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Abstract

Background: Truffles are symbiotic fungi that develop underground in association with plant roots, forming
ectomycorrhizae. They are primarily known for the organoleptic qualities of their hypogeous fruiting bodies.
Primarily, Tuber magnatum Pico is a greatly appreciated truffle species mainly distributed in Italy and Balkans. Its
price and features are mostly depending on its geographical origin. However, the genetic variation within T.
magnatum has been only partially investigated as well as its adaptation to several environments.

Results: Here, we applied an integrated omic strategy to T. magnatum fruiting bodies collected during several
seasons from three different areas located in the North, Center and South of Italy, with the aim to distinguish them
according to molecular and biochemical traits and to verify the impact of several environments on these properties.
With the proteomic approach based on two-dimensional electrophoresis (2-DE) followed by mass spectrometry, we
were able to identify proteins specifically linked to the sample origin. We further associated the proteomic results to
an RNA-seq profiling, which confirmed the possibility to differentiate samples according to their source and
provided a basis for the detailed analysis of genes involved in sulfur metabolism. Finally, geographical specificities
were associated with the set of volatile compounds produced by the fruiting bodies, as quantitatively and
qualitatively determined through proton transfer reaction-mass spectrometry (PTR-MS) and gas-chromatography-
mass spectrometry (GC-MS). In particular, a partial least squares-discriminant analysis (PLS-DA) model built from the
latter data was able to return high confidence predictions of sample source.

Conclusions: Results provide a characterization of white fruiting bodies by a wide range of different molecules,
suggesting the role for specific compounds in the responses and adaptation to distinct environments.

Keywords: Tuber magnatum Pico, Sulfur compounds, Environment, Volatile organic compounds, Integrated
approach

Background
The ectomycorrhizal fungus Tuber magnatum Pico is
one of the best-known species belonging to the genus
Tuber, which includes between 180 and 220 species [1].
T. magnatum is characterized as “whitish truffles”, fruit-
ing bodies with white-colored gleba that are also

produced by other Tuber species within the Puberulum
group sensu lato [2]. Despite some valuable truffle spe-
cies being amenable to cultivation, such as Tuber mela-
nosporum, Tuber borchii, Tuber aestivum [3, 4] and
Tuber formosanum [5], many attempts performed since
1984 to cultivate T. magnatum [6] have been unsuccess-
ful. Due to the scarcity of samples harvested in the nat-
ural environment, the annual production does not cover
the high demand for T. magnatum truffles, whose prices
are ranging from 300 to 400 € hg− 1 [6, 7]. Different re-
tail prices are applied to fruiting bodies depending on
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their harvesting place, considering that the geographical
distribution of the species extends from Italy to East
Europe (Croatia, Slovenia, and Hungary), including
Greece [8], South of France [9] and Switzerland [10].
One distinct feature of the white truffle, as well as of
fruiting bodies of different Tuber species, is in fact the
highly different degree of appreciation by the consumers,
which is related to the different aroma and flavor speci-
ficities due to truffle growth environment. Development
of truffle fruiting bodies is, indeed, known to be influ-
enced by a range of environmental variables, spanning
from the host plant and the complexity of forest vegeta-
tion [11] to soil characteristics [12], climatic conditions
[13] and the composition of soil bacterial communities
[14]. This observation urged scientists to find reliable
methods to discriminate among truffle accessions be-
longing to the same species.
The genetic variation within T. magnatum truffles was

already investigated, evaluating intraspecific polymor-
phisms by simple sequence repeat (SSR) markers [15,
16]; eight loci showing polymorphic amplification were
considered useful to assess population dynamics. Not-
ably, an SSR-based analysis of T. magnatum truffles has
revealed, for the first time, the presence of genetic and
phylogeographic structures in natural populations of this
Tuber species [16]. In fact, genetic studies have shown
that both the Italian North-westernmost and the South-
ernmost populations are genetically different from all
the other communities collected all over the species
distributional range. Moreover, Mello and coworkers
were able to demonstrate the existence of genetic diver-
sity within Italian populations of T. magnatum using
SCAR markers as a tool to identify single-nucleotide
polymorphisms (SNPs) [17], thereby defining three
different truffle haplotypes. These results were enlarged
to T. melanosporum [18], where polymorphic SSRs
suggested that this truffle is a species with relevant intra-
specific diversity. An extensive SNPs analysis was also
conducted on seven populations of T. melanosporum
from Italy, France, and Spain, which led to the identifica-
tion of more than 400.000 SNPs able to differentiate the
analyzed samples [19].
On the other hand, Vita et al. [20] reported the exist-

ence of reproducible quantitative differences in the pro-
tein patterns of white truffle (T. magnatum) fruiting
bodies coming from different Italian areas, suggesting
that proteomic characterization might be a promising
diagnostic method for origin attribution. In 2004 early
work on T. borchii fruiting bodies [21] faced the issue of
the limited sequence information available for truffles.
However, protein identification in Tuber species has
been greatly facilitated by the release of the complete
sequence of the haploid genome of the Périgord black
truffle T. melanosporum [22]. Moreover, sequencing of

the T. magnatum, T. aestivum [23] and T. borchii [24]
genomes have been very recently completed by inter-
national consortiums.
Recently, the profile of volatile compounds emitted by

the fruiting bodies has been taken into consideration as an
additional biomarker for truffle intraspecific classification.
Biotic and abiotic factors have been shown to influence
truffle aroma, including the nutritional content and the
identity of the host tree [25]. In addition, many authors
[26–29] have suggested that the aroma might vary accord-
ing to the geographical origin of truffles of the same spe-
cies. For instance, key volatiles were analyzed in the
widely distributed species T. aestivum var. uncinatum,
finding that the production of eight-carbon-containing
compounds, which account for most of the aroma vari-
ability in this species, is likely to be under genetic control
[30]. Experimental evidence on aroma-related proteins in
truffle is currently limited to nine polypeptides from a T.
melanosporum proteome (reconstructed through a com-
bined polyacrylamide gel electrophoresis (1D PAGE) and
high-accuracy liquid chromatography tandem-mass spec-
trometry approach coupled with bioinformatics analysis),
which were found enrolled in the synthesis of volatiles in
prior biochemical studies [31].
Neither individual method deployed so far could be

considered as a definitive diagnostic method, for the
sake of the attribution of truffle origin. A proteomic
comparison of T. magnatum samples was equally insuffi-
cient to identify their collection locations [20]. It is
worth note that truffle fruiting bodies harbor a diverse
but poorly understood microbial community of bacteria,
yeasts, and filamentous fungi [32], which might have an
influence on the metabolism of the ascomata, rendering
more difficult the comprehension of the factors influen-
cing the fruiting bodies formation and functioning.
Here we provide an in-depth characterization of the T.

magnatum fruiting bodies, collected in regions subjected
to different environmental conditions, through parallel
high-throughput approaches. An expanded proteomic
assessment, as compared to previous experiments [20],
was coupled to the examination of both transcriptome
and volatome profiles (data from RNA-seq and VOC
emission measurements, respectively) of samples har-
vested in three different Italian areas (Piedmont, Tus-
cany, Molise). The sampling strategy was planned to
collect them in different years homogenously (e.g. dis-
tance from the plants), to avoid as much as possible the
variability inside a collection site. On the basis of these
global analyses, specific biochemical pathways involved
in the biosynthesis of T. magnatum volatiles (e.g. sulfur
compounds) were examined more closely through qPCR
and compared to the data from Murat et al. [23]. The
obtained combined datasets provide novel information
to better understand the metabolic variations of T.
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magnatum to changing environmental conditions, which
is at present underexplored, and suggest new putative
tools that may be used in the next future for the geo-
graphical identification of white truffles.

Results
Identification of reproducible protein markers of white
truffle origin via proteome profiling
T. magnatum fruiting bodies were harvested from differ-
ent Italian areas (North: Alba, AL; Center: San Miniato,
SM; and South: Isernia, IS) during 4 years of study (three

for IS, Table 1). As first approach to assess their diversity,
a comparison of their individual proteomes was under-
taken. Proteins were extracted, resolved by 2-DE, and sub-
sequently analyzed according to protein spot number,
density, and size. More than 600 reproducible spots were
detected in each gel (Fig. 1). Bioinformatic comparison of
the protein patterns associated to the various samples led
to the selection of 19 differential spots (Fig. 2), automatic-
ally ranked according to their p-value (< 0.05) and fold
change (< 0.7, downregulated; > 1.3, upregulated), which
displayed significant quantitative differences among

Table 1 Sampling site, mycorrhiza, and analyses performed. All fruiting bodies reached stage 5 of maturation [20], as described in
Methods section

Site (Province) Region Mycorrhiza Years of analysis Period Sample namesa Total number of samplesb

Proteomics Alba (CN) Piedmont Poplar (Populus alba) 4 2012–2015 AL 2012
AL 2013
AL 2014
AL 2015

24

Isernia (IS) Molise Poplar (Populus alba) 3 2013–2015 IS 2013
IS 2014
IS 2015

18

San Miniato (PI) Tuscany n. s. (Wood) 4 2012–2015 SM 2012
SM 2013
SM 2014
SM 2015

24

RNAseq / qPCR Alba (CN) Piedmont Poplar (Populus alba) 2 2014–2015 AL 2014
AL 2015

