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Abstract

Background:Lung aging is characterized by a number of structural alterations including fibrosis, chronic
inflammation and the alteration of inflammatory cell composition. Chronic exposure to cigarette smoke (CS) is
known to induce similar alterations and may contribute to premature lung aging. Additionally, aging and CS
exposure are associated with transcriptional alterations in the lung. The current work aims to explore the interaction
between age- and CS- associated transcriptomic perturbations and develop a transcriptomic clock able to predict
the biological age and the impact of external factors on lung aging.

Results:Our investigations revealed a substantial overlap between transcriptomic response to CS exposure and
age-related transcriptomic alterations in the murine lung. Of particular interest is the strong upregulation of
immunoglobulin genes with increased age and in response to CS exposure, indicating an important implication of
B-cells in lung inflammation associated with aging and smoking. Furthermore, we used a machine learning
approach based on Lasso regression to build a transcriptomic age model that can accurately predict chronological
age in untreated mice and the deviations associated with certain exposures. Interestingly, CS-exposed-mice were
predicted to be prematurely aged in contrast to mice exposed to fresh air or to heated tobacco products (HTPs).
The accelerated aging rate associated with CS was reversed upon smoking cessation or switching to HTPs.
Additionally, our model was able to predict premature aging associated with thoracic irradiation from an
independent public dataset.

Conclusions:Aging and CS exposure share common transcriptional alteration patterns in the murine lung. The
massive upregulation of B-cell restricted genes during these processes shed light on the contribution of cell
composition and particularly immune cells to the measured transcriptomic signal. Through machine learning
approach, we show that gene expression changes can be used to accurately monitor the biological age and the
modulations associated with certain exposures. Our findings also suggest that the premature lung aging is
reversible upon the reduction of harmful exposures.
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Background
Aging of multi-cellular organisms is a complex biological
process involving various molecular alterations such as
epigenetic [1], genetic [2], and transcriptional changes
[3–6]. These changes are likely modulated by various en-
vironmental factors that can either induce premature
aging [7] or decelerate the natural aging rate [8]. The in-
dividual rates of aging greatly differ within a population,
leading to the concept that the biological age can be
monitored by a plethora of metrics, including omics-
based measurements [9–11], providing robust indicators
of healthy aging.
Modulation of transcriptional patterns is a central step

in cellular response to numerous cues, including those re-
lated to aging. Gene regulation is one of the most investi-
gated biological processes in relation to aging and a
number of diseases in both humans and model organisms.
Over the last decade, a massive number of transcriptomes
have been generated, primarily by microarrays [12], in
order to identify markers of aging and to understand the
underlying mechanisms of aging processes. These studies
revealed a number of common features for age-related
transcriptomic changes, including the upregulation [13,
14] of genes involved in inflammation and stress response
and the downregulation of genes associated with extracel-
lular matrix constitution and metabolism [15, 16].
In the lung, biological aging correlates with anatomical

and structural changes, such as fibrosis [17, 18] and im-
mune dysregulation [19], mainly characterized by the al-
teration of inflammatory cell composition and chronic
low-grade inflammation that are associated with pro-
gressive functional alterations. In rats, age-related lung
fibrosis correlates with an increase in peri-bronchial col-
lagen deposition and a decrease in matrix metallopro-
teinases (MMP) activity concomitant with an increase of
tissue inhibitors of MMP (TIMP-1 and TIMP-2, 15). A
number of external factors can induce aging-like struc-
tural and transcriptional alterations. For example, irradi-
ated young mice exhibit lung transcriptomic profiles
similar to unirradiated older mice [20]. Similarly, infec-
tion of young mice by respiratory syncytial virus induces
transcriptomic alterations similar to those observed in
uninfected old mice [16].
Chronic exposure to cigarette smoke (CS) contributes

