Chen et al. BMC Genomics 2020, 21(Suppl 5):222
https://doi.org/10.1186/s12864-020-6651-8

BMC Genomics

METHODOLOGY Open Access

Using DenseFly algorithm for cell searching
on massive scRNA-seq datasets

Yixin Chen'", Sijie Chen'" and Xuegong Zhang'*"

Check for
updates

From 15th International Symposium on Bioinformatics Research and Applications (ISBRA '19)

Barcelona, Spain. 3-6 June 2019

Abstract

dropout events and batch effects.

Background: High throughput single-cell transcriptomic technology produces massive high-dimensional data,
enabling high-resolution cell type definition and identification. To uncover the expressional patterns beneath the
big data, a transcriptional landscape searching algorithm at a single-cell level is desirable.

Results: We explored the feasibility of using DenseFly algorithm for cell searching on scRNA-seq data. DenseFly is a
locality sensitive hashing algorithm inspired by the fruit fly olfactory system. The experiments indicate that DenseFly
outperforms the baseline methods FlyHash and SimHash in classification tasks, and the performance is robust to

Conclusion: We developed a method for mapping cells across scRNA-seq datasets based on the DenseFly
algorithm. It can be an efficient tool for cell atlas searching.

Keywords: DenseFly, Locality sensitive hashing, scRNA-seq, Cell searching

Background

Single-cell RNA sequencing (scRNA-seq) technologies
measure transcriptional profiles of individual cells, enab-
ling high-resolution approaches for cell-type (subtype)
definition and offering in-depth insights into cell-to-cell
variations [1-3]. High-throughput scRNA-seq data is ac-
cumulating at massive scales [4]. For instance, Han et al.
[5] and the Tabula Muris Consortium et al. [6] have
published two mouse scRNA-seq datasets, each with ~
100,000 cells characterized by the expression of thou-
sands of genes. The ongoing Human Cell Atlas (HCA)
project is aiming to provide the profiles of all human cell
types as a reference for future studies and is already
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producing massive single-cell omics data for many hu-
man tissues and organs [7, 8].

The accumulation of scRNA-seq data allows the com-
parative study of cells, which is a basic step in the
utilization of cell atlas data in the future. Given a set of
query cells, we need to search against the curated refer-
ence cells collected from HCA datasets or other datasets,
identify the most similar cells in the reference, and infer
the properties of the queries. As the query and the refer-
ence cell profiles are a vast collection of gene expression
vectors of very high dimensionality (e.g., up to ~ 10,000
gene expression features for millions of reference cells),
the efficiency of traditional tree-based data searching
methods will be challenged in time memory consump-
tion. There have been several researches mapping/
searching cells across different datasets such as scmap
[9], CellAtlasSearch [10] and comparisons [11] between
methods are available.
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Fig. 1 The result of the cell type identification experiment. The x-axis is the hash length while the y-axis is the average Cohen’s Kappa score
given by the five-fold cross-validation. The performance of all algorithms improved as the hash length becomes larger. The figure indicates that
DenseFly outperforms FlyHash and SimHash under all chosen hash length conditions, and DenseFly still reaches a high score even with a
relatively shorter hash length. The experiment proves DenseFly's feasibility on the scRNA-seq data similarity search

Locality Sensitive Hashing (LSH) is a probabilistic algo-
rithm for finding similar elements from a large database.
LSH encodes a high-dimensional data point into a binary
vector, and the similarity between points is obtained by
comparing the common elements of the encoded vectors.
CellAtlasSearch [10] is the first method using LSH for cell
searching. It provides a web-interface for cell searching
against single-cell or bulk RNA-seq dataset. However, its
methods are not described in detail in its original paper
and the source code is not freely available online. Cell-
Fishing,jl [11] is another implementation of cell searching
in LSH with a systematic performance evaluation. Cell-
Fishing.jl conducted several substantial experiments in-
cluding mapping cells across different batches, different
species, and different protocols.

In this work, we adopted the DenseFly algorithm [12]
for the cell searching problem and conducted a series
experiments for different scenarios to compare it with
existing methods. DenseFly algorithm is a variant of
classical LSH. Its encoding scheme is inspired by the
fruit fly’s odor circuit. Our experiment results indicated
DenseFly outperforms benchmark methods in cell type
matching accuracy (Cohen’s Kappa [13]) and is resistant
to typical scRNA-seq data noises such as dropout events
[14, 15] and batch effects [16].