12

Isernia (IS) Molise Poplar (Populus alba) 2 2014–2015 IS 2014
IS 2015

12

San Miniato (PI) Tuscany n. s. (Wood) 2 2014–2015 SM 2014
SM 2015

12

PTR-ToF-MS analysis Alba (CN) Piedmont Poplar (Populus alba) 4 2014–2017 AL 2014
AL 2015
AL 2016
AL 2017

27

Isernia (IS) Molise Poplar (Populus alba) 4 2014–2017 IS 2014
IS 2015
IS 2016
IS 2017

24

San Miniato (PI) Tuscany n. s. (Wood) 4 2014–2017 SM 2014
SM 2015
SM 2016
SM 2017

41

GC-MS analysis Alba (CN) Piedmont Poplar (Populus alba) 4 2014–2017 AL 2014
AL 2015
AL 2016
AL 2017

23

Isernia (IS) Molise Poplar (Populus alba) 4 2014–2017 IS 2014
IS 2015
IS 2016
IS 2017

18

San Miniato (PI) Tuscany n. s. (Wood) 4 2014–2017 SM 2014
SM 2015
SM 2016
SM 2017

23

a As reported in the figure and in the main text
b The total number of analyzed samples during different years. Six independent biological replicates were analyzed for each sample over years for proteomic and
molecular analysis. Five replicates were analyzed for VOCs analysis (GC-MS and PTR-ToF) for each accession during the first 2 years (2014–2015), whereas a
variable number of samples (from four to fifteen) were analyzed during the remaining 2 years (2016–2017)
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samples. Analysis of variance, i.e. one-way ANOVA, and
Tukey HSD post-test were used to evaluate the statistical
significance of sample comparisons (see Additional file 1:
Table S1). Most of the spots (1, 2, 3, 4, 5, 6, 7, 8, 12, 13,
16, 18) displayed higher medium average intensity in Alba
samples, whilst spot 6, 9, 10, 14, 15, 17 and 19 were more
abundant in Isernia samples; finally, only spot 11 and 17
were found as over-represented in San Miniato samples
(Fig. 2). Given their elevated statistical significance, spots
1–9 appeared as the best indicators of different sample
origin. In particular, seven of them (1, 2, 3, 4, 5, 7, 8) were
associated with the highest significance in the comparison
between Alba and San Miniato, while spot 6 and 9 showed
top significance in the comparison Alba vs Isernia (AL vs
IS) and Isernia vs San Miniato (IS vs SM), respectively (see
Additional file 1: Table S1).
The relatedness of the samples was evaluated by a

principal component analysis (PCA) applied to the in-
tensity values of the selected 2-DE spots. Two principal
components were found to account for 46.08% (F1) and
26.13% (F2) of the total variance (Fig. 3a). Remarkably,
within the multidimensional space of the PCA, the sam-
ples grouped by geographic origin, forming three distinct
clusters corresponding to the three collection areas. As a
way to visualize the impact of each spot to sample differ-
entiation, a variables factor map was generated that
highlighted a high degree of significance (vector length
above 50% of the radius) for all selected spots (Fig. 3b);

the smallest contribution was calculated for spot 14, 16,
17 and 19. The same factor map can also display the re-
lationships among variables (spots); here, we could ob-
serve that each spot was associated with both positive
and negative correlations, with the exception of spot 11,
which did not develop positive correlations (Fig. 3b).
Spot intensities were used to cluster either the spot

themselves (Fig. 3c, left-side dendrogram) or the differ-
ent samples (Fig. 3c, top-side dendrogram). The analysis
returned four spot clusters with distinct quantitative
profiles. Spots belonging to cluster 1 (no. 11, 17, 19)
were over-represented in SM samples, spots of cluster 2
(no. 6, 9, 10, 14, 15) in IS and those of cluster 4 (no. 1,
2, 3, 4, 5, 7) in AL samples, while down-representation
was prevalent in the other combinations. Moreover,
sample clustering, in agreement with the PCA, con-
firmed that the selected spots were able to specify the
source of the specimens. Similarly, hierarchical cluster-
ing of the samples identified the presence of three
groups, broken down by their geographical origin (Fig.
3d). Among them, the one clustering SM samples dis-
played the highest degree of differentiation, according to
the dissimilarity coefficient.
All 19 candidate spots retrieved by the bioinformatic

analysis of the 2-DE gels were subjected to mass spec-
trometry, leading to the identification of 52 proteins in
total (see Additional file 2: Table S2). Multiple identifica-
tions were obtained for most of the selected spots, with
the exception of no. 9, 12, 15, 16, 18; subsequently, pro-
teins were sorted in each spot by their respective emPAI
values. We recovered a large number of uncharacterized
proteins, whose biological function could only be in-
ferred by sequence similarity (see Additional file 3: Table
S3). On the other hand, we were able to identify 32 pro-
teins through BLAST analysis (see Additional file 3:
Table S3). At a first survey, they appeared to be primar-
ily associated with calcium metabolism (e.g., a putative
calcium homeostasis protein regucalcin), glycolysis (e.g.,
fructose-bisphosphate aldolase), or amino acid metabolic
processes (e.g., cystathionine gamma-lyase and the pyri-
doxine biosynthesis protein pdx1).
To gain insights into the functional categorization of the

proteins identified by MS, namely to group them based on
their biological properties, we subjected the dataset of
differentially expressed proteins to a Gene Ontology (GO)
enrichment analysis. Among the over- or down-
represented biological process-related categories we
found, terms associated to small molecule, carboxylic acid
and alpha-amino metabolism over-represented with the
highest statistical significance (Fig. 4a). More intriguingly,
various categories related to sulfur cycle compounds were
significantly over-represented (Fig. 4b). Indeed, five sulfur-
related proteins were retrieved by our differential analysis
(see Additional file 4: Table S4). Cystathionine gamma-

Fig. 1 Representative 2-DE gel obtained from T. magnatum Pico
mature fruiting body. Separation of total proteins from Isernia (IS)
sample (1 mg of protein extract) stained with Coomassie G-250. The
ranges of the first (above) and second dimension electrophoresis
(left) are shown. White arrows indicate 19 spots that were selected
after bioinformatic analysis of the global set of 2-DE gels produced
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 Normalized intensity levels of the spots selected for MS analysis. The relative amount of signal for each spot is expressed as a log10 normalized
volume (spot optical density). Values are means ± SEM (n = 16, AL, SM; n = 12, IS). Statistical significance was evaluated by one-way ANOVA analyses,
followed by Tukey HSD test (see Additional file 1: Table S1 for a summary of the test). Letters mark statistically significant treatments. Data are reported
as p-values (*, 0.01 < P≤ 0.05; **, 0.001 < P≤ 0.01; ***, 0.0001 < P≤ 0.001; ****, P≤ 0.0001). AL, Alba; IS, Isernia; SM, San Miniato

Fig. 3 Result of variance analysis performed on proteomic data. a Individual sample map related to principal component analysis (PCA) of spot
normalized intensities related to 19 spots. Sample names indicate location (IS = Isernia; AL = Alba; SM = San Miniato) and year of sample
collection. Data reported represents an average value for each year of analysis. F1 = first dimension, F2 = second dimension. Total inertia (i.e., total
variance) included by the first two dimensions of PCA accounted for 72.21% of the variance. b Correlation circle (variables factor map) related to
the contribution of each variable (spot) in the distribution of the observations (samples). The length and the direction of the vectors are directly
correlated to their significance. The angle between two vectors (α) defines the correlation of the associated variables: Positive correlation is
present if 0 < α < 90°, while the correlation is negative if 90 < α < − 180°. No linear dependence exists if α = 90°. c Heat map based on quantitative
data related to normalized spot intensities, whose discrete color scale is shown in the box. Green indicates over-representation, red down-
representation. d Results of aggregative hierarchical clustering (AHC) analysis performed on spot data. C1-C3, sample distribution classes, based
on their dissimilarity coefficient. The dotted line represents the degree of truncation of the dendrogram, used for creating classes and
automatically chosen by the entropy level. Sample names correspond to those reported in Table 1
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Fig. 4 Functional categorization of the 52 proteins identified upon MS analysis of the discriminative protein spots from 2-DE. a Overview of
significantly enriched biological process-associated Gene Ontology categories, based on T. melanosporum annotation of the MS dataset proteins.
Frequency data refers to cluster frequency ratio (black bars) and total frequency ratio (grey bars). Specifically, black bars represent the number of
annotated proteins from the MS dataset associated with each GO term divided by the total number of identified and annotated proteins of the
MS dataset, while gray bars represent the number of proteins in the T. melanosporum proteome reference set associated with each GO term
divided by the total number of annotated proteins in the proteome reference set. The corrected FDR after statistical analysis is reported for each
GO term. b Graphical description of the sulfur compound GO terms contained in the categories listed in panel A. Nodes, represented by circles,
are shaded according to a p-value color coding obtained by statistical analysis. The range of the color scale varies from yellow (down-
represented) to orange (over-represented)
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lyase (CTH) and S-adenosylmethionine synthase (SAM)
came from spots over-represented in AL, cobalamin-
independent Met synthase (MetE) from a spot over-
represented in IS, adenosylhomocysteinase (AHCY) and
peptide methionine sulfoxide reductase (MsrA) from spots
down-represented in SM (Fig. 2). These observations hint
at a differential regulation of sulfur metabolism as a deter-
minant of proteome diversification in the fruiting bodies
of white truffles from different areas.