to many age-associated lung diseases, such as chronic ob-
structive pulmonary disease (COPD) and lung cancer [21].
Furthermore, aging and the response to CS exposure
share common mechanisms involved in lung pathogen-
esis, such as impairment of proteostasis and autophagy
leading to cellular senescence [22], suggesting that CS
may contribute to premature lung aging.
Age- and CS-related transcriptomic alterations in the lung

have been previously investigated; however, a detailed ana-
lysis of the overlap between these 2 transcriptomic patterns

from technically comparable datasets is missing. Here, we
took advantage of highly standardized transcriptomics exper-
iments where the impact of CS on the lung was investigated
over periods of exposure ranging from 6 to 8months [23–
25]. Therefore, these datasets from the same experimental
setup were analyzed to provide information about age- and
CS-associated transcriptional changes.
The current work seeks to investigate the transcrip-

tomic crosstalk between CS and aging in the murine
lung, build a transcriptomic age predictor, and evaluate
the effect of environmental factors on transcriptomic
age. We hypothesized that deviations from the average
aging rate may indicate perturbed aging processes.
We found a substantial overlap between age- and CS-

regulated genes; among those, immunoglobulin genes
were the most upregulated in response to both aging and
CS exposure. Moreover, we derived an age prediction
model from transcriptomes of sham (fresh air)-exposed
mice. Strikingly, the majority of age predictor genes were
deregulated by CS, further supporting a strong interaction
between aging and CS exposure. In line with this observa-
tion, CS-exposed mice were predicted to be prematurely
aged, whereas mice exposed to aerosols from heated to-
bacco products (HTPs) had age predictions similar to
those of the sham-exposed mice. Smoking cessation or
switching to HTPs reduced the predicted accelerated tran-
scriptomic aging. Similarly, mice exposed to fibrogenic ir-
radiation (public datasets [20]) were predicted to be
prematurely aged in comparison with untreated mice, fur-
ther supporting the robustness of our prediction model
when applied to an independent set of data. Altogether,
our results indicate that transcriptomic clocks are a valu-
able tool to monitor the impact of environmental expo-
sures on biological aging.

Results
Datasets
To investigate the relationship between lung aging and CS
exposure at the transcriptional level, we leveraged 3 lung
transcriptomic datasets [23–25] generated from wild-type
female C57BL/6 or apolipoprotein E-deficient (ApoE−/−)
transgenic mice exposed to CS (3R4F reference cigarette),
fresh air (sham), or HTP aerosols over 6 to 8months. The
protocols also included smoking cessation and switching
from CS to HTPs. Hereafter, these studies will be named
E-MTAB-5281 [23], E-MTAB-5280 [24], and E-MTAB-
7444 [25], as summarized in Supplementary Figure 1. All
of the mice used in these studies were 2months old at the
beginning of the exposure.

Substantial overlap between CS- and age-related
transcriptional alterations in the lung
Animals from the sham exposure groups were consid-
ered as representative of naturally aging mice and were
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used to calculate age-dependent differential gene expres-
sion. Age-regulated genes have been identified by compar-
ing gene expression levels between sham samples from
different age groups in each study (supplementary
Table 1). In total, 1325 age-regulated genes were identified
(see Methods). Strikingly, 62% of these genes were also
deregulated by CS when compared to the corresponding
sham controls from the same time points (Fig. 1a). This
association was further supported by the strong correl-
ation between the first principal component loadings de-
rived from gene expression regulation profiles in response
to aging and CS (Fig. 1b). Comparing the maximum
values of gene expression fold changes (FC) associated
with age and in response to CS across the 3 analyzed data-
sets showed strong directional interactions between CS-
and age-related transcriptional responses (Fig. 1c). Of
note, comparing maximum gene expression variations
does not imply a statistical significance, nor does it indi-
cate stable directional variations. Nevertheless, we ob-
served a strong overlap between statistically significant
differentially expressed genes (colored green in Fig. 1c)
and genes with high maximum FC. Of particular interest,
the top 10 genes co-upregulated by age and CS are central
components of the immune response, and most of them
are immunoglobulin genes (B-cell receptors), suggesting a
substantial contribution of B-cell lineage in immune re-
sponse to aging and CS exposure.