Results

Cell type identification performance

We compared the classification performance of DenseFly
algorithm with the benchmark methods FlyHash and
SimHash on SIM I dataset (Fig. 1). The results show that
DenseFly achieves higher Cohen’s Kappa under all tested
parameter conditions. Another fly-inspired algorithm
FlyHash has weaker classification performances, while

the SimHash performs significantly worse than DenseFly
and FlyHash.

This experiment is a self-mapping test. 20% random
samples from SIM I are given as queries and the three
algorithms report the label of the most similar cell that
lies in the rest as the classification result. We used sev-
eral hash lengths (k = 64, 128, 256, 512, 1024) and left
other parameters unchanged: the sampling rate a was
0.1, the embedding size of FlyHash and DenseFly was 20
times of hash length (m = 20).

Resistance to batch effects

We tested whether DenseFly has the resistance to the
batch effect on SIM II dataset. As shown in Table 1,
SIM 1II dataset has two subsets: Batch 1 and Batch 2,
which are simulated to be the same cell types but from
different experiment batches. We tried to map cells from
Batch 1 to Batch 2 and vice versa and compared the
classification performance with SIM I experiments with-
out batch effects. The same five-fold cross-validation is
used to get average Cohen’s kappa scores too. The

Table 1 Time consumption per hundred queries (unit: seconds)

Reference size SimHash FlyHash DenseFly
200 0.012 0.012 0.012
400 0.017 0.018 0018
800 0.025 0.026 0.024
1000 0.026 0.029 0.028
2000 0.040 0.042 0.041
4000 0.097 0.105 0.099
8000 0.156 0.157 0.158
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parameters used in these experiments is the same as similar performances to DenseFly but still, SimHash lags
SIM 1: k = 64, 128, 256, 512, 1024; a = 0.1; and m = 20. significantly.
The mapping performance in Fig. 2 shows that batch ef-

fect does not affect DenseFly significantly while the other ~ Time consumption and scalability

two methods are less robust when batch effects exist. The growing scale of single-cell RNA-seq datasets sets a

Compared with FlyHash, DenseFly achieves higher scores  strict requirement on time complexity. We used python to

with lower hash lengths. It is also noteworthy that Dense-  implement the algorithms and the queries are computed

Fly achieves high performances regardless of batch effect in serial with CPU and recorded the time consumption

— it achieves even higher scores than the no-batch group.  per 100 queries when reference cell number varies (Table

These comparisons on simulation datasets indicate that 1). The results show that our implementations (k =128;

DenseFly has high resistance to the batch effects. a=0.1; m=20) of SimHash, FlyHash and DenseFly take
equal time to finish to queries and time consumption
grows linearly as the reference size grows. Since all queries

Resistance to dropout events run independently, a parallel optimization can be achieved

We also tested whether DenseFly has high resistance to  easily where a query results will be returned from an atlas-

dropout events on the SIM III dataset. As shown in level database in seconds.

Table 1, a series of dropout rates from 0% to ~ 50% are

considered. The same five-fold cross-validation is used Discussion

to get average Cohen’s kappa scores with the parameter = The extraordinary performances shown in this work give

settings: k = 32, 64, 128, 256; o = 0.1; and m = 20. strong evidence that DenseFly is a better alternative to

The experiment results in Fig. 3 show that DenseFly = SimHash, the method already used in cell searching.

has the highest dropout-proof ability, and all methods’ Compared with traditional LSH implementations, Den-

performances decrease significantly as the dropout rate  seFly ensembles multiple random samples from the ori-

increases. As hash length increases, FlyHash achieves ginal feature space to build up intermediate activations.

Algorithm . DenseFly FlyHash . SimHash
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Experiment design

Fig. 2 The batch effect experiment bar plot. The x-axis lies the name of experiment designs and the y-axis is the Cohen’s Kappa score. The blue
bars represent experiments conducted on DenseFly, yellow bars represent experiments on FlyHash, and gray bars represent SimHash’s results.
DenseFly shows the best batch-proof performance among the three methods while SimHash is the worst. FlyHash achieves similar performance
to DenseFly but it relies on large hash lengths. In general, the cross-batch mappings have lower scores than no-batch mappings, except for
DenseFly's results. There is no significant difference between “1 to 2" and "2 to 1", which accords with our simulation settings.
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Fig. 3 The result of dropout experiments. a-d show the Cohen’s Kappa score changing with dropout rate under different hash length (32, 64,
128, 256). The x-axis of each figure is the dropout rate and the y-axis of each figure is Cohen'’s Kappa score. It is reasonable that the performances
of three algorithms all decrease as the dropout rate increase. We can see that DenseFly always outperforms others and has a stable ‘platform’
range where Cohen’s Kappa score decreases slowly when the dropout rate is small, particularly when hash length = 256. The experiments show
DenseFly is robust when the dropout event occurs. It should be explained that the original data without dropout has 45% zero elements in the

perform poorly because little information remained in the dataset

expression matrix, meaning that SIM IlI-5 dataset (dropout rate = 53.6%) is extremely sparse (over 98% elements is zeros), so all algorithms