Transcriptome changes are associated with white truffle
source
To better understand the observed proteome dynamics
and assess how the protein profiles compared with
changes at the level of gene expression, we carried out a
whole transcriptome sequencing. T. magnatum samples
were collected in the three different locations and the
time points associated with the sampling campaign were
considered as biological replicates. When this experi-
mental work was started, the genome of the T. magna-
tum was not known, therefore we decided to analyze the
whole transcriptome dataset using the de novo reference
assembly of T. magnatum provided by Vita et al. [33],
containing 12,367 transcripts reunited in 6723 high-
confidence protein-coding genes. This strategy was
adopted considering that T. magnatum RNA-seq reads
cannot be mapped against the closest truffle species T.
melanosporum reference genome (1% of mapped reads),
as reported by Vita et al. [33]. Processed clean reads
were mapped in a quasi mapping mode using the Sal-
mon pipeline (see Methods section) against the 12,367
transcripts, with an average mapping rate of 56.64% (see
Additional file 5:Table S5). We also mapped the reads
against the entire transcriptome assembly generated by
Vita et al. [33], containing ~ 23 K transcripts, to cross-
validate the overall mapping rate our RNA-seq experi-
ment, and found an alignment rate of 70.48% (data not
shown). As reported in Supporting Information (see
Additional file 6: Figure S1), Euclidean metric showed
that the three samples clustered apart according to their
geographical origin (SM, IL, AL), while showing strong
correlation among the biological replicates. We identi-
fied differentially expressed genes (DEGs) according to
sampling location and subjected them to two pairwise
comparisons: SM vs AL and IS vs AL, where the samples
from Alba were used as control. Major differences (see
Additional file 7: Figure S2) emerged in the gene expres-
sion profile of San Miniato fruiting bodies, with 2568
statistically significant DEGs (FDR, false discovery rate =
5%), against 879 from the comparison IS vs AL. Consist-
ently, sample separation based on Euclidean distances
clearly isolated SM from AL and IS (see Additional file
6: Figure S1) and associated it to a markedly distinct
gene expression profile (Fig. 5a). Moreover, the Venn

diagram (Fig. 5b) showed little overlap of DEGs between
the two pairwise comparisons, highlighting the occur-
rence of specific transcriptional responses determined by
the geographical location of the samples. Data related to
the 100 most statistically significant transcripts for each
of the two comparisons made are shown in Supporting
Information (see Additional file 8: Table S6 and Add-
itional file 9: Table S7).
Further information on the results of sample compari-

sons could be obtained by a Shannon entropy distribu-
tion plot (see Additional file 10: Figure S3 and
Additional file 11: Data file S1), which provides an esti-
mate of the sample specificity of gene expression across
samples. The analysis returned 252 genes with high spe-
cificity (SH > 0.6) among the three analyzed samples,
which constitute a set of genes among which candidate
markers might be selected in the future.

Transcriptional regulation of the sulfur compound
pathway in white truffle fruiting bodies
Our samples were shown to be distinguished by proteins
involved in the metabolism of sulfur-containing organic
molecules (Fig. 4a). Therefore, we decided to assess
whether the associated pathways might undergo differ-
ential transcriptional regulation, looking for sample-
specific gene expression patterns in the biosynthesis or
utilization of those compounds. In first place, we de-
cided to filter our global transcript profiling data for
those transcripts associated to sulfur metabolism, ac-
cording to Gene Ontology (see Additional file 12: Table
S8). DEGs belonging to this selection appeared to group
into three well-defined clusters (Fig. 6a). In the first and
second ones, the AL sample was upregulated, while in
the third cluster, where nonetheless most of the values
were non-significant (FDR > 1%), higher expression was
recorded in SM. Overall, the analysis indicated that sul-
fur pathway genes could indeed respond to differences
in truffle growth environments.
To confirm the observed regulation, we measured tran-

scripts corresponding to genes involved in sulfur pathway
[23] by quantitative PCR (see Additional file 13: Table S9).
In detail, we have tested 19 genes involved in the metabol-
ism of sulfurated amino acids (methionine and cysteine)
(Fig. 6b), as components of a route leading to the produc-
tion of many sulfur organic compounds [22, 23].
Statistically significant differences were found when

the overall dataset of qPCR gene expression was evalu-
ated through two-way ANOVA, considering sample type
and individual genes as variables (see Additional file 14:
Figure S4). Only cysteine synthase (gene 9) and cysteine
dioxygenase (gene 14) were found to be almost un-
affected by sample origin. Instead, the majority of the
genes were found as up-regulated in AL samples in at
least 1 year of collection; in particular, with the
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exception of thioredoxin reductase (gene 5), taurine
dioxygenase (gene 15), BCAT1 (gene 17) and the
aromatic amino acid aminotransferase (gene 18), the
up-regulation in AL was observed during both years.
The most pronounced differences between AL and the
other samples were observed in the case of cystathionine
beta synthase (gene 11) and cobalamin-independent me-
thionine synthase (gene 13). Overall, the average expres-
sion values of the 19 selected genes was higher in Alba
when compared with other samples (Fig. 6c); thus, this
picture was consistent with the differential expression
analysis of the RNA-seq data, where genes linked to
sulfur metabolism turned out to be mostly upregulated
in Alba samples (Fig. 6a). Aggregative hierarchical

clustering of the qPCR dataset showed that, finally, sul-
fur pathway expression profiles successfully enabled
sample discrimination according to their source, with
Alba samples being the most differentiated and the other
two accessions showing a higher degree of similarity
(Fig. 6d).

Identification of discriminative VOCs with two different
analytical techniques
GC-MS results of VOC analysis
One main goal of our assessment was to build up a com-
prehensive picture of the changes in volatile molecule
composition of fruiting bodies from different geographical
accessions, with the aim to provide a quantitative basis

Fig. 5 RNA-seq analysis of T. magnatum fruiting bodies of different geographical origin. a Heat map representing the differential expression
profiles of T. magnatum genes among the three sampling locations (AL, Alba, IS, Isernia, SM, San Miniato). Rows (genes) and columns (locations)
were hierarchically clustered with the Euclidean method. Gene expression is displayed as Z-scores, row-normalized expression values calculated as
(observed TPM – row mean TPM) / row TPM standard deviation. TPM, transcripts per million. Yellow indicates expression values lower than row
means, dark green represents values higher than row means. b Venn diagram of differentially expressed transcripts (FDR < 5%). Alba sample was
set as the internal standard for sample comparisons
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Fig. 6 Transcriptional regulation of sulfur VOC pathway genes in white truffle fruiting bodies. a Hierarchical clustering (Euclidean method) of
genes related to sulfur metabolism. The heat map displays the Z-score of the identified transcripts, as measured in the RNA-seq analysis. On the
top, significantly regulated genes across the pairwise comparisons (FDR < 1%) are shown in color, while non significant values (FDR > 1%) are
shown as white cells. Induction or repression refer to the AL sample (internal standard in all pairwise comparisons). Red marked genes were
further analyzed through qPCR. Additional information on the selected transcripts is reported in Supporting Information (see Additional file 12:
Table S8). b Schematics of the sulfur VOC metabolic pathway derived from Martin et al. [22]. Numbers, indicating the enzyme catalyzing the
specific reactions associated to each step, correspond to those listed in Supporting Information (see Additional file 13: Table S9). Coloured arrows
mark those steps whose coding genes were analyzed by qPCR (see Additional file 14: Figure S4); conversely, grey arrows indicate not analyzed
genes and the outcome of the measurements is visulized through different arrow colors, where orange represents genes up-regulated in AL
samples and green those up-regulated in IS samples. c Relative profile plot of expression of the selected 19 genes across SM (red line), IS (green
line) and AL samples (blue line). Median expression values are plotted and respective trend lines are shown. d Dendrogram representation of
aggregative hierarchical clustering performed on the qPCR dataset
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that might be useful to understand how truffle aroma is
influenced by the environment. We characterized a set of
165 volatile organic compounds (VOCs) accumulated by
truffles of the three accessions by means of GC-MS chro-
matography (see Additional file 15: Table S10). We then
used the data to build up a predictive classification model
able to differentiate samples collected in different years.
The partial least squares discriminant analysis (PLS-DA)
supervised classification method applied led to the suc-
cessful identification of the taxonomic category of the
three samples (i.e. Alba, Isernia, San Miniato origin)
(Fig. 7a). Results showed a perfect match of each sample
to the right category (see Additional file 16: Table S11a).
No wrong assignation was reported for these samples, as
highlighted by results of confusion matrices. The number
of latent variables (LVs) associated to the minimum error
rate and concurrently to the minimum number of not
assigned samples resulted in 2 LVs (see Additional file 16:
Table S11a). The global quality of the model, evaluated by
its performances indicators (see Additional file 16: Tables
S11 a-c), resulted robust enough to discriminate the three
T. magnatum samples in the model/validation data set,
and in the independent test set. In fact, the two-
component PLS-DA model successfully classified 100% of
truffle samples into their taxonomic category in fitting,
cross-validation (internal validation) and prediction (exter-
nal validation) (see Additional file 16: Table S11b). Upon
permutation test, applied to validate the model, we found
it to be significant at 95% confidence level (see Additional
file 16: Table S11c). Moreover, a variable importance in
the projection (VIP) score was calculated from the PLS-
DA model for every identified compound (variable) to
summarize its contribution to the overall model. For each
accession, we found compounds with significant (> 2.0)
VIP scores (Fig. 7b-d). More importantly, we observed sta-
tistically significant variations in individual VIP scores
across samples (see Additional file 17: Table S12), which
highlighted the role of specific molecules in differentiating
the three accessions under consideration. Dimethyl-
trisulfide (88) and 1-propanol (7) represented the most
significant compounds able to distinguish the three sam-
ple classes, although in distinct ways; the sulfur compound
discriminated AL samples, where it was absent, whereas
1-propanol was not detected in the IS dataset.
All compounds selected as significant in at least one