Building a transcriptomic age predictor
It has been shown that DNA methylation levels of cer-
tain CpGs can be used to predict chronological age in

humans [9, 11, 26, 27] and mice [28–32]; predictions in
mice are generally less accurate than in humans and the
most accurate DNA methylation clocks might not be op-
timal for evaluating aging modulations [29]. Transcrip-
tomic age predictors have also been developed for
human blood samples but are less accurate than their
epigenetic counterparts [10]. To our knowledge, no tran-
scriptomic age predictor has been developed for mice.
To test whether gene expression levels in murine

lungs can be used to estimate chronological age, we
used sham transcriptomes to derive an age regres-
sion model by applying the least absolute shrinkage
and selection operator (LASSO) regression (see
Methods). The performance of this prediction ap-
proach was evaluated by cross-validation, where
sham samples were randomly partitioned into train-
ing and validation sets (Fig. 2a) and “leave one study
out” cross-validation (Fig. 2b), resulting in a mean
average error in the validation sets of 0.83 and 1
month, respectively, largely outcompeting the major-
ity of mouse epigenetic clocks that are usually based
on hundreds of regressors (CpGs). The final pre-
dictor derived by using all sham samples from the 3
analyzed datasets resulted in a set of 57 predictor
genes. In line with our previous observations, the
majority (44 out of 57) of those age predictor genes
were also deregulated in response to CS exposure
(Fig. 2c). Age predictor genes include key markers of
CS exposure, such as Cyp1a1, Lcn2, and Mmp genes,
in addition to genes involved in immune response,
such as immunoglobulin genes.

Fig. 1 Substantial overlap between cigarette smoke (CS) exposure and aging at transcriptomic level.a. Venn diagram representing the overlap
between age- and CS-regulated genes (false discovery rate [FDR] < 0.05 and log2 fold-change > log2(1.5).b. Comparison of the first principal
component loadings for age- and CS-related gene expression changes across all datasets. Age-related changes were computed only for sham
samples (e.g., sham_6m minus sham_1m, 28 such comparisons, inertia 30.3%). CS-related changes were computed by comparing 3R4F samples
to the corresponding sham controls (e.g., 3R4F_6m minus sham_6m, 14 such comparisons, inertia 22.4%).c. Similar to B, the maximum fold
change (MFC) across studies in relation to aging in sham groups (x-axis) is compared to MFC for 3R4F versus the corresponding sham control (y-
axis). Genes commonly deregulated by aging and CS exposure on the basis of the FDR-adjustedp-value and fold change cut-offs (see Methods)
are colored green inb and c. The top deregulated genes are labeled in red
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CS and thoracic irradiation accelerate lung transcriptional
aging
Given the strong transcriptional overlap between CS and
aging, we hypothesized that CS exposure may affect the
transcriptomic age predicted by the model above. To

test this hypothesis, we applied the transcriptomic age
predictor to CS-exposed samples. Although the model
can accurately predict the age progression for those
samples (Fig. 3a), predictions consistently showed a tran-
scriptomic age higher than their chronological age (Fig.

Fig. 2 Development of age-prediction model from lung transcriptomics data (E-MTAB-5281, E-MTAB-5280 and E-MTAB-7444) using LASSO
regression..a. Random leave-out cross-validation over 100 runs. For every run, the 111 Sham samples from the 3 studies are randomly divided
into training (75%) and validation sets (25%).b. Leave-one-study-out cross-validations. In each round, one study is excluded from the training but
used for the validation.c. The final list of age predictor genes as selected by LASSO when applied to all of the 111 Sham transcriptomes. CS-
regulated genes (see Methods) are colored red. MAE: mean average error
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3a and b). This result suggests that CS may contribute
to premature lung aging, which is further supported by
the overexpression of a number of immunoglobulin
genes in CS-exposed samples when compared to their
sham counterparts (Supplementary Figure. 2).

