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Abstract

Background: The trading of individual animal genotype information often involves only the exchange of the called
genotypes and not necessarily the additional information required to effectively call structural variants. The main
aim here was to determine if it is possible to impute copy number variants (CNVs) using the flanking single
nucleotide polymorphism (SNP) haplotype structure in cattle. While this objective was achieved using high-density
genotype panels (i.e., 713,162 SNPs), a secondary objective investigated the concordance of CNVs called with this
high-density genotype panel compared to CNVs called from a medium-density panel (i.e., 45,677 SNPs in the
present study). This is the first study to compare CNVs called from high-density and medium-density SNP
genotypes from the same animals. High (and medium-density) genotypes were available on 991 Holstein-Friesian,
1015 Charolais, and 1394 Limousin bulls. The concordance between CNVs called from the medium-density and
high-density genotypes were calculated separately for each animal. A subset of CNVs which were called from the
high-density genotypes was selected for imputation. Imputation was carried out separately for each breed using a
set of high-density SNPs flanking the midpoint of each CNV. A CNV was deemed to be imputed correctly when the
called copy number matched the imputed copy number.
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Results: For 97.0% of CNVs called from the high-density genotypes, the corresponding genomic position on the
medium-density of the animal did not contain a called CNV. The average accuracy of imputation for CNV deletions
was 0.281, with a standard deviation of 0.286. The average accuracy of imputation of the CNV normal state, i.e. the
absence of a CNV, was 0.982 with a standard deviation of 0.022. Two CNV duplications were imputed in the
Charolais, a single CNV duplication in the Limousins, and a single CNV duplication in the Holstein-Friesians; in all
cases the CNV duplications were incorrectly imputed.

Conclusion: The vast majority of CNVs called from the high-density genotypes were not detected using the
medium-density genotypes. Furthermore, CNVs cannot be accurately predicted from flanking SNP haplotypes, at
least based on the imputation algorithms routinely used in cattle, and using the SNPs currently available on the
high-density genotype panel.

Keywords: CNV, Bovine, PennCNV, QuantiSNP, Beagle, FImpute, SNP, Imputation

Background
A copy number variant (CNV) is a form of genetic variation
that arises from a deletion or duplication of a stretch of
DNA [1]. By convention, CNVs typically have a minimum
length of 1 kb; deletions or duplications that are shorter are
usually considered to be indels [2]. Copy number variants
are a common feature of the bovine genome, with the aver-
age number of CNVs per individual, identified from high-
density genotype data, ranging from 18 to 51 [3–5]. In cat-
tle, there are reported associations between CNVs and milk
production [6], meat tenderness [7], and health traits [8].
Several software suites exist to call CNVs from single nu-

cleotide polymorphism (SNP) data now routinely generated
from what are commonly called SNP-chips or beadchips [9].
PennCNV [10] and QuantiSNP [11] are two such software
suites and both algorithms use the Log R Ratio (LRR) and B
allele frequency (BAF) values of SNPs to call CNVs. Where
the LRR or BAF values are not available, CNVs cannot be
identified. Such situations may exist where genotypes have
been exchanged among parties [12], where only the called
genotype was exchanged, but also in situations where the
LRR and BAF were historically not stored. If CNVs can be
accurately imputed from SNP haplotypes flanking the CNV,
then CNVs could be called from SNP data that lacks LRR or
BAF values.
Microsatellites, which are structurally similar to CNVs,

have previously been imputed from flanking SNPs genotyped
using a high-density SNP genotype panel in more than 8000
cattle; the median imputation accuracy was 72%, but the ac-
curacy of imputation for some microsatellites was up to
100% [13]. The objective of the present study was to quantify
the accuracy of imputing CNVs detected using CNV calling
algorithms from the haplotypes of flanking high density
SNPs in cattle. Given the greater usage of medium-density
genotypes (c.a. 50,000 SNPs) relative to high-density geno-
types (c.a. 777,000 SNPs) in cattle, of particular interest in
the present study was also the concordance between CNVs
called from high-density SNP platforms and CNVs called
from medium-density SNP platforms.