sample (VIP > 2) after PLS-DA were then grouped ac-
cording to their chemical properties before the statistical
analysis, to understand whether particular VOC classes
could be considered prominent in sample diversification.
VOCs selected by PLS-DA analysis never displayed the
highest VIP values in AL samples, when compared to
the other two accessions. Considering the IS and SM
samples, on the other hand, we noticed the existence of
trends linked to each chemical class. Concerning the

sulfur-containing compounds, hydrocarbons, esters and
terpenes (only one compound considered for each of the
three), IS showed the most statistically significant values.
The same applied to alcohols, where three of the four
compounds had the highest significance in IS. Instead,
1-octen-3-ol (94) had a higher VIP score in SM. An
intermediate situation was observed for aldehydes, ke-
tones and those compounds classified as “others”, where
IS and SM contributed with a comparable number of
compounds with the highest significance. As to the aro-
matic compounds, the greatest number of statistically
significant compounds belonged to the SM accession, as
compared to IS; in particular, compounds such as 1–2
and 1–4 dimethylbenzene had a much higher level of
significance in the samples coming from San Miniato.

PTR-ToF results of VOC analysis
We therefore subjected our samples to PTR-ToF-MS
analysis, with the aim to improve the coverage of truffle
molecular profiling with this state-of-the-art technique,
which identified 65 compounds in the m/z range 0–130
(see Additional file 18: Table S13). Following the strategy
described above, the data were then used to build up a
PLS-DA model, and the global quality of the model was
evaluated by its performances indicators (see Add-
itional file 19: Tables S14 a-c). We found that the model
successfully classified 97.4% of the samples into their
correct class (geographical accession), both in fitting and
cross-validation (internal validation), and 93.7% of them
in prediction (external validation).
In the prediction results, 15/16 samples were correctly

assigned to the right class (see Additional file 19: Table
S14b). Two optimal latent variables number were found
to be associated with the minimum error rate and
concurrently to the minimum number of not assigned
samples (see Additional file 19: Table S14b). The permu-
tation test indicated that the model was significant at
95% confidence level (see Additional file 19: Table
S14b). The associated scores plot of the two-component
PLS-DA model is shown in Fig. 8a. Also in this set of
VOCs, we isolated compounds with significant VIP
scores (VIP > 2.0) that may be able to differentiate the
three considered classes (see Additional file 20: Table
S15). However, samples resulted to be less differentiated
in this model than in the one obtained from the GC-MS
profiling (Fig. 8a).
Closer examination of the statistically significant

VOCs found in each sample revealed 2–3-butanediol
(40) as the most distinctive compound for AL samples
(Fig. 8b), whereas 4-methyl-5 h-furan-2-one (48) and 2-
methyl-4,5-dihydrothiophene (51) were the most signifi-
cant ones for IS (Fig. 8c). Finally, methanetriol (19) and
2-methyl-4,5-dihydrothiophene (51) showed maximum
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Fig. 7 (See legend on next page.)

Vita et al. BMC Genomics           (2020) 21:90 Page 12 of 25



VIP scores in SM samples (Fig. 8d). In particular, the lat-
ter compound was uniquely detected in SM samples,
therefore representing the most discriminating VOC
from this set.

PLS-DA model analysis
Prompted to investigate the source of variability that the
PLS-DA model could not capture (Fig. 8a), we hypothe-
sized the occurrence of environmental effects on the
VOCs emission of our samples. To uncover them, we
decided to apply a canonical correspondence analysis
(CCoA, a widely used approach for the exploration of
ecological data [34]) to the whole data set of VOCs com-
pound from PTR-ToF-MS, and to two environmental
variables involved in the development of mature asco-
carps: average temperatures and precipitations (August
to November, see Additional file 21: Table S16) collected
from three different stations (Alba, Isernia, and San
Miniato) during a four-year period (2014–2017). By this
analysis, we observed that SM samples were positively
correlated with variable “Temperature” (Aug-Nov),
whereas AL and IS did not show any unambiguous trend
(Fig. 9). As to the individual compounds, VOCs widely
distributed among those positively and negatively influ-
enced by the environmental variables. However, most
sulfur compounds (yellow tags), i.e. 3-methylthio-
propionaldehyde (53), 2-methylthioacetic acid (55) and
2-methyl-3-furanthiol (60), negatively correlated with
the variable “Rainfall”, with only methanethial (8) being
slightly positively correlated with it (Fig. 9). As to the
other compounds, (2E)-butenal (24), 2-propenal (13)
and alkyl fragment (4) were negatively affected by the
variable “Rainfall”, while 1-Butene (14) negatively corre-
lated with the “Temperature”. Finally, anisole (58) and
alkyl fragment (12) were the most influenced com-
pounds by the variable “Temperature”. Results of CCoA
ordination showed how this analysis is able to extract
axes that explain as much as possible of the total
variance due to the constraining effect of the environ-
mental variables, as highlighted by the role of sulfur
compounds.
Remarkably, sulfur-containing volatile compounds

(VSCs) represented nearly 30% of the selected VIPs and
were statistically significant in IS samples (see Add-
itional file 20: Table S15). These data are in partial
agreement with those obtained by GC-MS, indicating
that, along with other chemical compounds, specific

VCSs could represent useful discriminative markers be-
tween the three accessions. Some of the VCSs were
shown to be influenced by temperature and precipita-
tions (Fig. 9), suggesting a possible correlation between
the emission of VOCs and the environmental conditions
during fruiting body development.

Discussion
In recent years, studies on environmental adaptations of
non-model species have increased, with molecular in-
sights made possible by novel comprehensive techniques
available for data analysis. Molecular markers that have
been most widely used to distinguish the prized Tuber
species include PCR-RFLP, species-specific primers, bar-
coding and phylogeny of the internal transcribed spacer
(ITS), and the β-tubulin gene [17, 35–37]. These
methods were very useful to detect genetic differences
inside a species [38], offering also information about the
geographical origin [16]. These previous papers, how-
ever, did not provide information on the differences re-
lated to changes in truffle metabolism, e.g. in relation to
different environments. Recently, mass spectrometry
(MS)-based profiling has been proposed as an alternative
method to detect different species of truffles [35]. In de-
tail, the species identification inner the Tuber genus was
performed and results were compared to that from other
experimental approaches, mainly those based on mo-
lecular methods such as the ITS-based analysis. As the
authors stated [35], the analysis seems less laborious and
time-consuming with respect to those based on classical
molecular approaches e.g. ITS-based analysis, highlight-
ing better performances in terms of the easiness of sam-
ple manipulation and the rapidity in getting final results.
However, MS-based approaches generally require expen-
sive instruments and well-trained personnel [39].
On the other hand, molecular biomarkers related to

the organism phenotype are generally measurable indica-
tors of a biologic status and they can vary as a result of
environmental changes. In the last years, the develop-
ment and the spread of -omics techniques have
represented a valid approach to identify biomarkers as-
sociated with a specific steady-state. Proteomic tech-
niques, for example, have been frequently used for the
discovery of differentially expressed proteins, including
biomarkers [40], as in wine to identify either the pres-
ence of fining agents or wine-specific proteins which are
mainly present in the range of 20–30 kDa [41].

(See figure on previous page.)
Fig. 7 PLS-DA of VOCs anlyzed by GC-MS. a Score plots on the latent variables (LV1 and LV2) calculated from the PLS-DA model that was applied
to AL (red squares), IS (green squares) and SM truffles (blue triangles). Each item represents a biological replicate, collected over the 4 years of
sampling. VIP scores calculated for each VOC (x-axis, “variable”; progressive numbers correspond to those in Additional file 15: Table S10) in b
Alba, c Isernia and d San Miniato samples. A significance threshold set at VIP = 2 is indicated
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Fig. 8 PLS-DA of VOCs anlyzed by PTR-ToF-MS. a Score plots (LV1, LV2) from statistical model for Alba (red points), Isernia (green points) and San
Miniato (blue points) truffles. b, c, d, VIP scores for each class (Alba, Isernia, San Miniato)
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In the case of fungi belonging to Tuber genus, re-
searches are improved by the recent publication of the
genome sequence for several of them [23, 24]. Particu-
larly, the recent paper on T. magnatum genome sequen-
cing [23], in which the sequencing data of other species
such as T. aestivum have also been reported, has con-
tributed to increase the level of information for the
species belonging to the Tuber genus, which were previ-
ously based on the genome of T. melanosporum [22]
and T. borchii [24]. Transcriptome comparisons among
the three species are expected to yield valuable insights
on the quality determinants of fruiting bodies with high
economic value as well as on ecological aspects, through
the identification of genes involved in truffle develop-
ment through its phenological phases and in its estab-
lishment of mutualistic symbioses. In this work, we
generated a new integrated “omic” platform that coupled
proteomics and transcriptomics to the analysis of VOCs,
with the aim to evaluate the effects of environmental
adaptation in T. magnatum fruiting bodies. This allowed
us to draw a comprehensive picture of mature fruiting
body metabolism.
However, truffle fruiting bodies also contain bacteria

