enriched GO terms of 1652 up-regulated genes in samples of groupII (Vd-H-48 h,
Vd-W-48 h, Vd-X and Vd-Z at 24 h and 48 h of cultured)
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Additional file 9: Table S7) did not find hydrolase acti-
vity, hydrolyzing O-glycosyl compounds and transmem-
brane transport enriched GO terms, suggesting that the

number of DEGs related to hydrolase activity hydrolyz-
ing O-glycosyl compounds and transmembrane trans-
port in Vd-X vs CK (339) were higher than that in Vd-H

Fig. 6 The most enriched GO terms of the up-regulated genes at 6 h and 12 h. a. The enriched GO terms of up-regulated genes in Vd-X vs CK
(339). b. The enriched GO terms of up-regulated genes in Vd-Z vs CK (302). c. The enriched GO terms of up-regulated genes in Vd-H vs CK (327).
d. The enriched GO terms of up-regulated genes in Vd-W vs CK (168)
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vs CK (327) and Vd-Z vs CK (302) and these genes may
be related to pathogenesis of V. dahliae.

Genes related to development of V. dahliae
A total of 55 genes (Fig. 4e) whose expression were up-
regulated in Vd-X, Vd-Z, Vd-H and Vd-W were

considered to be required for development of V. dahliae.
The Heatmap of 55 genes indicated that the expression
level of these genes were obviously up-regulated in Vd-
X, Vd-Z, Vd-H and Vd-W at one or two time points of
cultured (Fig. 11a), which was consistent with the Veen
diagram results. The 55 genes included 26 genes with

Fig. 7 The most enriched GO terms of the up-regulated genes in group II, respectively. a. The enriched GO terms of up-regulated genes in Vd-X
vs CK (1301). b. The enriched GO terms of up-regulated genes in Vd-Z vs CK (1283). c. The enriched GO terms of up-regulated genes in Vd-H-48
vs CK (716). d. The enriched GO terms of up-regulated genes in Vd-W-48 vs CK (367)
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known functions and 29 genes with unknown functions.
Of 26 DEGs with known functions (Table 7), it is not-
able that several genes were associated with FAD bind-
ing and RNA processing (Fig. 11b; Additional file 10:
Table S8), such as VDAG_02063, VDAG_05832,
VDAG_09806, VDAG_05829, VDAG_02981. Functional
analysis for these candidate genes may be useful for the
study of the molecular basis of V. dahliae development.

Discussion
V. dahliae can survive for many years in soil and dead
plant tissues, making Verticillium wilt difficult to con-
trol, which has been likened to a bottleneck in commer-
cial crop productivity [53, 56]. Only limited studies have
focused on pathogenicity-related molecular mechanisms
in the fungus, In this study, RNA-Seq was firstly used to
explore and compare the transcriptomic profiles of V.
dahliae after cultured with root exudates from different
cotton varieties. Statistical analysis of DEGs in V. dah-
liae samples vs CK (Vd-0) revealed that V. dahliae
responded to all kinds of root exudates but was more re-
sponsive to susceptible cultivar than to tolerant and re-
sistant cultivars. GO analysis revealed the enriched GO
terms of up-regulated genes in Vd-X vs CK (339), Vd-Z
vs CK (302), Vd-H vs CK (327) were similar. However,
the up-regulated genes were quite different in these
samples, and only 57 up-regulated genes were found to
be common in Vd-X vs CK (339), Vd-Z vs CK (302) and

Vd-H vs CK (327), suggesting that the molecular mech-
anism of the response of V. dahliae to different root ex-
udates from three cotton cultivars was different. GO
analysis also found that enriched GO terms of up-
regulated genes in Vd-X (339) and Vd-Z (302) at 6 h
and 12 h of cultured were obviously different from
that of Vd-X (1031) and Vd-Z (1283) at 24 h and 48
h of cultured, suggesting that V. dahliae at 6 h and
12 h of cultured were at different growth stages com-
pared with 24 h and 48 h of cultured. The discovery
of enriched GO terms hydrolase activity, hydrolyzing
O-glycosyl compounds and transmembrane transport
in Vd-X vs CK (339) and Vd-Z vs CK (302) sug-
gested that 6 h and 12 h were the critical stage of
V.dahliae-cotton interaction for upland cotton. For
Vd-H-24 h, the enriched GO terms were similar to
that in Vd-H (327) at 6 h and 12 h of cultured, sug-
gesting that the response of V. dahliae to island cot-
ton was more prolonged compared with upland
cotton. Additionally, the number of unique genes in
V. dahliae cultured with root from susceptible cot-
ton variety (121 DEGs) was much more than in V.
dahliae cultured with tolerant (66 DEGs) and resist-
ant varieties (109 DEGs), including more hydrolase
activity hydrolyzing O-glycosyl compounds and
transmembrane transport related DEGs, which can
partly account for the reasons why V. dahliae can
cause disease in susceptible cotton.