Results
Comparison of CNVs called from the high-density and
medium-density genotypes
PennCNV called a total of 10,971 CNVs from the
medium-density genotypes and a total of 159,046 CNVs
from the high-density genotypes across all three breeds;
this included both novel CNVs and CNVs called in more
than one individual. The median number of CNVs per
animal called from the medium-density and high-density
genotypes were 2 and 27, respectively. Summary statis-
tics for the CNVs called from the high-density genotypes
that overlapped with CNVs called from the medium-
density genotypes are presented in Table 1. For all three
breeds, CNVs called from the high-density genotype
panel whose genomic position overlapped with a CNV
called from the medium-density genotype were, on aver-
age, longer than CNVs detected on the high-density ge-
notypes whose genomic position did not overlap with
any CNVs detected on the medium-density genotype
(p < 0.05). Irrespective of breed, CNVs called from high-
density genotypes whose genomic position overlapped
with CNVs called from the medium-density genotypes
occurred less frequently in the population than the
CNVs that had no overlap (p < 0.05). For 97.0% of the
CNVs called from the high-density genotypes, a CNV
was not detected in the same genomic region of the
same animal using the medium-density genotype. For
87.4% of the CNVs called from the high-density geno-
types, the same genomic region on the medium-density
genotype had less than 3 SNPs; therefore a CNV could
never be called in those genomic regions using the
medium-density genotype panel because PennCNV re-
quires a minimum of 3 SNPs to be called.

Imputation
The accuracy of imputing CNVs was similar for both
FImpute and Beagle, and thus, only the results relating
to imputation using FImpute are presented; results relat-
ing to imputation with Beagle are presented in the
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additional files. The normal state (i.e. the absence of a
CNV) was imputed with a greater accuracy than deletions
or duplications (p < 0.05). The summary statistics regarding
the accuracy of imputation for deletions and the absence of
a CNV are presented in Table 2. Two duplications were im-
puted in the Charolais, one in the Limousins, and one in
the Holstein-Friesians; in all cases, the imputed copy num-
ber did not match the called copy number. There was no
difference in the accuracy of imputation between the
breeds, except for single deletions which were more accur-
ately imputed in Charolais than in Holstein-Friesians (p <
0.05). Irrespective of breed, the accuracy of imputing the
CNV genotypes was not influenced by the number of flank-
ing SNPs used in the imputation process. The relationship
between the accuracy of imputation and the population fre-
quency of the CNV, and the relationship between the ac-
curacy of imputation and the genomic length of the CNV is
in Figs. 1 and 2, respectively; neither of the correlations dif-
fered from zero for any of the three breeds. In Holstein-
Friesians, CNVs which were accurately imputed had, on
average, a higher Bayes factor than CNVs inaccurately im-
puted (p < 0.05), whereas in the Limousins the opposite was
true (p < 0.05). In the Charolais, and all three breeds com-
bined, there was no difference in the Bayes factor between
CNVs where the called and imputed copy number matched
versus CNVs where the imputed and called copy number
did not match.

In addition to the imputation accuracy, the adjusted
Rand Index was calculated separately for each breed to
quantify the agreement between the called copy number
and the imputed copy number of a CNV. The adjusted
Rand index was 0.524 for Charolais, 0.361 for the Lim-
ousins, and 0.285 for the Holsteins-Friesians meaning
there was more similarity between the called copy num-
ber and the imputed copy number of the CNVs than
was expected by chance, albeit not a very strong agree-
ment, given the maximum value the adjusted Rand index
can take is 1.
In the present study, most CNVs were imputed with

low accuracy; however, there were some CNVs which
had an imputation accuracy of at least 85% within breed.
The CNVs with an accuracy of at least 85% are pre-
sented in Table 3.