This procedure helps to avoid gene dropout events in
scRNA-seq data because the dropped genes may not lie
in the sampled fraction. Note that scRNA-seq data is
centralized first in DenseFly and FlyHash, the encoding
schemes binarize the activations and partially eliminates
the batch effects. This explains why DenseFly and Fly-
Hash are so resistant to batch effects.

Although DenseFly and FlyHash perform well on sim-
ulated batch effects and dropout events, it doesn’t mean
that the missing value imputation methods and
normalization methods for scRNA-seq are not necessary.
We expect further studies to add these preprocessing
steps and infer that DenseFly and FlyHash would have
even better performance.

It is Drosophila’s olfactory system that inspires the Den-
seFly and FlyHash algorithms. The two algorithm’s data
structure can be a good analog to the olfactory circuits.

The structure in fly’s olfactory is not unique, and similar
neural cell compositions and structures can also be found
in other vertebrate brain regions [11]. It is estimated that
a trained human nose can recognize up to a trillion smells
[13]. Therefore, it is interesting to know whether DenseFly
or its future variants could have a very huge model cap-
acity. It is known that human beings have approximately
200 main cell types and new sub-types are constantly re-
vealed by projects like Human Cell Atlas. It remains to be
seen whether these bionic algorithms could play more im-
portant roles in recognizing new cells (sub) types and
yielding new biological knowledge.

Conclusions

Cell searching is playing building block roles in identify-
ing similar cells, defining cell types, and revealing cellu-
lar relationships from atlas-scale datasets. The
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simulation experiments have shown that DenseFly-based
cell type identification out-performs FlyHash and Sim-
Hash in Cohen’s kappa score, and the performance is ro-
bust when dropout or batch effect noises exist. The
different hashing schemes of the LSH implementations
indicate suitable structures and feature processing steps
should be chosen for specific tasks. It is probably the
random sampling and shuffling that assist DenseFly to
adapt to the sparse and noisy scRNA-seq data. This
study provides a new solution to LSH-based cell atlas
searching. Though only simulated scRNA-seq data is
used in the experiments, the simulations are representa-
tive and capture the main characteristics of the data.
More experiments on real data should be done in the fu-
ture to further endorse the new solution’s application.
There is also a need for more advanced implementa-
tions, such as parallel computing, or GPU support, to
further speed up DenseFly algorithm. We hope re-
searchers and developers in the cell search field could
pay more attention to DenseFly and build up powerful
searching tools with it.

Methods

The cell searching problem of scRNA-seq data

Single-cell RNA-seq data are the measurement of the ex-
pression of thousands or tens of thousands of genes in
each single cell. A reference dataset can contain data of
millions of cells or more. Each cell is a gene expression
vector or a column in a data matrix. The task of cell
searching is to find the cell in the reference dataset that
is the most similar to a query cell in the gene expression.
It is also called cell mapping in some context, which
usually concentrates on the mapping of the query cell to
a certain cell type or subtype instead of finding the most
similar cell.

We centralize the gene expression of each cell by sub-
tracting the mean expression of all genes in the cell from
the expression of each gene. The same processing is also
applied to the query data. For convenience, the centralized
values are still referred to as “gene expression” when there
is no confusion.

There are different ways to calculate gene expression
values from the original sequencing data, such as read
counts, UMI-counts, RPKM and TPM. The methods we
studied can be applied to any of these types as long as
both the query samples and reference samples use the
same way of calculation.

LSH-based similarity searching

Locality sensitive hashing (LSH) is a similarity searching
algorithm for high dimensional data where classical tree-
based searching methods for lower dimensional data fail
due to their prohibitive time and memory consumption.
LSH encodes input vectors to a bit array (a binary hash
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vector of lower dimension usually), in which two similar
input vectors have a higher probability of sharing more
common bits. As a general high-dimensional data
searching method, LSH has been applied in many fields
like image similarity identification [17], duplicated docu-
ment detection [18], etc.