Fig. 8 Heatmap and GO analyses of up-regulated genes in Vd-X, Vd-Z and Vd-H, respectively. a. Heatmap of 57 genes found to be up-regulated
in Vd-X, Vd-Z and Vd-H at one or two time points of cultured (6 h and 12 h). The log-transformed expression values range from − 2 to 2. Red and
blue bands represent high and low gene expression levels, respectively. b. The most enriched GO terms of the 31 DEGs with known functions
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Table 4 Up-regulated genes with known functions in Vd-X, Vd-Z and Vd-H at early stages of interaction

Code Gene
ID

Enzyme name FPKM value

CK VdX6 VdX12 VdZ6 VdZ12 VdH6 VdH12 VdW6 VdW12

1 VDAG_
02051

High-affinity glucose transporter ght2 29.4802 22.04664 84.23955 47.6086 60.97154 93.52616 103.058 46.62293 30.56167

2 VDAG_
03649

Sugar transporter 0.338716 1.026522 0.972863 0.571231 1.115773 0.729055 1.128715 0.509536 0.50572

3 VDAG_
09835

Hexose transporter 1.465257 3.968813 3.936814 4.569835 3.108347 4.246236 2.397604 1.989069 1.935044

4 VDAG_
09983

Sugar transporter 0.826351 1.330852 1.620789 1.96333 0.809208 1.517935 1.816533 1.172747 1.108737

5 VDAG_
00832

Inner membrane transport protein
yfaV

1.328122 2.69694 3.987047 4.988756 2.544548 6.30185 3.71284 2.102835 2.608609

6 VDAG_
00833

Thiol-specific monooxygenase 2.812437 3.372149 6.229075 6.864658 4.642015 6.132306 2.821518 3.31251 3.406964

7 VDAG_
02269

Pantothenate transporter liz1 0.574735 10.51644 3.593005 0.612767 8.552547 5.701658 0.157546 0.281539 0.041829

8 VDAG_
07864

DUF895 domain membrane protein 0 0.358107 0.365747 0.645067 0.105314 0.505642 0.342338 0.213305 0.133121

9 VDAG_
01073

NAD (P) H-dependent D-xylose
reductase

15.75744 20.66968 30.75152 33.81787 26.80472 28.37045 28.33363 16.91421 18.73819

10 VDAG_
01137

Thiamine thiazole synthase 614.5958 1120.375 879.3086 769.972 1351.333 1043.097 1213.615 780.4955 914.2021

11 VDAG_
01672

Conidial development protein fluffy 12.03245 22.95618 16.67069 14.22671 23.65364 22.70368 24.9867 13.75736 15.00116

12 VDAG_
02162

Oviduct-specific glycoprotein 0.227984 0.693403 0.423062 0.620165 0.335718 0.664225 0.702286 0.371898 0.391474

13 VDAG_
02175

Beta-glucosidase 0 0.230686 0.231927 0.374579 0.232406 0.403597 0.098718 0.036308 0.102984

14 VDAG_
02633

Beta-lactamase family protein 3.050937 6.146087 5.612143 6.318416 5.777795 7.129429 6.223959 3.304537 4.690835

15 VDAG_
02843

Fibronectin 2.255216 3.641777 4.31623 4.346089 2.988267 4.024384 4.227908 3.217397 3.142531

16 VDAG_
02844

Ubiquitin carboxyl-terminal hydrolase 1.953236 4.647556 3.491474 2.867615 4.295582 3.838786 3.769097 2.859783 2.493258

17 VDAG_
03942

Beta-lactamase family protein 3.714124 111.1741 18.61932 8.608223 65.63955 58.8475 0.267788 5.385614 1.313926

18 VDAG_
03943

Cyclopentanone 1,2-monooxygenase 3.091277 213.913 27.61544 13.96051 120.0825 92.52951 0.866178 8.16749 2.187358

19 VDAG_
04707

Helicase SWR1 81.01633 152.1582 107.6387 110.2411 147.0122 139.7217 137.8717 105.301 132.1303

20 VDAG_
05314

N-(5-amino-5-carboxypentanoyl)-L-
cysteinyl-D-valine synthase

9.774005 25.65614 14.10339 15.6124 19.11988 27.47597 19.27068 15.58876 16.02938

21 VDAG_
05458

Acetylxylan esterase 0.553047 2.897187 2.187976 2.776539 2.587627 1.928449 0.968931 0.862581 0.885039

22 VDAG_
06953

Kinesin light chain 0.425595 1.336314 0.641706 0.95834 1.168227 1.627748 1.075756 0.38034 0.897279