Discussion
Associations between CNVs and phenotypic perform-
ance have been documented in a whole multitude of
species including dairy cattle [6], beef cattle [7, 8], chick-
ens [14], dogs [15], pigs [16] and humans [17–19]; thus
CNVs are likely to contribute to some of the underlying
genetic variability. The ability to estimate the genomic
or phenotypic merit of individuals based on CNVs re-
quires knowledge of the CNV genotypes of those ani-
mals. Specialized calling algorithms are generally used to

Table 1 The first quartile, median, and third quartile for the genomic length, and the number of SNPs per CNV for the CNVs called
from the high-density genotypes. The CNVs called from the high-density genotypes are grouped separately based on the degree of
overlap of the genomic position of the CNVs called from the high and medium density genotypes. Direct overlap is where is the
genomic position of both CNVs were the same, partial overlap is where the genomic positions partially overlapped, and no overlap
is where the genomic positions of the CNVs did not overlap

Count Q1 length (kb) Median length (kb) Q3 length (kb) Q1 number of SNPs Median number of SNPs Q3 number of SNPs

Direct overlap 19 77.3 115.2 165.8 13 22 39

Partial overlap 4828 61.4 139.8 279.4 18 41 80

No overlap 154,199 14.8 36.1 79.8 5 11 23

Table 2 The first quartile, median, and third quartile of the accuracy of imputation of CNVs grouped by called copy number and
breed. The number of CNVs in each group is also given. Summary statistics for duplications (n = 4) were not included because for
each duplication the imputed copy number did not match the called copy number

Breed First quartile Median Third quartile Number of CNVs

Double deletions Charolais 0.110 0.167 0.500 9

Limousin 0.000 0.000 0.167 15

Holstein-Friesian 0.000 0.083 0.167 15

Single deletions Charolais 0.096 0.397 0.705 34

Limousin 0.083 0.241 0.509 38

Holstein-Friesian 0.004 0.092 0.300 22

Normal Charolais 0.974 .991 0.997 36

Limousin 0.978 0.985 0.994 40

Holstein-Friesian 0.974 0.987 0.994 24
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detect CNVs from SNP genotype data [10, 11], with
most studies opting to use either PennCNV [4, 20, 21]
or QuantiSNP [21–23]; these were the two calling algo-
rithms used in the present study. The density of geno-
type panels used in CNV-based studies in cattle varies
from circa 50,000 SNPs [24–26] to over 700,000 SNPs
[21, 27, 28]. Little, however, is known of the ability of
circa 50,000 SNP panels to detect CNVs identified from
higher density SNP panels; this is particularly important
given the greater usage of medium-density (i.e. circa 50,
000 SNPs) genotype panels in domesticated species.

Comparison of CNVs called from the high-density and
medium-density genotypes
The present study is the first such in cattle to directly
compare CNVs called from medium-density and high-
density genotypes in the same animals. PennCNV re-
quires a minimum of 3 SNPs to call a CNV; for 84.7% of
CNVs called from the high-density genotypes, the same
genomic region of the CNV on the medium-density
genotype panel had less than three SNPs. Therefore
those CNVs could never have been called using the
medium-density genotypes. Even though no study, to
date, has compared the concordance of CNVs called
from high-density genotypes versus medium-density ge-
notypes in the same cattle, the trend observed in the

literature is that more CNVs are called from high-
density genotypes than medium-density genotypes. In
cattle, typically between 18 and 51 CNVs are called per
animal from high-density genotypes (c.a. 700,000 SNPs)
[3–5], whereas other cattle studies using medium-
density genotypes (c.a. 50,000 SNPs) have reported be-
tween 1 and 7 CNVs per animal [25, 26], which is con-
sistent with the results of the present study.
The CNVs called from the high-density genotypes

whose genomic position overlapped with CNVs called
from the medium-density genotype panel had a lower
population frequency than CNVs with no overlap be-
tween panels. This is in line with expectations because
longer CNVs were more frequently overlapped and it
has previously been shown that longer CNVs tend to
have a lower population frequency [21]. In a study some-
what similar to the present study, Purfield et al. [29]
compared genomic features, known as runs of homozy-
gosity, called from high-density but also from masked
genotypes on the same cattle to mimic a medium-
density panel; Purfield et al. [29] reported that runs of
homozygosity were more frequently identified from the
higher-density genotypes than from medium-density ge-
notypes. Furthermore, there was a positive relationship
between the length of the run of homozygosity identified
from the high-density genotypes and the probability of