LSH have different implementations, some of which
have been employed for cell searching. In this article, we
studied the cell search performance of three representa-
tive implementations: SimHash [19], FlyHash [20], and
DenseFly [12]. SimHash has been used by CellFishing.jl
for cell searching tasks. FlyHash and DenseFly are new
methods inspired by Drosophila’s olfactory neural sys-
tem and have not been adopted for the task before. All
three different implementations map a vector of d di-
mensions to a binary mk-dimensional vector (i.e. the
hash length equals to mk), but the hashing function de-
signs are different. Here we use the product of two pa-
rameters m and k instead of one parameter to denote
the number of projections to make the description com-
patible for the 3 methods.

After converting all high-dimensional vectors into the
hash vector of dimension mk, the reference database to
be searched against is converted to a highly compressed
hash table ordered using the Hamming distance. Search-
ing for nearest neighbors of a query vector can be effi-
ciently implemented by finding the hash value with the
minimal Hamming distance through the table.

Hash function of SimHash

SimHash [19] is a classical implementation of LSH for
nearest neighbor searching proposed in 2002 by Moses
S. Charikar, which is used by CellFishingjl for cell
searching. We employed SimHash as a baseline method
in this study. Its basic idea is: Given an input vector of
length d (i.e. the vector contains d elements), generate
mk random projection vectors of length d (We call mk
the as the embedding size). Each element of the ran-
dom projection vector is drawn i.i.d. from a distribution
Normal(0, 1). For each random projection vector, calcu-
late the dot product of the input vector and random
projection vector, and take the sign indicator (positive or
negative) of the dot product as one bit of hash value.
The final hash value (hash vector) is obtained by concat-
enating all bits produced by the random projection
vectors.

1 (if %-7,20)

Hashp( x ){0 (lf;'a<0> P =

1, -, mk

(1)
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Hash (?) =
[Hashl (;) ,Hash, (E) , o Hashyeq (?) , Hash,,; (?)}

(2)

FlyHash and DenseFly
FlyHash was proposed by Dasgupta et al. in 2017 [20]
and the improved version DenseFly was proposed in
2018 [12]. DenseFly is reported to outperform both Fly-
Hash and SimHash in metrics including mean average
precision, the area under the precision-recall curve.
Given an input vector of length d, a random sample of
elements with a sampling rate « is taken from all d ele-
ments of the input vector. Then both FlyHash and Den-
seFly sum the chosen elements as one activation. The
algorithms repeat these steps mk times to get mk activa-
tion values, which are intermediate results to get final
hashing values.

a; (?) . = Sum of |ad| chosen components,i = 1..mk
(3)

Unlike in SimHash and other traditional LSH imple-
mentations, the embedding size mk here is usually set
high (e.g., mk > d) so that the information is well cap-
tured. FlyHash and DenseFly differ in their ways of treat-
ing these activations. FlyHash uses a winner-take-all
(WTA) scheme to generate a hash value from mk activa-
tions. It first shuffles the input vector’s elements m times
and takes the first k elements (k is also known as the
hash size of the WTA factor) in each shuffling group.

Shuffle; = a subset from {al (;)7612 (E) s eves Ak (E) }

where |Shufﬂei‘ =kandj=1.m
(4)

Then it applies a maximal value indicator for each k-
element shuffling group. The maximal value indicator
encodes one shuffling group into a one-hot vector of
length k with a single 1 at the index with maximal value.
For instance, if k =5 and the shuffling group is [- 3, 1, 2,
4, — 1], the group is encoded as [0, 0, 0, 1, 0]. The mk-bit
hash value is obtained by concatenating all m one-hot
vectors. If, for example, we have 3 shuffling groups [- 3,
-2,1,0,5],[-1,2,1,0, 7] and [0, -2, O, O, 1], FlyHash
obtains the mk-dimensional hash vector as [0, 0, 0, 0, 1,
0,0,0,0,1,0,0,0,0, 1].

DenseFly uses a different way to get the hash vectors.
In the k-element shuffling groups, positive elements are
encoded as 1 and other values are encoded as 0. For in-
stance, the shuffling group [-3, 1, 2, 4, - 1] is encoded
as [0, 1, 1, 1, O]. The returned vector is not one-hot and
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is denser. Similarly, a mk-bit hash value is also obtained
by concatenating all m binary vectors. For the above ex-
ample of 3 shuffling groups [-3, -2, 1,0, 5], [-1, 2, 1,
0, 7] and [0, - 2, 0, 0, 1], the mk-dimensional hash vector
will be [0,0,1,0,1,0,1,1,0,1, 0,0, 0, 0, 1]. For con-
venience, we call the hash vector of mk dimension as the
“long hash”.