23 VDAG_
08600

Thiopurine S-methyltransferase family
protein

28.38327 41.42097 71.57507 56.80394 59.66433 60.43575 62.81802 37.98759 38.88032

24 VDAG_
08689

Retinol dehydrogenase 1.932819 2.608155 6.598116 8.790265 6.5672 4.225019 3.010194 3.177277 3.647746

25 VDAG_
08954

Carboxylic ester hydrolase 0.956565 3.376228 5.336164 4.806672 3.062654 6.82588 2.173958 2.390473 1.772136

27 VDAG_ URE2 protein 4.080627 6.68038 7.958957 8.914888 7.624858 8.220244 5.710169 4.310528 4.728051
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Plant pathogenic fungi can produce a range of cell
wall-degrading enzymes to facilitate infection and
colonization [59, 60], including cellulase, hemicellulase,
pectinase, etc. Hydrolytic enzymes, particularly cellulases
and pectinases, have been considered to be important
for the expression of disease symptoms and pathogenesis
of V. dahliae [61, 62]. The cell wall-degrading enzymes
are virulence factors, such as such as xyloglucan-specific
endoglucanase [63], fungal endopolygalacturonases [64],
and also function as pathogen-associated molecular
patterns (PAMPs). Specifically, the cell wall-degrading

enzymes contain carbohydrate-binding modules (CBM),
non-catalytic protein domains that are generally asso-
ciated with carbohydrate hydrolases in fungi, which are
known to act as elicitors of the PAMP-triggered immu-
nity (PTI) response in oomycetes [65, 66]. In V. dahliae,
two Glycoside hydrolase 12 (GH12) proteins, VdEG1
and VdEG3 acted as PAMPs to trigger cell death and
PTI independent of their enzymatic activity in Nicotiana
benthamiana.
Although cell wall-degrading enzymes have been

received to be related to pathogenicity of fugus, but the

Table 5 List of 20 genes in ‘hydrolase activity, hydrolyzing O-glycosyl compounds’ term

Code Gene ID Enzyme name FPKM value

CK VdX6 VdX12 VdX24 VdX48

1 VDAG_01555 Alpha-glucosidase 0.525139 1.351249 0.631004 0.348396 0.365856

2 VDAG_01781 Polygalacturonase 4.42107 9.593065 6.264324 4.446467 3.902134

3 VDAG_01866 Xylosidase/arabinosidase 2.999633 6.737425 3.158829 1.499116 1.280038

4 VDAG_02175 Beta-glucosidase 0 0.230686 0.231927 0.113611 0.277088

5 VDAG_02469 Glucan 1,3-beta-glucosidase 9.092852 19.9074 14.55665 10.28952 7.637805

6 VDAG_02542 Beta-glucosidase 1.740641 3.559025 2.760439 1.618581 1.613549

7 VDAG_03038 Trehalase 4.037018 10.34559 4.171279 3.42203 2.780894

8 VDAG_03553 Alpha-N-arabinofuranosidase 2.017713 2.840681 4.043869 1.883232 2.186114

9 VDAG_03526 Alpha-glucuronidase 3.077552 7.649031 3.025971 2.462925 2.180948

10 VDAG_03790 Endo-1,4-beta-xylanase 0.988496 3.303921 1.049834 1.031276 1.380458

11 VDAG_05708 Endoglucanase II 0.335166 0.833922 1.422978 0.420705 1.30643

12 VDAG_06072 alpha-1,2-Mannosidase 9.973456 12.06809 20.52097 6.852838 6.954053

13 VDAG_06165 Endo-1,4-beta-xylanase 0.808652 1.606539 1.930602 1.34546 0.837317

14 VDAG_07983 Mixed-linked glucanase 2.264495 5.11995 2.258442 0.964882 0.623151

15 VDAG_09516 Glucanase 0.565726 1.419057 0.616539 0.988646 0.415697

16 VDAG_09739 Galactan 1,3-beta-galactosidase 0 0.361516 0.129547 0.044338 0.086698

17 VDAG_02162 Oviduct-specific glycoprotein 0.227984 0.693403 0.423062 0.287278 0.208611

18 VDAG_05270 Ankyrin repeat and protein kinase domain-containing protein 0.050289 0.467369 0.237746 0.317916 0.584707

19 VDAG_07990 Secreted protein 0.318378 0.605114 1.132354 0.273572 0.134914

20 VDAG_08742 RTA1 protein 1.754573 3.368212 2.766573 3.690469 2.091908

Table 4 Up-regulated genes with known functions in Vd-X, Vd-Z and Vd-H at early stages of interaction (Continued)

Code Gene
ID

Enzyme name FPKM value

CK VdX6 VdX12 VdZ6 VdZ12 VdH6 VdH12 VdW6 VdW12

08979

26 VDAG_
09114

Galactose oxidase 0.076631 0.245438 0.555276 0.588735 0.221988 0.772877 0.178927 0.184511 0.193227