To test the performance of our model on independent
datasets, we used publicly available transcriptomic lung
data generated from 12 weeks CD-1 mice exposed to dif-
ferent daily doses of cigarette smoke (2R4F) over 5
months or to sham as a control [33]. The age predictor

a b

c

d e

Fig. 3 CS-exposed mice and highly irradiated mice are predicted to be prematurely aged.a. Chronological age versus predicted age for sham-
and CS-exposed mice from E-MTAB-5281, E-MTAB-5280 and E-MTAB-7444 datasets.b. Boxplots summarizing the residuals (predicted age minus
chronological age) for the same datasets.c. Age predictions of samples from an independent public dataset (GSE18344) where CD-1 mice where
exposed to different daily doses of CS over 5 months.d and e. Prediction from the model applied to lung transcriptomes from the public dataset
GSE41789. Age predictions were computed for 3 groups of mice; untreated mice and mice irradiated to 5 Gy or 17.5 Gy. Only 17.5 Gy induced
lung fibrosis, senescence, and marks of accelerated aging according to the original study. Significance levels for t-test are indicated for each
comparison (****P< 0.0001; ***P< 0.001; **P< 0.01; *P< 0.05;.P< 0.1; nsP> 0.1). The p-value from one-way anova test comparing all the
groups is indicated

Choukrallahet al. BMC Genomics         (2020) 21:291 Page 5 of 9



3. Forster MJ, Lal H. Estimating age-related changes in psychomotor function:
influence of practice and of level of caloric intake in different genotypes.
Neurobiol Aging. 1999;20(2):167–76.

4. Gruber MP, Coldren CD, Woolum MD, Cosgrove GP, Zeng C, Barón AE, et al.
Human lung project: evaluating variance of gene expression in the human
lung. Am J Respir Cell Mol Biol. 2006;35(1):65–71.

5. Harris SE, Riggio V, Evenden L, Gilchrist T, McCafferty S, Murphy L, et al. Age-
related gene expression changes, and transcriptome wide association study
of physical and cognitive aging traits, in the Lothian birth cohort 1936.
Aging (Albany NY). 2017;9(12):2489–503.

6. Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A, Carter A, et al. AGEMAP:
a gene expression database for aging in mice. PLoS Genet. 2007;3(11):e201.

7. Morita A. Tobacco smoke causes premature skin aging. J Dermatol Sci.
2007;48(3):169–75.

8. Weindruch R, Walford RL, Fligiel S, Guthrie D. The retardation of aging in
mice by dietary restriction: longevity, cancer, immunity and lifetime energy
intake. J Nutr. 1986;116(4):641–54.

9. Horvath S. DNA methylation age of human tissues and cell types. Genome
Biol. 2013;14(10):R115.

10. Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, et al.
The transcriptional landscape of age in human peripheral blood. Nat
Commun. 2015;6:8570.

11. Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood
can be tracked by DNA methylation changes at just three CpG sites.
Genome Biol. 2014;15(2):R24.

12. Pan F, Chiu C-H, Pulapura S, Mehan MR, Nunez-Iglesias J, Zhang K, et al.
Gene Aging Nexus: a web database and data mining platform for
microarray data on aging. Nucleic Acids Res. 2007;35:D756–9.

13. de Magalhães JP, Curado J, Church GM. Meta-analysis of age-related gene
expression profiles identifies common signatures of aging. Bioinformatics.
2009;25(7):875–81.

14. Misra V, Lee H, Singh A, Huang K, Thimmulappa RK, Mitzner W, et al. Global
expression profiles from C57BL/6J and DBA/2J mouse lungs to determine
aging-related genes. Physiol Genomics. 2007;31(3):429–40.

15. Calabresi C, Arosio B, Galimberti L, Scanziani E, Bergottini R, Annoni G, et al.
Natural aging, expression of fibrosis-related genes and collagen deposition
in rat lung. Exp Gerontol. 2007;42(10):1003–11.