Multi-probing

A “pseudo-hash” procedure is adopted to obtain a “short
hash” of only m dimension. From the m shuffle groups
obtained with (4), we sum up all the activation values of
the k elements in a group as the activation of the group.
If the summed activation is greater than zero, we encode
the group as 1, and otherwise 0. In this way, we obtain
the m-dimensional short binary hash vector. In the
above example of the 3 shuffling groups, the short hash
vector we obtain is [1, 1, 0]. The set of long hash vectors
can be taken as a high-resolution representation of the
original data, and the set of short hash vectors can be
taken as a highly-abstractive low-resolution representa-
tion of the original data.

Using the m dimensional short hash table to represent
a reference database ensures high efficiency in the
searching procedure, but there are two situations we
need to consider. One is that in the original vector space
is of very high dimension, such as the situation of
scRNA-seq data, samples in some areas of the original
space may be very sparse even when there are millions
of samples. This can result in a situation that the most
similar cells may have different hash vectors. In that
case, we may miss the true target if we only search for
the vector with the same hash values. On the other
hand, for some dense regions in the sample space, the
same short hash vector may represent many samples in
the original space. In that case, finding only the matched
hash vector for a query doesn’t identify the real nearest
target. Both these two situations are typical in scRNA-
seq data as some cell types or subtypes are very sparse
but some can be very dense.

We use the multi-probing strategy using the long and
short hashes to deal with these difficulties. For a query
sample, instead of trying to find the identical or closest
short hash vector in the reference hash table, we first
find all reference cells that are within a given radius
from the query cell in the short hash space (if empty,
the radius gets double). These cells are taken as candi-
date matches in the searching. These candidate matches
can contain multiple reference cells, but they are of a
much smaller set of samples comparing to the whole ref-
erence set. We then do the searching of the nearest cell
in the long hash table of the candidate targets. This gives
high-resolution and ensures that the best target can be
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found. This two-step strategy guarantees both computa-
tional efficiency and searching precision.

Parameter selection

The embedding size m-'k, and the sampling rate a, are
associated with the model performance. The experi-
ments in Figs. 1, 2 and 3 indicate a wide range of em-
bedding sizes and a around 0.1 work well. We suggest
fine-tuning parameters according to the tolerance to in-
accuracy and the demand of efficiency. if ground-truth
cell type is supplied.

Simulated single-cell RNA-seq datasets

The gene expression levels in single-cell RNA sequen-
cing data contain high technical noises. Typically, there
can be thousands of genes being detected as expression
in each cell, with all remaining genes detected as zero-
expression. These seemingly zero-expression genes in-
clude not only unexpressed genes but also genes that are
expressed but not captured. The latter situation is called
“dropout event”. It is a major cause of noise in scRNA-
seq data and the proportion of dropout genes can be
higher ~70% in some data. This phenomenon makes
scRNA-seq data highly sparse.

Another major problem in scRNA-seq data is batch-
effects. Due to many technical and biological restric-
tions, it is not possible to obtain a large-scale reference
atlas in a single experiment batch. The query data are of
course not from the same experiment with the reference
data. The major reason for using scRNA-seq technology
to study single cells is because of the pervasive existence
of cell heterogeneity even the cells are of the same tis-
sue. Normalizing batches to remove batch effect is diffi-
cult as it is hard to distinguish biological variation from
technical noise. Therefore, it is highly desirable to per-
form cell searching between different batches.

These two issues are major challenges to the cell
searching task. As the LSH algorithms especially the
DenseFly algorithm can effectively and efficiently pre-
serve the similarity relation of high-dimensional data in
the hash space, we adopt the algorithm on this task. We
designed a series of simulation data to mimic different
situations of scRNA-seq data and used them to evaluate
the suitability and performance of the three types of
LSH algorithms. Simulation data allowed us to experi-
ment on well-controlled different degrees of noise and
batch effects.