28 VDAG_
09269

NAD (P) transhydrogenase 1.434656 5.410515 2.93751 2.364836 2.830261 3.377882 1.639596 1.075059 1.322266

29 VDAG_
09707

Amidase 0.340497 0.597686 1.138296 0.675114 0.853334 1.090583 0.668288 0.390384 0.487727

30 VDAG_
10195

Vacuolar protein sorting-associated
protein

10.90674 26.16851 16.17757 16.16115 23.07354 25.98232 21.03424 16.03954 16.69196

31 VDAG_
10402

Isoamyl alcohol oxidase 1.289472 3.463787 3.225775 3.469081 3.14358 3.691591 2.373917 2.260947 2.547368
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direct molecular evidence was not sufficient. In this
study, GO analyses for the up-regulated DEGs found
that genes related to hydrolase activity, hydrolyzing O-
glycosyl compounds was the most significantly enriched
term in molecular function category for Vd-X (339), but
not in Vd-Z (302), Vd-H (327), Vd-W (168), including
16 cell wall-degrading genes, suggesting these genes
would be contribute to the pathogenesis of V. dahliae.
Additionally, A total of 121 DEGs unique to Vd-X (339)
whose expression were obviously up-regulated after cul-
tured with root exudates from susceptible cotton culti-
var, including 9 cell wall-degrading genes. These results
provided a proof of the involvement of cell wall-
degrading genes in the initial steps of the roots infec-
tions and likely in pathogenesis. Recently, functional
studies of cell wall-degrading related genes by targeted
gene knockout have been carried out to obtain mutants
deficient in one or more these genes [60, 67], but were
not conclusive due to the multigene families encoding
these enzymes [68]. Therefore, it is important to detect
which genes were responsible for the pathogenicity of V.
dahliae. In this study, 16 cell wall-degrading related
genes were significantly up-regulated in Vd-X at early
stage of interaction, which can be used as the target
genes for studying V. dahliae pathogenicity by gene
knockout. Here some genes were up-regulated in V.
dahliae cultured by water, maybe resulted from no

nutrient in water. Perhaps the starvation of the fungus
may induce expression of genes encoding cell wall-
degrading enzymes [69].
The adaptation of V. dahliae inside the host plants re-

quires a large number of channel proteins to control the
absorption of nutrients across the plasma membrane
[56]. Transport proteins are integral transmembrane
protein that exist permanently within and span the
membrane across which they transport substances. GO
analyses found that transmembrane transport term was
commonly enriched in Vd-X (339), Vd-Z (302), Vd-H
(327), but not enriched in Vd-W (168) at 6 h and 12 h of
cultured, suggesting that they were required for the ini-
tial steps of the roots infections. Seven genes related to
transmembrane transport found to be up-regulated in V.
dahliae cultured by different root exudates, and 13 genes
related to this term were only up-regulated in V. dahliae
cultured by root exudates from susceptible cultivar. The
results exhibited that genes related to this term can
respond quickly to cotton root exudates, especially to
the susceptible cotton, suggesting that genes related to
transmembrane transport may be associated with the
initial steps of the roots infections and likely in patho-
genesis. The content of carbohydrate and amount of
amino acids in the root exudates of susceptible cultivar
was distinctly more than resistant ones [42]. Thus, V.
dahliae can obtain more nutrients to provide its growth

Fig. 9 Heatmap and GO analyses of up-regulated genes only in Vd-X at 6 h or 12 h. a. Heatmap of 121 genes found to be up-regulated only in
Vd-X at 6 h or 12 h of cultured. The log-transformed expression values range from − 2 to 2. Red and blue bands represent high and low gene
expression levels, respectively. b. The most enriched GO terms of the 68 DEGs with known functions
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Table 6 Up-regulated Genes with known functions only in Vd-X at early stages of interaction

Code Gene
ID

Enzyme name FPKM value

CK VdX6 VdX12 VdZ6 VdZ12 VdH6 VdH12 VdW6 VdW12

1 VDAG_
01555

Alpha-glucosidase 0.525139 1.351249 0.631004 0.605564 0.620046 0.590879 0.45985 0.402997 0.450216

2 VDAG_
01866

Xylosidase/arabinosidase 2.999633 6.737425 3.158829 3.239391 2.54392 3.426193 2.85372 2.522221 2.049945

3 VDAG_
03038

Trehalase 4.037018 10.34559 4.171279 3.328726 3.723864 3.169099 3.525587 2.688863 2.205004

4 VDAG_
03553

Alpha-N-arabinofuranosidase 2.017713 2.840681 4.043869 3.204145 2.274602 3.487533 2.467085 2.319605 1.751206

5 VDAG_
03526

Alpha-glucuronidase 3.077552 7.649031 3.025971 2.906985 3.357615 3.521792 2.073764 2.32711 2.3016