[42] that seem to be selected from the soil communities
during the early stage of truffle formation [43]. In T.
borchii, Splivallo et al. [42] have already demonstrated
that thiophene volatiles characteristic of T. borchii-fruit-
ing bodies were produced by the microbiome inhabiting
truffle-fruiting bodies. The core microbiome of truffle-
fruiting bodies, which is dominated by α-Proteobacteria,
might be supplemented with additional species depend-
ing on the fungal species, the maturation stage or the

environment [42]. Benucci and Bonito [32] reported the
presence of a single Bradyrhizobium OTU as dominant
within truffle species belonging to the genus Tuber, irre-
spective of geographic origin, but not in other truffle
genera sampled. However, we cannot exclude that the
differences observed between samples collected in differ-
ent environments could be also related to a difference in
these fruiting-bodies associated bacteria, which can at
least in part reflecting the soil microbial community,
that may influence transcriptomic, proteomic and volati-
lome profiles.
Indeed, each of the three approaches adopted brought

to highlight reproducible differences among the samples
under investigation. Proteomic tecniques were widely
used for determining environmentally-induced changes
in protein composition [44, 45]. Our proteomic pipeline
retrieved spots that were conserved in every set of
samples (i.e. specimens of identical source), thereby
identifying those that were consistently regulated across
subsequent seasons in dependence of sample geograph-
ical origin (Fig. 3 and Additional file 1: Table S1). The
RNA-seq profiling revealed the extent of the transcrip-
tional regulation among accessions, highlighting a higher
differentiation between Alba and San Miniato samples
than between Alba and Isernia (Fig. 5); these results well
explain the advantages of using high-throughput tech-
niques like RNA-seq, with the aim to detect changes as
related to environmental adaption, according to their
high resolution and sensitivity [46]. Finally, VOC profil-
ing proved to be a valid approach for the discrimination
of local differences, since a PLS-DA predictive model
based on GC-MS classified the samples according to

Fig. 9 Triplot from CCoA (canonical correspondence analysis) of the VOCs data from PTR-ToF-MS. Sample biological replicates (red squares for
SM, green for IS and light blue for AL; samples are plotted by their LC score) are showed along with the compounds identified through PTR-ToF-
MS (numbered according to Additional file 18: Table S13; scored by their protonated m/z) and two environmental variables (red arrows). Yellow
tags mark the volatile sulfur compounds (VCSs) from the other volatiles (blue tags)
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their origin with high statistical confidence, without
being affected by the year of sampling.
Considering PTR-ToF data, CCoA was performed to

evaluate the impact of environmental variables on VOC
emission. Results showed a clear correlation trend cer-
tain degree among variables and one of the samples
(SM), leading to highlight as temperature and rainfall in-
fluence the emission of individual VOCs, some of them
containing sulfur.
For one class of putative discriminative markers, i.e.

those related to sulfur compound metabolism, the out-
come of the three diagnostic approaches showed a
remarkable convergence. Several among the differentially
expressed spots found through the 2-DE approach con-
tained proteins involved in sulfur amino acid metabolic
processes (see Additional file S4: Table S4) and the same
metabolic pathway resulted to be regulated across
transcriptome profiles in our accessions (Fig. 6 and
Additional file 12: Table S8). Beyond constituting an es-
sential nutrient for routine cellular functions in filament-
ous fungi [47], sulfur is incorporated in a number of
volatile molecules (namely, VSCs) that, in combination
with other classes of VOCs, determine truffle aroma [25,
27, 48–51]. Our study reinforces the evidence that VSCs
constitute robust markers for the traceability of white
truffles [26, 52–54]; this was mainly true in the case of
the GC-MS analysis, where major determinants (e.g.,
dimethyl-trisulfide) of sample differentiation were found
(Fig. 7 and Additional file 17: Table S12). Additionally,
our study suggests proteins involved in VSC metabolism
as “biomarkers” of white truffle origin.
The VSC-related proteins identified in our study (see

Additional file 4: Table S4) are involved in different steps
of methionine/cysteine metabolism and carry out different
metabolic roles. CTH converts L-cystathionine to L-homo-
cysteine, but is also able to produce methanethiol from
methionine and H2S from cysteine in Saccharomyces
cerevisiae [55, 56], where it might be responsible of the
observed VSC production in the presence of methionine
as a precursor [57]. Methionine sulfoxide reductases
(MSRs) can promote the reduction of methionine sulfox-
ide in proteins back to methionine, a function that re-
stores protein inactivated by Met oxidation, and seem to
take part to cellular protection against oxidative damage
[58]. The expression of MXR1, a particular MSR perform-
ing dimethyl trisulfide (DMSO) reduction to dimethyl
sulfide (DMS) in brewing yeast is a major determinant for
DMS concentration DMS in beer [59]. SAM catalyzes the
synthesis of S-adenosylmethionine (AdoMet), a methyl
donor for transmethylations and a propylamino donor in
polyamine biosynthesis, from methionine and ATP [60],
which takes part in cysteine/methionine biosynthesis and
interconversion and plays a key role in the production of
H2S [22]. The latter, in turn, is a precursor of several

volatile compounds, including DMSO and DMS [61] that
are main determinants of T. magnatum flavor. Further-
more, AHCY is involved in L-homocysteine synthesis
from S-adenosyl-L-homocysteine [62], which acts as a
competitive inhibitor of SAM-dependent transmethylation
reactions [63].
Homocysteine might represent a limiting factor and a

possible index of environmental adaptation in white
truffle. It is a key intermediate of the conserved transsul-
furation pathway, by which sulfur is organicated in fila-
mentous fungi [47] and which comes into play in sulfur
limiting conditions [47, 64, 65]. Two enzymes that make
use of homocysteine as a substrate, cystathionine beta-
synthase and MetE (cobalamin-independent Met syn-
thase, [66]), were found regulated at the transcriptional
level (see Additional file 14: Figure S4) and, in the case
of MetE, also at the protein level (see Additional file 4:
Table S4). Finally, although not supported by significant
changes in the protein amount, the transcriptional regu-
lation of cysteine synthase and cysteine dioxygenase in
Isernia samples (see Additional file 14: Figure S4) might
be indicative of specific adaptations to changes in nutri-
ent conditions [67] and differential sulfur assimilation
through the modulation of cysteine levels [68].
Data from Murat et al. [23] reported new genetic re-

sources about eight different Pezizomycetes, including a
complete picture of the enzymes involved in VOC pro-
duction that were clustered into 4 pathway classes, i.e.
sulfur metabolism, Ehrlich pathway, synthesis from fatty
acids and synthesis of isoprenoids. These classes cover
most of the reactions involved in VOCs production cur-
rently known, showing strong differences among the
three analyzed Tuber species. In detail, most of the most
up-regulated genes in all the three species belonged to
the sulfur related classes and were involved in methio-
nine uptake and biosynthesis as well as the homocyst-
eine/methionine cycle. The third sub-class related to
sulfur metabolism named S-VOC synthesis from me-
thionine showed a different behavior reported of each
Tuber species.
Going deeper in data analysis, we may observe as some of

the highest upregulated genes in T. aestivum like Cystathio-
nine gamma-lyase (CYS3), S-adenosyl-L-homocysteine
hydrolase (SAH1), Cobalamin-independent methionine syn-
thase (MET6), S-adenosylmethionine synthetase (SAM1)
and ATP sulfurylase (MET3) were also reported as strongly
upregulated in T. melanosporum as well as in T. magnatum
[23]. These data are in agreement with our results,
where proteomic analysis lead to the identification of
4 of these 5 differentially expressed proteins and be-
ing able to distinguish the three analyzed accessions.
Furthermore, these genes resulted as also upregulated
in the fruiting body when compared to free-living my-
celium [23].
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Despite the differences previously described, we can-
not exclude that some of the differences found at the
level of sulfur metabolism might be linked to the avail-
ability of sulfur in the soil itself. However, although soil
analyses in productive truffle areas have already
highlighted some factors that are usually associated with
T. magnatum grounds, knowledge on the relationship
on sulfur content in soil and sulfur VOCs released as
well as the on requirements for T. magnatum life cycle,
including fruiting bodies production, is still lacking. By
contrast, parameters already suggested as related to truffle
grounds are represented by the calcium carbonates
(CaCO3), exchangeable calcium, and magnesium [12].
Calcium has been reported as an essential nutrient

for the development of fruiting bodies of various Tuber
spp., and it is provided in high quantity in the truffière
to prevent limiting effects [69, 70]. It has been already
suggested that in T. magnatum, the availability of cal-
cium is essential for host colonization and fructifica-
tion [12]. We found the calcium homeostasis protein
regucalcin [71] in two differentially expressed 2-DE
spots (no. 3 and 13, see Additional file 3: Table S3). Its
regulation might reflect variations in calcium accessi-
bility in the harvesting environment or suggests spe-
cific adaptations of local truffle accessions in the
modulation of the Ca2+-dependent intracellular signal-
ing [72].
Additional ecological interactions can be hypothesized

on the basis of other differential proteins and transcripts
recovered from our analysis. At the symbiotic interface
with the host plant, ectomycorrhizal fungi establish a
competition with root cortical cells for the monosaccha-
rides generated from plant-derived sucrose, which are
converted into storage polyols (e.g. mannitol, in T. borchii)
[73]. Differential expression of an NADP-dependent man-
nitol dehydrogenase (spots 2, 4 and 5), which catalyzes
fructose conversion into mannitol, is therefore suggestive
of accession-specific adaptations in the symbiotic inter-
action. From another point of view, relevant environmen-
tal adaptations might underlie the differential regulation
of peroxiredoxin (spot 8), glyoxal oxidase (spot 11) and
gamma-actin (spot 3) (see Additional file 1: Table S1). A
homolog of the first from S. cerevisiae confers resistance
to H2O2 by minimizing ROS-mediated damage [74];
therefore, this observation might indicate differences in
intracellular ROS management among fruiting bodies
adapted to different environments. Glyoxal oxidase, in-
stead, is a copper-containing enzyme that generates H2O2,
which can be used by several ligninolytic peroxidases for
lignin degradation [75–77]. Its relevance as protein bio-
marker was proposed in a previous work [20], where it
was found as differentially expressed in T. magnatum
fruiting bodies of different geographical origin. Finally,
differential expression of gamma-actin, which is involved

in fungal cell wall organization [78], might indicate a dif-
ferent capacity to endure environmental stresses by
reinforcement of the cell wall.