We designed three artificial scRNA-seq datasets using
the R packages splatter [21] for three simulation experi-
ments. Splatter generates artificial RNA-sequencing read
count matrix by sampling from Gamma-Poisson distri-
butions, whose location and scaling parameters are ad-
justable to mimic real data. We can model the dropout
event and the batch effect well with this tool.
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In the first simulation (SIM I), a dataset is created for
a basic test of the cell type identification ability of the
different methods. We generated 2000 cells of 5 types.
Each cell has 10,000 gene expression values measured.
We randomly choose a fraction from the cells and use
the remaining cells as the reference. We map the chosen
cells back to the reference and measure how the map-
ping result agrees with the truth.

A more difficult task is designed in the second simulation
(SIM 1I). Data points come from two batches of measure-
ments. We also generated 2000 simulated cells, each with
10,000 genes, and also set the cells to be of 5 cell types. The
first 1000 cells and the second 1000 cells are of two simu-
lated batches, using the feature provided by splatter.

The third simulation (SIM III) contains 6 datasets with
dropout rate ranging from 0 to 53.60%. Each dataset
contains 2000 simulated cells, each with 10,000 gene ex-
pressional features. Five cell types are simulated. The 6
datasets cover a range of dropout rates from 0% (no
dropout events) to 53.6% (heavily dropped out).

The simulation details of the three datasets are listed
below in Table 2.

Evaluation of performance
We evaluated the performance of the similarity search in
a supervised way. The simulated single-cell expression
datasets have a cell type label for each cell. Hence, we
view the task as a performance evaluation of multicate-
gory classification.

Given a query cell, though the algorithm returns mul-
tiple near neighbors, we used the nearest neighboring cell
type as the mapped cell type, i.e. the classification result.

Cohen’s kappa

Cohen’s Kappa measures the agreement between 2 raters
that classify N items into C categories [13]. When one
rater is the ground truth, Cohen’s Kappa is a metric

evaluating binary or multicategory classification
Table 2 Summary of simulation parameters

Dataset  Note #cels #genes # celltypes  Dropout rate
SIM 1 - 2000 10,000 5 0%

SIMI Batch 1 1000 10,000 5 0%

SIM I Batch 2 1000 10,000 5 0%

SIMHI SIM -0 2000 10,000 5 0%

SIMI SIM II-1 2000 10,000 5 15.44%
SIMHI SIM -2 2000 10,000 5 25.15%
SIMHI SIM -3 2000 10,000 5 35.28%
SIMI SIM III-4 2000 10,000 5 4341%
SIMHI SIM -5 2000 10,000 5 53.60%

Simulation parameters of SIM |, SIM II, and SIM lII. Cell numbers, gene
numbers, cell type numbers, and dropout rates are taken into considerations.
More detail about the datasets can be found in Additional file 1
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algorithms. In this work, we adopted this metric in the
cell type identification task from CellFishing,jl [11].

The scores of Cohen’s Kappa range from -1 to 1,
where 1 indicates the classification results and the
ground truth are in complete agreement, 0 indicates no
agreement, and negative values mean worse than ran-
dom assignment. Compared with the classification ac-
curacy, Cohen’s Kappa is more useful when samples of
different classes are imbalanced because it removes the
chance agreements.

Given a n-by-n confusion matrix M (classification re-
sults of n samples), the Cohen’s Kappa score is calcu-
lated by the following formula:

/ Py-P,
Cohen s Kappa = 10_ P (5)
n ¢ n Mu" V‘ Mia
where P :%, and Pe _ Za:l( Z/:l /21:1 ) )

( Z?:l Z’;:IM” )2

Cross-validation

We used a k-fold (k=5 in our experiments) cross-
validation to evaluate Cohen’s kappa for every experi-
ment shown in Figs. 1, 2 and 3. In each cross-validation
round, we randomly divided a collection of cells into k
subsets, use k-1 subsets as the training set, and calculate
Cohen’s kappa with the other one test dataset.

1. Randomly choose 20% of the samples in the dataset
to form the query set and leave the rest as the
reference set.

2. Build models with the reference set and get the
binary table of the reference set

3. Map each chosen cell to reference cells by finding
the nearest neighbor in the reference sample set
with the hamming distances.

4. Get the mapped cell type of each sample in the
query set, compare it to the real cell type and
calculate the Cohen’s Kappa

5. Repeat the steps above five times and obtain five
scores for five kinds of division on the dataset

6. Return the average value of the five scores as the
final CV result.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-6651-8.

Additional file 1. Details_of_simulation_datasets.pptx describes the
details of single-cell transcriptomic data simulation and gives the
visualization of the datasets based on the dimensionality reduction
algorithms.
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