6 VDAG_
03790

Endo-1,4-beta-xylanase 0.988496 3.303921 1.049834 0.937063 0.564055 0.872658 0.73547 0.559991 0.670659

7 VDAG_
06165

Endo-1,4-beta-xylanase 0.808652 1.606539 1.930602 1.213314 1.249954 1.229588 1.647082 0.870066 1.601574

8 VDAG_
07983

Mixed-linked glucanase 2.264495 5.11995 2.258442 2.232694 2.349181 1.691225 0.893242 1.840287 1.631545

9 VDAG_
09516

Glucanase 0.565726 1.419057 0.616539 0.766083 1.168563 0.644183 0.590824 0.426934 0.643502

10 VDAG_
01193

High-affinity nicotinic acid
transporter

0.922962 4.474884 2.389495 1.367505 2.293024 1.158877 1.052356 1.003427 0.855293

11 VDAG_
02089

Quinate permease 0.246652 1.239759 0.27095 0.039896 0.305545 0.133467 0.052949 0.090075 0

12 VDAG_
02826

Voltage-gated potassium channel
subunit beta-1

0.52636 1.770148 1.55752 0.539201 0.500666 0.471194 0.446343 0.28894 0.387249

13 VDAG_
03714

Sugar transporter 0 0.329793 0.192273 0.038948 0.105726 0.067001 0.051691 0.087935 0.148554

14 VDAG_
04513

Hexose transporter protein 2.194243 6.031784 2.31866 2.734094 2.48747 2.407533 1.509354 1.42593 1.515528

15 VDAG_
05125

Oligopeptide transporter 1 0.10654 0.48534 0.340637 0.244306 0.11979 0.146367 0.035656 0.11036 0.100641

16 VDAG_
06060

Oligopeptide transporter 2 1.273316 3.507472 1.424591 1.091823 1.400967 1.407274 0.863739 0.954953 0.987525

17 VDAG_
07141

H+/hexose cotransporter 1 1.174547 3.193565 2.110352 1.578545 2.020917 2.37435 1.543719 1.33677 1.028067

18 VDAG_
07563

Sugar transporter STL1 3.617449 23.46294 4.627167 4.448156 3.630124 4.030519 3.522212 2.785485 1.485532

19 VDAG_
08086

Vitamin H transporter 1 1.611487 2.873923 3.84332 1.865509 3.010686 2.468418 1.583815 1.710399 2.150159

20 VDAG_
09088

MFS transporter 0.338652 3.60446 0.393707 0.739129 0.402541 0.835313 0.099841 1.023219 0.125486

21 VDAG_
09121

Maltose permease MAL31 2.060967 3.647271 3.112186 2.227495 2.585063 3.214763 2.716028 2.03735 2.722908

22 VDAG_
09734

Major myo-inositol transporter iolT 8.604817 27.04882 11.02109 8.86173 9.040651 10.25533 5.441678 7.247084 5.418201

23 VDAG_
00798

Calphotin 2.4298 4.795505 3.519256 3.892562 3.226339 4.260004 3.460753 2.902065 2.982781

24 VDAG_
01176

4-coumarate-CoA ligase 0.286 1.403583 0.44009 0.381114 0.556027 0.320558 0.53875 0.105766 0.323503

25 VDAG_
01341

Methylitaconate delta2-delta3-
isomerase

0.899946 1.132172 2.138507 1.664966 1.364732 2.236922 1.509204 1.611162 1.286028

26 VDAG_
01782

Pectinesterase family protein 4.733987 9.575896 5.053127 6.412238 6.100081 6.127981 5.954252 4.959662 6.786958
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Table 6 Up-regulated Genes with known functions only in Vd-X at early stages of interaction (Continued)

Code Gene
ID

Enzyme name FPKM value

CK VdX6 VdX12 VdZ6 VdZ12 VdH6 VdH12 VdW6 VdW12

27 VDAG_
01783

Modification methylase Sau96I 0.081859 0.188908 0.307139 0.230715 0.074369 0.265676 0.115725 0.059275 0.191795

28 VDAG_
01869

Taurine catabolism dioxygenase
TauD

10.85428 19.91771 15.68955 17.54684 14.0093 16.81377 17.27372 13.04782 16.37882

29 VDAG_
01837

Metallo-beta-lactamase superfamily
protein

0.716978 2.102556 2.371603 1.81465 1.748865 1.727576 0.957063 1.388916 1.043824

30 VDAG_
03354

Pectate lyase 0.259957 0.618515 1.255778 0.930004 0.591007 0.526287 0.19059 0.121278 0.308629

31 VDAG_
03792

Beta-fructofuranosidase 1.417489 5.825462 1.214082 1.161383 1.005343 1.333573 0.668952 0.822075 0.921293