Conclusions
In conclusion, our work focused on the search for adap-
tive differences being able to discriminate T. magnatum
samples from different environments, leading to new
information on putative markers that could be validated
in the next future on a higher number of samples. The
integration of different high-throughput techniques,
allowed us to identify specific molecules linked to envir-
onmental responses, with a specific attention on sulfur
metabolism gene products and sulfur-containing volatile
compounds, providing new information on the overall
ascoma metabolism in T. magnatum. Although several
efforts have been done in the last years to highlight the
mechanisms involved in the formation of these precious
fruiting bodies, the environmental factors affecting this
process should be still fully elucidated. The generated
datasets, which include a huge quantity of data obtained
by using different -omics approaches, will be useful as
source for researches aimed to distinguish ascocarps ac-
cording to their origin, also in combination with genetic
molecular marker methods. In fact, this is an important
point also to avoid frauds but to also highlight new ac-
tors in the formation of this precious truffles.

Methods
Proteins and molecular analysis
Collection of truffle fruiting bodies
Fruiting bodies belonging to the various T. magnatum
natural accessions were harvested from the natural
ground in specific locations selected from Northern,
Central and Southern Italian regions (respectively, San
Miniato in Tuscany, Alba in Piedmont and Isernia in
Molise) over different years during the same seasonal
period (November), as reported in Table 1. Six samples
were selected from each area at each time; samples were
selected from a larger pool, according to observations at
the microscope to verify the degree of maturation of the
fruiting bodies. This was assessed using categorized
stages, based on the percentage of asci containing ma-
ture spores, as described by Zeppa et al. [79]. The mat-
uration stage of the spores was defined morphologically:
mature spores were yellow-reddish brown, with reticu-
late ornamentation. Truffles were selected for the subse-
quent analyses when reaching stage 5 of maturation, as
described by Zeppa et al. [79].
Selected fruiting bodies were thoroughly washed

several times with distilled water and subsequently
dipped in absolute ethyl alcohol to remove external
contaminations. Finally, the thin external layer of the
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peridium was removed. Samples were frozen in liquid
nitrogen, ground into a fine powder and, stored at −
80 °C before being used for protein and molecular
analysis.

Protein extraction
Fruiting bodies powder (100mg) was homogenized with
1.6 mL extraction buffer (Urea 8M, Tris-HCl 40mM,
CHAPS 4%, DTT 60mM) according to Vita, et al. [20].
The homogenates were centrifuged at 13000 rcf at 4 °C
for 15min to eliminate debris. The extracted proteins
were precipitated using 13% TCA and 0.007% ß-mercap-
toethanol in acetone, transferred to − 20 °C for 2 h, and
then kept at 4 °C for 2 h. Extracts were then centrifuged at
14000 rcf at 4 °C, for 15min, and the pellet was washed
twice with cold acetone (100%), re-centrifuged at the same
speed, mixed with 50–500 μL extraction buffer, resus-
pended and centrifuged at 3000 rcf at 4 °C for 25min.
Protein were quantified with the Bradford method

[80], using bovine serum albumin (BSA) as the standard.
Spectrophotometric measurements were carried out
using a Cintral 101 spectrophotometer (GBC Scientific
Equipment) at 595 nm in double beam mode.

Two-dimensional electrophoresis (2-DE) analysis
Twelve or sixteen replicate gels (four for each year of
collection) were performed for each biological sample,
depending on the overall duration of the study for each
of the sampling locations evaluated. Samples (1 mg) of
protein were directly loaded by in-gel rehydration onto
an IPG (Immobilized pH Gradient) gel strip for prepara-
tive analysis. IPG strips (18 cm, GE-Healthcare), with pH
range 4–7, were rehydrated with 350 μL of IEF sample
buffer (8M urea, 2% w/v CHAPS, 40 mM DTT and 0.5%
v/v IPG Buffer) containing the samples.
Strips were covered with mineral oil and focusing was

carried out in an IPGphor apparatus (GE-Healthcare)
applying the following conditions: 12 h of rehydration at
30 V, 1 h at 300 V (in gradient), 1 h at 300 V (step and
hold), 3 h at 3500 V (in gradient), 3 h at 3500 V (step and
hold), 3 h at 8000 V (in gradient) and a final step at
8000 V (step and hold until reached a total of 50,000
Vhs). After focusing, the IPG strips were equilibrated, in
two steps of 15 min (first step-equilibration buffer: 50
mM Tris-HCl, pH 8.8, 8M urea, 30% v/v glycerol, 2% w/
v SDS, 40 mM DTT; second step-equilibration buffer: in
the same buffer in which DTT was replaced by 40mM
iodoacetamide). The second dimension, SDS-PAGE elec-
trophoresis, was performed using BioRad Protean II XL
(20 × 20 cm) vertical gel electrophoresis chambers, on
12% (% T; total monomer concentration) acrylamide gels
(Sigma Aldrich Acrylamide/Bis-acrylamide, 30% solu-
tion: ratio 29:1) applying a current of 40 mA per gel.
Molecular mass standards were used, with a range from

10 to 250 kDa (Precision Plus Protein™ Unstained Pro-
tein Standards, Bio-Rad). Proteins were resolved by 2-
DE and were stained with Coomassie brilliant blue
(CBB, Sigma-Aldrich) according to the manufacturer’s
instructions.

Image analysis and statistical analysis
High resolution (300 dpi) images of 2-DE gels were
prepared using the Densitometer GS-800 (BioRad).
Computer-assisted 2D image analysis was done using
the Progenesis SameSpots vs 3.2.3 gel analysis software
(NonLinear Dynamics) for three technical replicates for
each biological condition (different years) from three
independent extraction experiment procedures (Table
1). Protein apparent relative molecular mass (Mr) was
estimated by comparison with molecular weight (MW)
reference markers (Precision, Bio-Rad, Hercules, CA)
and pI values were assigned to the detected spots by
calibration, as described in the GE-Healthcare guide-
lines. The protein amount was expressed as spot volume.
Gel sets corresponding to samples of identical origin
were subjected to pairwise comparison. Spots were con-
sidered to represent differentially expressed proteins on
the basis of their ANOVA values (p-value) and fold
change, as evaluated and automatically sorted by the
software. A post-hoc analysis (Tukey’s test) was per-
formed on the ANOVA results, to identify specific cor-
relations among samples. The relevance of each spot in
discriminating among samples of different origin was
evaluated by principal component analysis (PCA),
exploiting the tool available in the Progenesis SameSpot
software, for differentially expressed spots.

Protein identification by nano-liquid chromatography-
electrospray-linear ion trap-tandem mass spectrometry
(nanoLC-ESI-LIT-MS/MS)
Nineteen spots were manually excised from gels, tritu-
rated and washed with water. Proteins were in-gel
reduced, S-alkylated with iodoacetamide and digested
with trypsin, overnight. Digest aliquots were removed
and subjected to a desalting/concentration step on C18
ZipTip microcolumn using 5% formic acid/50% aceto-
nitrile as eluent before further analysis. Digests were
then analyzed by nanoLC-ESI-LIT-MS/MS using a LTQ
XL mass spectrometer (Thermo Finnigan, San Jose, CA,
USA) equipped with Proxeon nanospray source con-
nected to an Easy-nanoLC (Proxeon, Odense, Denmark).
Peptide mixtures were separated on an Easy C18 column
(100 × 0.075 mm, 3 μm) using a linear gradient from 5 to
50% of acetonitrile in 0.1% formic acid, over 24 min, at a
flow rate of 300 nL/min. Spectra were acquired in the
range m/z 400–2000. The acquisition was controlled by
a data-dependent product ion scanning procedure over
the three most abundant ions, enabling dynamic
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exclusion (repeat count 1 and exclusion duration 1 min).
The mass isolation window and collision energy were set
to m/z 3 and 35%, respectively.
MASCOT software package (Matrix Science, UK) was

used to identify protein spots unambiguously from an
updated tuber non-redundant sequence database from
NCBI by using a mass tolerance value of 2.2 Da for pre-
cursor ion and 0.8 Da for fragment ions, trypsin as pro-
teolytic enzyme, a missed cleavages maximum value of 2
and Cys carbamidomethylation and Met oxidation as
fixed and variable modification, respectively. Candidates
with more than 2 assigned peptides with MASCOT
score > 25 (p < 0.01 for a significant identification) were
further evaluated by the comparison of their calculated
mass value with that obtained from 2-DE. Where appro-
priate, protein identification was checked manually to
provide for a false positive rate of less than 1%. Identi-
fied proteins were then sorted basing on their exponen-
tially modified protein abundance index (emPAI) for
each candidate spots [81]; this index allows to estimate
relative quantification based on protein coverage.
Proteins obtained without functional identification

were then used for Protein Blast Analysis (UniProtKB
blast p, whole database) performed with default settings.