Fig. 1 Scatter plot of the percentage imputation accuracy against the percentage population frequency of each CNV. A CNV was deemed to be
correctly imputed when the called copy number matched the imputed copy number. The red circles represent double deletions (n = 9 in
Charolais, 15 in Limousin and Holstein-Friesian), green triangles represent single deletions (n = 34 in Charolais, n = 38 in Limousin, and 22 in
Holstein-Friesian), blue squares represent normal state (n = 36 in Charolais, 40 in Limousin, and 24 in Holstein-Friesian), double duplications are
represented by a purple cross (n = 2 in Charolais, n = 1 in Limousin and Holstein-Friesian)
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overlap with a run of homozygosity identified from the
medium-density genotype in the same animal [29]. This
pattern of overlap is analogous to the pattern of overlap
observed in the present study for CNVs called from the
medium-density and high-density genotypes.
The median number of CNVs called per animal from

the medium-density genotype in the present study was
2, but it was 27 for the high-density genotypes; given
that the false positive rate of CNVs called from
PennCNV and QuantiSNP is reported to be 1–2% [10,
11, 22] it suggests that most of the CNVs called from
the high-density genotype panel are in fact true CNVs.
Therefore, many CNVs probably cannot be detected
using the medium-density genotype panel. Moreover, it

may be hypothesized that the number of CNVs detected
with the high-density genotypes is only a fraction of
those that truly exist and could be detected with ultra-
high-density genotypes (i.e., sequence). In cattle, many
more CNVs are called using whole genome sequence
than from high-density genotype data; Kommadath et al.
[30] reported that the average number of CNVs called
from whole genome sequence data is 304 CNVs per ani-
mal in cattle. By comparison for high-density genotype
data, the average number of CNVs per animal is re-
ported to be between 18 and 51, as mentioned previ-
ously. It may be the case that many of the additional
CNVs called from whole genome sequence are true
CNVs that cannot or are unlikely to be called from

Table 3 The location and population frequency of CNVs with an accuracy of at least 85% within at least one of the three breeds.
The population frequency is the number of times the CNV was present in the total population, i.e. the reference and validation
population. The accuracy, given as a percentage, is the number of times the CNV was accurately imputed divided by the number of
times that CNV was called in the validation population. Where an accuracy of NA is reported, imputation was not undertaken for
that CNV in that breed

CNV genomic location Limousin Charolais Holstein-Friesian

Population frequency Accuracy, % Population frequency Accuracy, % Population frequency Accuracy, %

12:72,174,261–72,259,734 40 20.8 29 NA 47 100

7:10,216,191–10,270,468 0 NA 0 NA 45 88.1

5:41517287–41,528,650 2 NA 44 87.5 0 NA

Fig. 2 Scatter plot of percentage imputation accuracy against genomic length of CNVs. A CNV was deemed to be correctly imputed when the
called copy number matched the imputed copy number. The red circles represent double deletions (n = 9 in Charolais, 15 in Limousin and
Holstein-Friesian), green triangles represent single deletions (n = 34 in Charolais, n = 38 in Limousin, and 22 in Holstein-Friesian), blue squares
represent normal state (n = 36 in Charolais, 40 in Limousin, and 24 in Holstein-Friesian), double duplications are represented by a purple cross
(n = 2 in Charolais, n = 1 in Limousin and Holstein-Friesian)
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high-density SNP data. A possible reason for this is that
short CNVs may be present in genomic regions in-
between genotyped SNPs on panels, or do not encom-
pass the required minimum number of genotyped SNPs
to be called by a CNV calling algorithm; in the case of
PennCNV, three SNPs are required to call a CNV.
Another possible factor that might limit the ability of

high-density SNP genotype data to detect CNVs is bias
in SNP selection for commercially available SNP geno-
type panels. One of the selection criteria for including
SNPs on a genotype panel is high genotyping accuracy
[31]. The SNPs which do not adhere to expected Men-
delian inheritance patterns, and the SNPs that have poor
genotyping clustering scores tend to be considered geno-
typing errors, and as such, tend not to be included in
genotype panels. While genotyping error can cause
Mendelian inconsistencies and poor genotype clustering,
both can also be caused by the presence of a CNV or
indel [32]. Therefore, genomic regions that are fre-
quently subject to copy number variation may be poorly
represented by SNPs on genotype panels.