32 VDAG_
03800

Phosphate transporter 1.066441 0.959226 2.010011 1.410633 1.683093 1.10869 1.149276 1.183568 0.876848

33 VDAG_
03894

Lipase 0.079272 0.063231 0.623916 0.415827 0.091218 0.167024 0.219462 0.179133 0.25405

34 VDAG_
03891

Acetamidase 2.501319 6.074764 4.124551 3.080263 3.894677 2.879871 1.776109 1.402326 2.302258

35 VDAG_
03941

Regulatory protein alcR 0.474947 2.525426 0.864933 1.051024 0.812903 0.673834 0.263023 0.168962 0.879413

36 VDAG_
03970

4-trimethylaminobutyraldehyde
dehydrogenase

1.11673 4.961036 1.515747 1.065759 1.558865 0.886226 0.667051 0.311335 0.77097

37 VDAG_
04175

SAM and PH domain-containing
protein

2.508312 4.896892 2.096234 2.206801 2.672685 2.29161 2.247836 2.221988 1.767456

38 VDAG_
04685

AdhA 0 0.749311 0.363623 0.132737 0.418209 0.139558 0 0.184184 0

39 VDAG_
04961

Aldehyde dehydrogenase 0.304878 0.985035 0.491127 0.246694 0.251239 0.381107 0.500614 0.036883 0.037001

40 VDAG_
05050

Choline monooxygenase 1.342722 1.170244 3.332128 1.062762 0.474455 0.697089 0.450456 0.508567 0.251975

41 VDAG_
05135

Carboxypeptidase S1 0 0.199664 0.217901 0.076268 0.038868 0.179948 0 0.046469 0.064716

42 VDAG_
05297

3-alpha-(Or 20-beta)-hydroxysteroid
dehydrogenase

0.502718 0.859157 1.524476 1.118018 1.276975 0.544056 0.668099 1.077308 0.380073

43 VDAG_
05324

3-alpha-(Or 20-beta)-hydroxysteroid
dehydrogenase

0.424632 2.728921 0.853371 0.702873 0.806426 0.900467 0.35943 0.584218 0.73203

44 VDAG_
05455

Gamma-glutamyltranspeptidase 8.097854 14.62289 7.23067 6.837455 10.22524 8.804363 7.083837 7.027691 7.604183

45 VDAG_
05780

Long-chain-alcohol oxidase 12.20917 23.38509 13.18572 13.34187 11.49875 13.68543 9.477272 10.87106 12.46451

46 VDAG_
06126

Secreted protein 0.396382 2.540219 0.349184 0.221178 0.522292 0.419048 0.331605 0.146586 0.504571

47 VDAG_
06334

Sodium/bile acid cotransporter 7-A 5.975553 10.44867 6.986222 7.134331 6.986681 5.925724 5.77749 6.149932 6.790046

48 VDAG_
06756

Aldo-keto reductase yakc 0 0.064868 0.430866 0.068946 0 0.085674 0.06682 0 0

49 VDAG_
06997

Epoxide hydrolase 0 0.343647 0.057084 0.180036 0.229805 0.229429 0.137809 0 0

50 VDAG_
07057

Acetyl-coenzyme A synthetase 23.07698 71.91837 28.53978 25.50788 23.87777 25.41201 15.28279 11.00477 13.18577

51 VDAG_
07158

ECM14 protein 1.312533 1.658648 2.765504 2.456603 2.03252 1.488009 0.944383 1.82507 1.283626

52 VDAG_
07166

Carnitine O-palmitoyltransferase I 17.12393 31.32699 17.35379 13.93265 19.8167 20.48912 14.99808 12.56235 12.11036
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in root exudates from susceptible cotton, which may be
responsible for the higher expression of transmembrane
transport genes at the early stage of interaction in V.
dahliae cultured by root exudates from susceptible cot-
ton. However, few transmembrane transport genes for
nutrient acquisition have been identified from V. dah-
liae, and their involvement in the disease process is
unknown.
In short, our study firstly revealed the transcriptomes

of V. dahliae cultured with root exudates from different
cotton cultivars. Our results provided the clear proof at
the molecular level for the association of cell wall-
degrading and transmembrane transport related genes
with pathogenesis of V. dahliae. The results enriched
the genomic information on V. dahliae in public data-
bases, and laid a foundation for the evaluation and un-
derstanding the molecular mechanisms of V. dahliae
interacted with cotton and pathogenicity. The paper pro-
vided a framework for further functional studies of

candidate genes to develop better control strategies for
the cotton wilt disease.