GO enrichment
Gene ontology (GO) term enrichment analysis to find
statistically over- or down-represented categories was
performed with BiNGO 3.03 [82] as a plugin for Cytos-
cape 3.6.0 [83]; the latest available ontology (obo 1.2 for-
mat) and Tuber spp. annotations files were downloaded
respectively from the Gene Ontology and the Gene
Ontology Annotation (GOA) websites (https://www.ebi.
ac.uk/GOA/proteomes). Hypergeometric test, Benjamini
& Hochberg false discovery rate [84] correction and a
significance level of 0.05 were chosen as parameters to
visualize in Cytoscape the over-represented categories
after correction.

Total RNA extraction
RNA extraction was performed using the selected sam-
ples (AL, IS, SM) collected during two different years:
2014 and 2015. With the aim of reducing the variability
among biological replicates, for each location and year
of collection, six different fruiting bodies were homoge-
nized and mixed together to obtain a single data point.
Samples collected in the same location at different time
were considered biological replicates, resulting in experi-
mental design comprising 3 locations and 2 time points,
for a total of six samples. Total RNA extraction was
achieved using the Plant/Fungi Total RNA Purification
Kit (Norgen Biotek Corp) according to the manufac-
turer’s method. Total RNA integrity and purity was
further checked on agarose gel and Agilent 2100

Bioanalyzer High Sensitivity and DNA 1000 assay (Agi-
lent Technologies, Santa Clara, CA).

Illumina sequencing
Illumina stranded poly(A)+ RNA-seq libraries were gen-
erated from the six samples according to the TruSeq
mRNA Sample Prep kit (Illumina, San Diego, CA) and
subjected to single-end 100-bp reads (1X100 bp) sequen-
cing at IGATech (Udine, Italy) using a HiSeq2000 plat-
form (Illumina, San Diego, CA). The CASAVA v1.8.2 of
the Illumina pipeline was used to process raw data for
format conversion and de-multiplexing. On average, ~
41 million reads per sample were produced with a total
of ~ 245 million reads.

RNA-seq analysis
Raw reads were quality evaluated before the data analysis
using the program FastQC v0.11.5 [85]. A quality score
above Q30 was kept to maintain high accuracy in the
downstream analysis. Undefined bases (Ns) within the
reads and the presence of sequencing adapters were ex-
cluded with the program Cutadapt (version 1.8.3) [86].
Read mapping and transcript abundance were estimated
using salmon (v0.9.1) [87] in quasi-mapping mode with
the option --numBootstraps 30. The transcriptome index
was built from the 12,367 de novo reconstructed T.
magnatum high-confidence protein-coding transcripts
published by Vita et al. [33] with the options –keepDu-
plicates and --type quasi. Parameters not specified were
run as default. Salmon outputs were imported into R
with the Bioconductor package tximport (v1.0.3) [88]
and the transcript TPM abundance was summarized to
gene level abundance using the gene models (n = 6723)
published by Vita et al. [33]. The differential expression
(DE) analysis was conducted using the Bioconductor
package DESeq2 [89] setting the variable location as
condition in the design formula. Briefly, raw counts were
imported using the functions DESeqDataSetFromTxim-
port. Data were filtered for row sum counts > 1, result-
ing in n = 6665 genes. DE pairwise comparisons between
the three locations, using Alba as control, were carried
out according to the Wald Test with a FDR = 5%. Sam-
ple specificity was assessed calculating the Shannon en-
tropy for each gene expression profile using the
Bioconductor package BioQC with the function entropy-
Specificity [90].
RNA-seq data from this study have been submitted to

the NCBI Sequence Read Archive (SRA; http://www.
ncbi.nlm. nih.gov/sra/) under BioProject PRJNA501857.

Real-time PCR analysis
Total RNA was extracted as reported above for RNA-
seq analysis. Electrophoresis using 1% agarose gel was
performed for all RNA samples to check for RNA
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integrity, followed by spectrophotometric quantification
and quality control. RNA samples were then subjected
to DNase treatment using a Turbo DNA-free kit
(Ambion, USA) to remove possible DNA contamination.
RNA was then reverse-transcribed using SuperScript® III
Reverse Transcriptase kit (Life Technologies, UK) with
random primers. Gene expression analysis was carried
out using an ABI Prism 7300 sequence detection system
(Applied Biosystems, USA) as described by Bui et al.
[91]. Quantitative PCR was performed using 15 ng
cDNA and iQ™ Sybr Green Supermix (BioRad Labora-
tories), according to the manufacturer’s instructions.
Three technical replicates were performed for each
biological replicate (n = 6).
Primers were designed using the sequence information

derived from the de novo transcriptome assembly pub-
lished by Vita et al. [33]. Comparison results between
reference T. melanosporum and T. magnatum sequences
were reported in Supporting Information (see Add-
itional file 13: Table S9). Expression of T. magnatum
(AF054901) 18S rRNA was used as the housekeeping
gene. Relative gene expression levels were calculated
with the 2-ΔΔCt method [92]. Primers are listed in Sup-
porting Information (see Additional file 13: Table S9).
We first reconstructed the metabolic pathway of sulfur
compounds in T. magnatum, starting from the one de-
scribed in T. melanosporum by [22]. The choice of using
T. melanosporum genetic information was due by the
lacking of genetic information about the genome of T.
magnatum when this work was originally designed. The
publication of the work by Murat et al. [23] made avail-
able new information about T. magnatum including the
sulfur pathway genes. On this basis, we browsed the se-
quences from the previous transcriptome profiling by se-
quence similarity, using genes belonging to the
annotated T. melanosporum genome [22] as queries, in
order to define orthologous genes in T. magnatum (see
Additional file 13: Table S9).

Mass spectrometry analysis of VOC compounds
GC-MS analysis

SPME method Briefly, 1 g of fresh sample was placed
in a 20 mL crimped vial. Solid-phase microextraction
(SPME) was carried out in the headspace mode using
an autosampler AOC-5000 (Shimadzu) equipped with a
fused silica fiber coated with a 50/30 μm layer of divi-
nylbenzene/carboxen/polydimethylsiloxane, 1 cm long
(MilliporeSigma, Bellefonte, Pennsylvania, USA). The
fiber was conditioned according to manufacturer’s in-
structions. Samples were conditioned for 5 min at
50 °C, under agitation (clockwise, rotation at 500 rpm),
before exposing the fiber for 20 min at 50 °C, under

continuous agitation. Analytes were then desorbed for
1 min at 260 °C in the GC injector in splitless mode (1
min). Each sample was analyzed in triplicate. Raw data
related to the first 2 years of analysis (2014–2015) are
already reported and processed with different statistical
methods [52].

GC–MS and GC-FID analysis
GC–MS and GC-FID runs were carried out on a two
parallel GC-QP2010 and GC2010 instruments (Shi-
madzu, Kyoto, Japan). The GC column used was a 30
m × 0.25 mm i.d. × 0.25 μm df Supelcowax-10 column
(Millipore-Sigma). Helium was exploited as carrier gas,
at a constant linear velocity of 30.0 cm/s, which corre-
sponded to an inlet pressure of 26.4 kPa for GC-MS and
97.4 kPa for GC-FID. The temperature program was the
same in both analysis-type: 40 °C at 3 °C/min to 250 °C,
at 10 °C/min to 280 °C, held 10min.
GC-MS ion source temperature was set at 200 °C; the

interface temperature at 250 °C. Scan range was set to
m/z 40–360, with a scanning rate of 2000 amu/s. FFSNC
3.0 (Shimadzu) and NIST11 (Wiley) commercial libraries
were used for identification, applying two filters, namely
a spectrum similarity match over 85% and Linear Reten-
tion Index (LRI) (related to a C4-C24 FAMEs mixture)
agreement in the ±15 range.
The FID temperature was set at 280 °C (sampling rate

40 ms) and gas flows were 40 mL/min for hydrogen and
400 mL/min for air, respectively.
The data handling was supported by GCMSsolution

ver.4.30 and GCsolution software (Shimadzu) for GC-
MS and GC-FID analysis, respectively.