Imputation
Imputation of CNVs from flanking SNPs genotypes has
not previously been attempted in cattle although it has
been studied in humans [33]. Handsaker et al. [33] used
Beagle V4.0 to impute CNV duplications called from
whole genome sequence in 849 people sequenced as part
of the 1000 Genomes Project; the CNVs in that study
were called using the Genome STRiP algorithm [34].
Handsaker et al. [33] reported that the correlation be-
tween the actual copy number and the imputed copy
number of a CNV was uniformly distributed between 0
and 100% with an average accuracy of approximately
50%. Similarly, in the present study there was a wide
range in CNV imputation accuracy within each of three
breeds (Fig. 1.).
Su et al. [35] developed the polyHap 2.0 software pack-

age to impute the copy number of SNPs from genotype
data. Their dataset consisted of CNVs called from be-
spoke SNP genotypes (i.e., 244,000 SNPs) of 48 French
human males with the ADM2 CNV calling algorithm,
and CNVs called from Illumina Hap 370 genotypes of
695 Finnish human males using PennCNV and Quan-
tiSNP. Su et al. [35] deemed the copy number of a SNP
to be correctly imputed when the called copy number
matched the imputed copy number. They reported an
imputation accuracy of between 91 and 100% in the 48
French human males, and an imputation accuracy of be-
tween 92 and 97% in the 695 Finnish human males. In
the present study, as well as in the study of Handsaker
et al. [33], the validation populations contained only the
genotype data of the flanking SNPs/nucleotides; in con-
trast, Su et al. [35] imputed to a validation population in

which the copy number and genotypes of the flanking
SNPs was actually known. Given that Su et al. [35] im-
puted to a validation population in which the copy num-
ber state of the flanking SNPs was known, it is expected
that imputation would be more accurate than if the copy
number of the SNPs in the validation population was not
known. This is because a CNV is a continuous stretch of
DNA that displays a gain or loss in copy number and
therefore the copy number of an individual SNP can often
be inferred from the copy number of its flanking SNPs.
The average accuracy of imputation for the deletion

CNVs in the present study was 28.6%, meaning that
across all animals with a called deletion CNV, the called
copy number matched the imputed copy number in only
28.6% of cases. For all 4 duplication CNVs examined,
the imputed copy number never matched the called
copy number. By comparison the average accuracy of
imputation for SNPs in cattle is reported to be > 90%
[36–38], while the average accuracy of imputation for
microsatellites was reported to be 72% [13]. The low im-
putation accuracy of CNVs relative to both SNPs and
microsatellites could be due to several reasons. Firstly, in
the present study, the imputed genotype of CNVs was
compared to the called genotype of CNVs; therefore low
accuracy could be a result of inaccurate CNV calling or
inaccurate CNV imputation. In this study, to be more
confident in the CNVs called, only CNVs which were
called by both PennCNV and QuantiSNP were exam-
ined. Furthermore, across all three breeds, the Bayes fac-
tor of CNVs was not different between the CNVs whose
called copy number matched the imputed copy number
and the CNVs whose called and imputed copy number
did not match. Taken together, this indicates that false
positive CNVs in the reference and validation populations
probably did not impact much the accuracy of imputation.
For the present study, false negative CNV calls could, in
part, be accounted for by using pedigree information.
Using pedigree information, opposing homozygous CNVs
present in sire-progeny pairs can be identified, and oppos-
ing homozygous CNVs may have arisen from false nega-
tive CNV calls. For both FImpute and Beagle, imputation
was carried out using pedigree information.
Another possible reason for the low accuracy of im-