Conclusions
In this study, we present the first comparative transcrip-
tomic profiling analysis of V. dahliae responded to root
exudates from a susceptible upland cotton cultivar, a tol-
erant upland cotton cultivar and a resistant island cotton
cultivar. Our study provided a comprehensive examin-
ation of the biological processes in V. dahliae affected
by different root exudates based on analysis of Gene
Ontology (GO) terms of the differentially expressed
genes, and described genes that were involved in the ini-
tial steps of the roots infections and likely in pathogen-
esis. Genes related to ‘hydrolase activity, hydrolyzing O-
glycosyl compounds’ highly enriched in V. dahliae cul-
tured by root exudates from susceptible cotton at early
stage of interaction may be responsible for the pathogen-
icity of V. dahliae. Genes related to ‘transmembrane

Table 6 Up-regulated Genes with known functions only in Vd-X at early stages of interaction (Continued)

Code Gene
ID

Enzyme name FPKM value

CK VdX6 VdX12 VdZ6 VdZ12 VdH6 VdH12 VdW6 VdW12

53 VDAG_
07544

Non-specific lipid-transfer protein 7.073779 14.02016 9.853166 11.52067 6.789217 7.23411 6.939248 6.207376 5.102574

54 VDAG_
07681

ATP-binding cassette sub-family G
member 5

0.280493 3.096587 0.36107 0.502172 0.490947 0.426678 0.394345 0.556072 0.142852

55 VDAG_
07728

Adenine deaminase 0.871341 0.730222 1.862647 1.335189 0.613871 0.842805 0.83656 1.780561 0.44741

56 VDAG_
07980

Peptide hydrolase 4.547497 11.54846 6.580591 4.869931 5.140242 5.641155 3.053364 4.299607 2.724793

57 VDAG_
08067

Pectate lyase B 1.597656 3.549548 2.364415 2.864407 2.737817 2.960574 1.770214 2.357985 1.326954

58 VDAG_
08286

Alpha-glucosides permease MPH2/3 3.761419 10.00247 2.846449 3.855032 2.85363 4.066861 2.265101 2.82029 0.99225

59 VDAG_
08654

Acetyl-coenzyme A synthetase 6.311482 25.47375 11.4497 7.045619 9.681632 9.402415 4.885708 5.435872 4.019251

60 VDAG_
08703

Alpha-1,2 mannosyltransferase KTR1 0.115893 0.332317 0.996546 0.726013 0.607646 0.444118 0.773915 0.233683 0.497122

61 VDAG_
09082

Succinyl-CoA:3-ketoacid-coenzyme A
transferase

4.461569 15.45278 8.700468 11.87125 6.812786 6.795712 2.9958 3.117604 3.772685

62 VDAG_
09253

Sulfate transporter 0.621583 1.003273 1.925273 0.996173 0.614154 0.592044 0.590546 0.211895 0.651484

63 VDAG_
09313

Alpha-ketoglutarate-dependent
sulfonate dioxygenase

1.120543 1.596103 2.703301 1.520719 1.336662 2.082727 1.975342 1.398853 2.107069

64 VDAG_
09583

Alcohol oxidase 0.0371 0.946964 0.029918 0.166105 0.170765 0.201409 0.030483 0.029096 0

65 VDAG_
09712

Succinate/fumarate mitochondrial
transporter

14.67152 66.4187 23.3401 11.31978 19.52469 18.52314 4.75121 5.791921 6.018953

66 VDAG_
09813

C6 transcription factor RegA 0.355193 1.301947 0.457038 0.47428 0.543437 0.50541 0.322972 0.266267 0.23939

67 VDAG_
10171

Fungal specific transcription factor
domain-containing protein

1.890601 3.353588 3.570153 2.624426 2.242321 2.5453 1.963163 2.84132 2.766448

68 VDAG_
10443

Rhamnogalacturonan lyase 2.396504 4.665757 2.848467 2.509498 2.189874 2.620633 1.958417 2.44632 1.750408
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Fig. 10 GO analyses of DEGs unique to Vd-Z vs CK and Vd-H vs CK. a. GO analysis of 66 DEGs unique to Vd-Z vs CK (307); b. GO analysis of 109
DEGs unique to Vd-H vs CK (327)

Fig. 11 Heatmap and GO analyses of up-regulated genes in Vd-X, Vd-Z, Vd-H and Vd-W. a. Heatmap of 55 genes found to be up-regulated in Vd-
X, Vd-Z, Vd-H and Vd-W at 6 h or 12 h of cultured. The log-transformed expression values range from − 2 to 2. Red and blue bands represent
high and low gene expression levels, respectively. b. The most enriched GO terms of the 26 DEGs with known functions
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Table 7 Up-regulated genes with known functions in Vd-X, Vd-Z, Vd-H and Vd-W at 6 h or 12 h

Code Gene ID Enzyme name FPKM value

CK VdX6 VdX12 VdZ6 VdZ12 VdH6 VdH12 VdW6 VdW12

1 VDAG_
01200

Multidrug resistance protein 2.574203 3.176818 8.456135 10.58305 4.440765 8.923448 3.200822 3.971342 5.1336