16. Pennings JLA, Mariman R, Hodemaekers HM, Reemers SSN, Janssen R,
Guichelaar T. Transcriptomics in lung tissue upon respiratory syncytial virus
infection reveals aging as important modulator of immune activation and
matrix maintenance. Sci Rep. 2018;8(1):16653.

17. Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G. Thannickal. Am J
Respir Crit Care Med. 2006;174(7):810–6.

18. Thannickal VJ. Mechanistic Links between Aging and Lung Fibrosis.
Biogerontology [Internet]. 2013;14(6) Available from:https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC3852192/[cited 2019 Feb 18].

19. Meyer KC, Ershler W, Rosenthal NS, Lu XG, Peterson K. Immune
dysregulation in the aging human lung. Am J Respir Crit Care Med. 1996;
153(3):1072–9.

20. Citrin DE, Shankavaram U, Horton JA, Shield W, Zhao S, Asano H, et al. Role
of type II Pneumocyte senescence in radiation-induced lung fibrosis. J Natl
Cancer Inst. 2013;105(19):1474–84.

21. Madan R, Matalon S, Vivero M. Spectrum of smoking-related lung diseases:
imaging review and update. J Thorac Imaging. 2016;31(2):78–91.

22. Vij N, Chandramani-Shivalingappa P, Van Westphal C, Hole R, Bodas M.
Cigarette smoke-induced autophagy impairment accelerates lung aging,
COPD-emphysema exacerbations and pathogenesis. Am J Physiol Cell
Physiol. 2018;314(1):C73–87.

23. Phillips B, Veljkovic E, Peck MJ, Buettner A, Elamin A, Guedj E, et al. A 7-
month cigarette smoke inhalation study in C57BL/6 mice demonstrates
reduced lung inflammation and emphysema following smoking cessation
or aerosol exposure from a prototypic modified risk tobacco product. Food
Chem Toxicol. 2015;80:328–45.

24. Phillips B, Veljkovic E, Boue S, Schlage WK, Vuillaume G, Martin F, et al. An 8-
month systems toxicology inhalation/cessation study in ApoeŠ/Š mice to
investigate cardiovascular and respiratory exposure effects of a candidate
modified risk tobacco product, THS 2.2, compared with conventional
cigarettes. Toxicol Sci. 2016;149:411–32.

25. Phillips B, Szostak J, Titz B, Schlage WK, Guedj E, Leroy P, et al. A six-month
systems toxicology inhalation/cessation study in ApoE(Š/Š) mice to
investigate cardiovascular and respiratory exposure effects of modified risk

tobacco products, CHTP 1.2 and THS 2.2, compared with conventional
cigarettes. Food Chem Toxicol. 2019;126:113–41.

26. Bocklandt S, Lin W, Sehl ME, Sánchez FJ, Sinsheimer JS, Horvath S, et al.
Epigenetic Predictor of Age. PLoS One [Internet]. 2011;6(6) Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120753/[cited 2019 Mar 4].

27. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-
wide methylation profiles reveal quantitative views of human aging rates.
Mol Cell. 2013 Jan 24;49(2):359–67.

28. Multi-tissue DNA methylation age predictor in mouse. - PubMed - NCBI
[Internet]. Available from:https://www.ncbi.nlm.nih.gov/pubmed/28399939
[cited 2019 Apr 11].

29. Thompson MJ, Chwiałkowska K, Rubbi L, Lusis AJ, Davis RC, Srivastava A,
et al. A multi-tissue full lifespan epigenetic clock for mice. Aging (Albany
NY). 2018;10(10):2832–54.

30. Petkovich DA, Podolskiy DI, Lobanov AV, Lee S-G, Miller RA, Gladyshev VN.
Using DNA Methylation Profiling to Evaluate Biological Age and Longevity
Interventions. Cell Metab. 2017;25(4):954–60 e6.