putation could also be due ascertainment bias in the
SNP selection criteria for SNP genotype panels. The
SNPs used in SNP imputation studies [36–38] are SNPs
on commercially available genotyping panels; one of the
selection criteria for SNPs to be included on a genotype
panel is high minor allele frequency (MAF) [31, 38, 39].
The microsatellites used in the McClure et al. [13] study
were microsatellites that had been commonly used for
parentage verification in cattle. Similar to the SNPs on
the commercially available genotype panels, these micro-
satellites also had high MAF in the cattle population
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[13]; in contrast, CNVs tend to be rare [7, 20, 21]. The
difference in the MAF between CNVs and the SNPs
used to impute those CNVs may therefore contribute to
the low imputation accuracy of CNVs. This is because
imputation relies on linkage disequilibrium between the
known (i.e., genotyped) variants and the missing vari-
ants; common variants cannot be in complete linkage
disequilibrium with a rarer variant because there has to
be cases where the common variant is present and the
rare variant is absence. Therefore, the low accuracy of
imputation of CNVs in the present study could be be-
cause the SNPs flanking the CNV had a higher fre-
quency in the population than the CNV. Successful
imputation of CNVs from SNP genotype data may re-
quire the use of SNPs which have a MAF similar to the
MAF of the CNVs to be imputed.

Conclusions
In this study CNVs could not be accurately detected
using SNP haplotype data available on the BovineHD
SNP chip. Current CNV detection algorithms rely on
the LRR and BAF values to detect CNVs; where geno-
type data are exchanged between parties, the LRR and
BAF will have to be included with the genotype data to
facilitate CNV detection. Where it is known that a CNV
is associated with, or contributes to a phenotype, that re-
gion of the genome should be more densely populated
with SNPs on a SNP genotype panel enabling improved
accuracy in the identification of CNVs associated with
production in cattle. Overall, this could contribute to
improved genomic and phenotypic predictions.

Methods
Genotype data
BovineHD BeadChip (Illumina Inc., San Diego, CA) geno-
types, which included LRR and BAF information for all
SNPs, were available on 1015 Charolais, 991 Holstein-
Friesian, and 1394 Limousin bulls. The position of the
SNPs in the BovineHD BeadChip genotype panel was
based on the UMD 3.1 build of the bovine genome [40].
Excluded were single nucleotide polymorphisms on the X
and Y chromosomes, SNPs without a reported chromo-
some or position, SNPs with a call rate of less than 95%,
and SNPs whose genotypes were inconsistent with Men-
delian inheritance in more than 2% of the parent-progeny
pairs based on a population of 2291 parent-progeny pairs
[41]; after edits 713,162 SNPs remained.

CNV calling software
PennCNV [10] and QuantiSNP [11] are CNV calling al-
gorithms used to call CNVs from raw SNP data. Both al-
gorithms use hidden Markov models to detect CNVs
based on the LRR and BAF of SNPs. The LRR of a SNP
is the log of the observed probe hybridization intensity

divided by the expected probe hybridization intensity. The
expected probe hybridization intensity is the intensity that
was observed in a reference sample; it is a measure of the
fluorescence intensity produced by hybridization of a
probe to a SNP array. The BAF is the proportion of B al-
leles at a SNP. PennCNV requires a CNV to contain a
minimum of three consecutive SNPs. Therefore the mini-
mum number of SNPs for a CNV called by PennCNV or
QuantiSNP was set to three; this applied to CNVs called
from both the high-density and the medium-density geno-
types separately. No upper threshold for the number of
SNPs per CNV was specified. Diskin et al. [42] reported
that the median LRR value of a 1Mb region of the gen-
ome correlates with the guanine-cytosine (GC) content of
DNA in that region. The GC adjustment was applied to
account for the correlation between the LRR value of
SNPs and the GC content of the genome 500 kb flanking
either side of the SNP. The GC content of the genome
was calculated from the UMD_3.1.1 / bosTau8 genome,
complied as of June 2014.