2 VDAG_
02063

L-amino-acid oxidase 0.635877 0.5626 1.614603 1.483211 1.348462 1.682819 1.940567 0.826722 2.25874

3 VDAG_
02178

Quinate permease 0.058306 0.627263 0.485426 0.606461 1.024123 0.628178 0.873477 0.321581 0.459276

4 VDAG_
02520

Response regulator receiver domain-
containing protein

11.43198 30.89575 40.29134 13.93595 49.39211 43.4858 14.60711 33.75135 13.91367

5 VDAG_
02528

RNA-dependent RNA polymerase 2.550404 6.828783 5.918211 5.244344 7.547659 8.333781 6.355329 6.082573 5.05485

6 VDAG_
02981

Methyltransferase domain-
containing protein

1.048951 2.022277 2.645048 3.118421 2.771815 4.705878 1.726638 1.905085 4.283733

7 VDAG_
03099

Glucan 1,3-beta-glucosidase 0.304888 1.159252 1.177232 1.289926 1.029788 1.617254 1.194427 0.743662 0.829034

8 VDAG_
03536

YetA 14.37066 33.60962 24.66688 23.71565 30.52655 24.97965 27.41519 21.24693 27.49016

9 VDAG_
03975

C6 zinc finger domain-containing
protein

15.00863 29.21758 18.81392 18.84766 31.24542 29.8705 26.07178 21.38755 27.99133

10 VDAG_
04598

Glycogenin-1 37.06267 68.97229 48.17265 45.46692 77.10089 69.11893 70.61616 54.23442 63.30747

11 VDAG_
05008

Peptidase M20 domain-containing
protein 2

0.951232 3.683467 2.85524 2.704868 2.485291 2.347381 2.428679 2.431284 2.273593

12 VDAG_
05649

BNR/Asp-box repeat domain-
containing protein

1.485317 5.698776 3.41501 3.134149 4.311877 5.442967 4.981001 3.789991 2.962473

13 VDAG_
05829

Heat shock protein HSP98 2851.294 8213.736 5839.808 8385.88 7207.387 5492.246 3748.727 7855.11 6926.32

14 VDAG_
05831

Phenylalanine ammonia-lyase 5.327448 10.4713 14.76473 18.7942 11.65773 24.15234 5.273917 8.005835 11.82046

15 VDAG_
05832

FAD binding domain-containing
protein

0.97946 5.375452 9.59148 13.22928 11.4021 29.036 1.738944 5.22337 11.88564

16 VDAG_
05836

Para-hydroxybenzoate-
polyprenyltransferase

0.16421 0.23375 2.238529 1.346959 3.046437 4.084031 0.142631 1.331249 1.254863

17 VDAG_
06240

Phytanoyl-CoA dioxygenase 3.271209 4.96076 16.97013 14.02229 11.25868 20.8611 5.329389 5.988937 9.619971

18 VDAG_
06907

E3 ubiquitin-protein ligase 19.52358 41.99442 38.90181 40.99749 42.84902 65.42277 43.04462 32.43004 37.12453

19 VDAG_
07183

Carboxypeptidase A 0.590637 4.817832 2.275429 1.521062 2.023665 1.406215 0.779928 1.725569 0.451422

20 VDAG_
07270

Mycocerosic acid synthase 0.563822 1.191726 1.288242 1.182283 0.764326 1.502613 1.056965 0.88995 0.998817

21 VDAG_
07344

Cutinase 0 0.757969 0.60793 0.962218 1.396963 2.694802 0.561964 0.477185 1.374841

22 VDAG_
07854

Maltose O-acetyltransferase 2.196192 3.946491 6.820049 7.200627 3.16318 6.916005 5.754764 2.764381 4.99843

23 VDAG_
08529

Anaphase-promoting complex
subunit 8

13.30899 23.23852 34.1324 40.32327 24.52103 40.96512 25.52018 20.15623 27.3556

24 VDAG_
08712

Cyanide hydratase 0.511059 3.463236 24.39127 3.558516 18.23755 11.04813 5.794128 4.979065 1.917549

25 VDAG_
09806

FAD binding domain-containing
protein

0.850458 1.504143 1.687359 1.407464 1.919441 1.757326 2.404167 1.50623 1.979163

26 VDAG_
10401

Integral membrane protein 1.080071 3.072609 4.37851 3.103026 2.956657 4.107363 3.177632 2.617038 2.934669
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transport’ enriched in different root exudates, but not in
water may be required for the initial steps of the roots
infections. These expression data have advanced our
understanding of key molecular events in the V. dahliae
interacted with cotton, and provided a framework for
further functional studies of candidate genes to develop
better control strategies for the cotton wilt disease.
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