Quantitative PTR-ToF-MS 8000 analysis
Samples were subjected to analysis of VOCs. Accurate
analysis of VOCs took advantage by the use of an in-
novative instrument, such as PTR-MS [53, 93–95], and
its upgraded version PTR-ToF-MS 8000, having in-
creased resolution coupling with the time of flight (ToF)
mass analyzer. In particular, the use of a PTR-ToF in-
strument expanded the mass range (m/z) of identifiable
compounds to small molecules (e.g. < 70 amu), for which
other spectrometers do not show the required sensitivity.
VOCs emitted from samples were collected from each
area (AL, IS, SM) during 4 different years (2014–2017);
details are reported in Table 1. Raw data related to the
first 2 years of analysis (2014–2015) are already reported
and processed with different statistical methods [52].
The analysis was mainly focused in the range from 30 to
120m/z as previously reportedin Vita et al. [52].
Volatiles were analyzed with a PTR-ToF-MS 8000 (Ioni-
conAnalytik GmbH, Innsbruck, Austria) using H3O

+ as
reagent ion for the proton transfer reaction. The reac-
tion takes place between H3O

+ ions and all the biogenic
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or anthropogenic VOCs having a proton affinity higher
than that of water (165.2 kcal mol− 1). Separation of
single ions happens accordingly to their mass to charge
(m/z) ratio. Drift applied voltage was set at 600 V,
temperature at 110 °C, and pressure at 2.25 mbar. For
each sample, about 6 g of material was transferred in a
glass jar provided with a special lid that allowed Teflon
connection to a zero-air generator (inlet) and the PTR-
ToF system (outlet). The head space was then measured
by direct injection into the PTR-ToF drift tube inlet for
150 s, after respectively 1 and 20min of exposure.
Preliminary measurements on an empty jar were run

before every experiment and used for background sub-
traction. All mass spectra up to m/z = 315 were simul-
taneously detected and recorded with 1 s as integration
time. Internal calibration was based on m/z = 18.0338
(NH4

+), m/z = 21.0202 (H3
18O+) and m/z = 29.9974

(NO+). For more detailed explanation see Lindinger
et al. [96] and Brilli et al. [97]. Spectra raw data (count
rate of the analytes recorded expressed in number of
counts per second, cps) were acquired with TofDaq soft-
ware (Tofwerk AG, Switzerland). For each sample, the
average data resulting from consecutive 20 s of measure-
ment were extracted after 1 and 20 min from the begin-
ning of the experiment. At least six technical replicates
were performed for each sample as well as each year of
analysis.
Quantitative differences (ppb values) data were then

primarily normalized on the base of the surface/weight
rapport of the analyzed fruiting bodies (sup/vol).

Statistical analysis of VOCs results
Multivariate partial least squares-discriminant analyses
(PLS-DA) (supervised method) were applied on the 165
VOCs spectra from 64 T. magnatum samples obtained
by GC-MS (4 years) and 65 VOCs spectra from 92 sam-
ples obtained by PTR-ToF-MS (4 years), respectively.
Two distinct models were built up to compare the ability
of the different chemometric approach to correctly clas-
sify the three different genotypes of truffles, independ-
ently from the sampling time. As a pre-processing step,
data were submitted to a logarithmic (log10 + 1) trans-
formation and auto-scaling. The whole data set was each
time split into training and validation subsets, optimally
chosen with the Euclidean distances based on the algo-
rithm of Kennard and Stone [98]. The training data set
(about 80% of the samples) was used for selecting the
optimal number of latent variables (LVs) throughout the
calibration and cross-validation phases; the test set
(about 20% of samples previously removed from the data
set) was used to predict the class membership (external
validation). The training set was used to fit a model
based on Venetian blinds cross-validation procedures,
evaluated by the number of correct predictions and the

root-mean-squared error of cross-validation (RMSECV),
and validated with the removed samples (external valid-
ation set). External validation of the model was quanti-
fied by the root-mean-squared error of prediction
(RMSEP). The optimal number of LVs was selected as
those associated with the minimum error and misclassi-
fication rate of the calibration dataset. The reliability of
the model was tested by confusion matrices. The thresh-
old to assign a sample to a class was chosen to minimize
the number of false positives and false negatives (Bayes
theorem). Variable Importance in Projection (VIP)
scores (p = 0.01) were also calculated. A random permu-
tation of the class labels (permutation test) was also per-
formed (500 iterations), with the aim to generate
nonsense datasets for comparison with the true model
and to evaluate the probability that the model was
significantly different from one casually built up under
the same conditions. PLS-DA was performed by PLS-
Toolbox v. 8.0.2 (Eigenvector Research Inc., West
Eaglerock Drive, Wenatchee, WA) for MATLAB®
R2015b (Mathworks Inc., Natick, MA, USA). Data from
PTR-ToF analysis were then submitted to Canonical
correspondence analysis (CCoA), with the aim to detect
possible correlations among VOC and climatic condi-
tions. This method allows comparing two sets of vari-
ables, extracting ordination axes that are linear
combinations of VOCs (criterion variables) explaining
at the same time as much as possible of the variance in
the environmental data (explanatory variables, see
Additional file 21: Table S16). The samples were or-
dered with the components maximally interpreting the
environmental data as well. CCoA analysis was per-
formed using SYN-TAX 2000, Ordination package [99].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6522-3.

Additional file 1: Table S1. Summary results of post-hoc tests per-
formed on quantitative protein spot data obtained from 2-DE gel analysis
of Alba (AL), San Miniato (SM) and Isernia (IS) fruiting bodies.

Additional file 2: Table S2. Protein identified by nanoLC-ESI-LIT-MS/MS
analysis. Proteins were sorted based on their exponentially modified Pro-
tein Abundance Index (emPAI). Shadings highlight uncharacterized
proteins.

Additional file 3: Table S3. Additional information related to the
uncharacterized and predicted proteins identified through mass
spectrometry.

Additional file 4: Table S4. Summary of sulfur-related proteins identi-
fied by nanoLC-ESI-LIT-MS/MS analysis.

Additional file 5: Table S5. RNA-seq statistics from Vita et al. [33].

Additional file 6: Figure S1. Euclidean distance among samples. The
heat map shows sample to samples distances indicating the strong
correlation between biological replicates. The distance matrix was
calculated from the normalized expression dataset using the variance-
stabilizing transformations function from the Bioconductor package
DESeq2. Data were hierarchically clustered based on sample distances.

Vita et al. BMC Genomics           (2020) 21:90 Page 21 of 25

https://doi.org/10.1186/s12864-020-6522-3
https://doi.org/10.1186/s12864-020-6522-3


Biological replicates are indicated as r1 (year 2014) and r2 (year 2015).
Shades of grey represent different extents of correlation among samples;
black represents perfect positive correlation.

Additional file 7: Figure S2. Volcano plots representing the
differentially expressed genes based on RNA-seq data. Pairwise compari-
sons are shown for San Miniato vs Alba (a) and Isernia vs Alba (b). Yellow
dots highlight DEGs selected for |log2 fold change| > 1.5 and FDR < 0.05.

Additional file 8: Table S6. Top 100 transcripts related to San Miniato
– Alba comparison (differential expression analysis results).

Additional file 9: Table S7. Top 100 transcripts related to Isernia – Alba
comparison (differential expression analysis results).

Additional file 10: Figure S3. Sample gene specificity. Shannon
entropy (SH) distribution of T. magnatum genes (n = 6665) based on the
expression data (in transcripts per million, TPM). A SH coefficient > 0.6
represents the gene-specific expression associated to each T. magnatum
ecotype (i.e. geographical accession, see Additional file 11: Data file S1).

Additional file 11: Data file S1. Differentially expressed genes (DEGs)
data related to sample comparisons. Data sheets A) DEGs related to
comparison San Miniato (SM) vs Alba (AL); B) DEGs related to comparison
Isernia (IS) vs Alba (AL); C) DEGs identified in both the comparisons
(SMvsAL, ISvsAL); D) DEGs identified only in San Miniato (SM) vs Alba (AL);
E) DEGs identified only in Isernia (IS) vs Alba (AL); F) Gene specificty
reported in TPM (transcripts per million) for each sample.

Additional file 12: Table S8. Sample-specific expression of T. magna-
tum genes involved in sulfur metabolism.

Additional file 13: Table S9. T. magnatum genes involved in the sulfur
metabolism and annotated in T. melanosporum.

Additional file 14: Figure S4. Relative expression level of the genes
selected for the qPCR. Relative levels were expressed, for each gene, as
fold change (FC) from the reference sample SM 2014. Data are mean
values of transformed data (log10(FC + 1) related to gene expression (n =
4), calculated with the 2-ΔΔCt method [92]. Letters indicate results of
Tukey post-hoc test analysis. Sample names correspond to those reported
in Table 1. For a reference to RNA-seq transcript IDs, see Additional file
13: Table S9.

Additional file 15: Table S10. Compounds identified through GC-MS
analysis.

Additional file 16: Table S11. PLS-DA (GC MS model) statistics for each
Y-Block (class 1 = Alba; class 2 = Isernia; class 3 = San Miniato) related to
64 truffle samples.

Additional file 17: Table S12. VIPs compounds (GC-MS data)
according to PLS-DA analysis. Compounds that displayed VIP scores ≥2
(bold marked) in at least in one sample are shown.

Additional file 18: Table S13. Compounds identified through PTR-ToF
analysis conducted during 4 years of experimental work.

Additional file 19: Table S14. PLS-DA (PTR-ToF-MS model) statistics for
each Y-Block (class 1 = Alba; class 2 = Isernia; class 3 = San Miniato) related
to 92 truffle samples.

Additional file 20: Table S15. VIPs compounds (PTR-ToF data)
according to PLS-DA analysis.

Additional file 21: Table S16. Climatic parameters on the fruiting
bodies sampling area for the four-year period 2014–2017 used for statis-
tical analysis of PTR-ToF data (CCoA).
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