Comparison of CNVs from high-density and medium-
density SNP genotypes
A medium-density SNP genotype panel was created for
each animal using the edited high-density SNP genotype
panel. The medium-density SNP genotype panel con-
tained SNPs that were common between the edited
high-density SNP genotype panel and the commercially
available BovineSNP50 beadchip (Illumina Inc. San
Diego, CA). The medium-density genotype panel used in
the present study contained 45,677 SNPs. Copy number
variants were called from the high-density genotypes of
each animal in the population using both PennCNV and
QuantiSNP; CNVs from the medium density panel were
called using just PennCNV. The CNVs called from both
genotypes panels by PennCNV were compared for each
animal. When the genomic position of a CNV called
from the high-density genotypes overlapped with the
genomic position of a CNV called from the medium-
density genotypes in the same animal, the CNVs were
said to overlap. The overlapping region was defined as
the genomic region that was common to the CNV called
from the high-density genotype and the CNV called
from the medium-density genotype.

Copy number variant imputation
Beagle V4.0 [43] and FImpute [44] are two commonly
used imputation software suites; in the present study,
these software suites were used to impute CNVs from
flanking SNP haplotypes. Beagle uses a hidden Markov
model approach to impute missing genotype data in in-
dividuals based on the haplotype structure in a reference
population which contains both the called CNVs and
flanking SNPs. FImpute uses a sliding window approach
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to identify haplotypes that are shared between individuals
in the population. Imputation was carried out separately
on the same set of CNVs using both FImpute and Beagle;
both software suites were run with default settings with an
optional parameter to include pedigree information.
Within each of the three breeds, the oldest 80% of animals
were used as the reference population with the remaining
20% of animals used as the validation population. The
same reference and validation populations were used for
the imputation with both Beagle and FImpute.

Copy number variant imputation from SNP genotype
data
The dataset of CNVs used for imputation was the set of
CNVs which were called by both PennCNV and Quan-
tiSNP using the high density genotypes. A CNV was
considered to be called by both PennCNV and Quan-
tiSNP when the CNV was called in the same animal by
both algorithms; a difference of one SNP in the end
point demarcation of CNVs between PennCNV and
QuantiSNP was allowed [11, 22].
A set of CNVs was selected for imputation within each

of three breeds separately. These CNVs were selected
based on population frequency; CNVs which were
present in at least 30 animals in the breed were selected
for imputation, leading to 40 CNVs being selected in Li-
mousin, 36 in Charolais, and 24 in Holstein-Friesian.
The reason for selecting CNVs which were present in at
least 30 animals within breed was to avoid small sample
bias when comparing the imputed copy number of the
CNV to the called copy number of the CNV.
For imputation, the selected CNVs were recoded as

variants; the actual position chosen for the variant was
the midpoint of the CNV. For imputation using Beagle,
each CNV was represented as a tri-allelic variant where
each allele could be a deletion, a duplication, or normal
(i.e. the absence of a deletion or duplication). A double
deletion was represented as a homozygous deletion, a
single deletion was a heterozygous deletion normal, a
normal variant was homozygous normal, a single dupli-
cation was a heterozygous duplication normal, and a
double duplication was a homozygous duplication. Un-
like Beagle which is capable of imputing multi-allelic
markers, FImpute can only use bi-allelic markers for im-
putation; therefore, to impute CNVs which are tri-allelic
using FImpute, deletions and duplications were imputed
separately. Imputation was performed separately with
10, 25, 50, 100, 250, and 500 SNPs flanking each side of
the midpoint of the CNV for both FImpute and Beagle.
The SNPs used for imputation flanked the midpoint of
the CNV; as such some of the selected SNPs were within
the bounds of the CNV and the remaining SNPs flanked
the end points of the CNV.