31. Meer MV, Podolskiy DI, Tyshkovskiy A, Gladyshev VN. A whole lifespan
mouse multi-tissue DNA methylation clock. Elife. 2018;14:7.

32. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie
restriction and rapamycin treatment | Genome Biology | Full Text [Internet].
[cited 2019 Aug 12]. Available from:https://genomebiology.biomedcentral.
com/articles/. https://doi.org/10.1186/s13059-017-1186-2.

33. Gebel S, Diehl S, Pype J, Friedrichs B, Weiler H, Schüller J, et al. The
transcriptome of Nrf2Š/Š mice provides evidence for impaired cell cycle
progression in the development of cigarette smoke-induced
emphysematous changes. Toxicol Sci. 2010;115(1):238–52.

34. van der Strate BWA, Postma DS, Brandsma C-A, Melgert BN, Luinge MA,
Geerlings M, et al. Cigarette smoke-induced emphysema: a role for the B
cell? Am J Respir Crit Care Med. 2006;173(7):751–8.

35. Chvatchko Y, Kosco-Vilbois MH, Herren S, Lefort J, Bonnefoy JY. Germinal
center formation and local immunoglobulin E (IgE) production in the lung
after an airway antigenic challenge. J Exp Med. 1996;184(6):2353–60.

36. John-Schuster G, Günter S, Hager K, Conlon TM, Eickelberg O, Yildirim AÖ.
Inflammaging increases susceptibility to cigarette smoke-induced COPD.
Oncotarget. 2016;7(21):30068–83.

37. Litsiou E, Semitekolou M, Galani IE, Morianos I, Tsoutsa A, Kara P, et al.
CXCL13 production in B cells via toll-like receptor/lymphotoxin receptor
signaling is involved in lymphoid neogenesis in chronic obstructive
pulmonary disease. Am J Respir Crit Care Med. 2013;187(11):1194–202.

38. Holly AC, Melzer D, Pilling LC, Henley W, Hernandez DG, Singleton AB, et al.
Towards a gene expression biomarker set for human biological age. Aging
Cell. 2013;12(2):324–6.

39. Krištić J, Vučković F, Menni C, Klarić L, Keser T, Beceheli I, et al. Glycans are a
novel biomarker of chronological and biological ages. J Gerontol A Biol Sci
Med Sci. 2014;69(7):779–89.

40. Menni C, Kastenmüller G, Petersen AK, Bell JT, Psatha M, Tsai P-C, et al.
Metabolomic markers reveal novel pathways of ageing and early
development in human populations. Int J Epidemiol. 2013;42(4):1111–9.

41. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, et al. Evolving gene/
transcript definitions significantly alter the interpretation of GeneChip data.
Nucleic Acids Res. 2005;33(20):e175.

42. McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis (fRMA).
Biostatistics. 2010 Apr;11(2):242–53.

43. Smyth GK. Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol.
2004;3:Article3.https://doi.org/10.2202/1544-6115.1027.

44. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear
models via coordinate descent. J Stat Softw. 2010;33(1):1–22.

45. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc
Ser B Methodol. 1996;58(1):267–88.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Choukrallahet al. BMC Genomics         (2020) 21:291 Page 9 of 9

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852192/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852192/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120753/
https://www.ncbi.nlm.nih.gov/pubmed/28399939
https://genomebiology.biomedcentral.com/articles/
https://genomebiology.biomedcentral.com/articles/
https://doi.org/10.1186/s13059-017-1186-2
https://doi.org/10.2202/1544-6115.1027

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Datasets
	Substantial overlap between CS- and age-related transcriptional alterations in the lung
	Building a transcriptomic age predictor
	CS and thoracic irradiation accelerate lung transcriptional aging
	Smoking cessation and switching to HTPs reduce CS-associated accelerated transcriptional aging

	Discussion
	Conclusions
	Methods
	Microarray data processing
	Identification of differentially expressed genes
	Construction of transcriptomic age predictor

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