Statistical analysis for imputation
A CNV was deemed to be correctly imputed when the
copy number of the imputed CNV matched the copy
number of the called CNV. The imputation accuracy was
calculated per CNV as the number of animals in the valid-
ation population with a correctly imputed CNV, divided
by the total number of animals in the validation popula-
tion; this calculation was performed within each breed
separately. The imputation accuracy was calculated separ-
ately for each copy number as called by PennCNV and
QuantiSNP. The adjusted Rand index [45] was used to as-
sess the agreement between the called copy number of the
CNVs and the imputed copy number of the CNVs. The
adjusted Rand index is a method for comparing the agree-
ment between clustering solutions that adjusts for chance
agreement [45]. The adjusted Rand index can have values
between − 1 and 1; a value of 1 corresponds to perfect
agreement, a value of 0 is the expected value for agree-
ment between random clusters, and negative values repre-
sent less agreement between groups than would have
been expected by chance [46].
To identify factors which may have impacted the ac-

curacy of imputation, an ANOVA, in conjunction with a
Tukey’s range test [47], was used to compare the mean
imputation accuracy between groups defined by: 1) the
number of flanking SNPs, 2) the different copy numbers
of the CNVs, and 3) the three different breeds. The
Pearson correlation coefficient was used to calculate the
correlation between the accuracy of imputation and the
population frequency of the CNV, as well as between the
accuracy of imputation and the genomic length of the
CNV. For each correlation, Fischer’s r to Z transform-
ation [48] was used to calculate the 95% confidence
interval for the correlation coefficient; correlations
where the 95% confidence interval included zero, were
not considered different from zero. QuantiSNP reports
the Bayes factor for each CNV; the Bayes factor is a
model comparison metric that reports the preference in
the data for one model over another [49]. The Bayes fac-
tor is a measure of whether the data supports a CNV be-
ing called a ‘true’ CNV in that animal. PennCNV does
not report the mean Bayes factor of a CNV. An ANOVA
analysis was used to determine if there was a difference
in the Bayes factor between CNVs where the called and
imputed copy number matched, and CNVs where the
called and imputed copy number did not match.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6627-8.

Additional file 1: Fig. S1. Scatter plot of the percentage imputation
accuracy against the percentage population frequency of each CNV. A
CNV was deemed to be correctly imputed when the called copy number
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matched the imputed copy number. The red circles represent double
deletions (n = 9 in Charolais, 15 in Limousin and Holstein-Friesian), green
triangles represent single deletions (n = 34 in Charolais, n = 38 in Limou-
sin, and 22 in Holstein-Friesian), blue squares represent normal state (n =
36 in Charolais, 40 in Limousin, and 24 in Holstein-Friesian), double dupli-
cations are represented by a purple cross (n = 2 in Charolais, n = 1 in Li-
mousin and Holstein-Friesian).

Additional file 2: Fig. S2. Scatter plot of percentage imputation
accuracy against genomic length of CNVs. A CNV was deemed to be
correctly imputed when the called copy number matched the imputed
copy number. The red circles represent double deletions (n = 9 in
Charolais, 15 in Limousin and Holstein-Friesian), green triangles represent
single deletions (n = 34 in Charolais, n = 38 in Limousin, and 22 in
Holstein-Friesian), blue squares represent normal state (n = 36 in Charolais,
40 in Limousin, and 24 in Holstein-Friesian), double duplications are rep-
resented by a purple cross (n = 2 in Charolais, n = 1 in Limousin and
Holstein-Friesian).

Additional file 3: Table S1. The first quartile, median, and third quartile
of the accuracy of imputation of CNVs grouped by called copy number
and breed. The number of CNVs in each group is also given. Summary
statistics for duplications (n = 4) were not included because for each
duplication the imputed copy number did not match the called copy
number.

Additional file 4: Table S2. The location and population frequency of
CNVs with an accuracy of at least 85% within at least one of the three
breeds. The population frequency is the number of times the CNV was
present in the total population, i.e. the reference and validation
population. The accuracy, given as a percentage, is the number of times
the CNV was accurately imputed divided by the number of times that
CNV was called in the validation population. Where an accuracy of NA is
reported, imputation was not undertaken for that CNV in that breed.

Abbreviations
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