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Abstract

Background: Compromised intestinal barrier (CIB) has been associated with many enteropathies, including
colorectal cancer (CRC) and inflammatory bowel disease (IBD). We hypothesized that CIB could lead to increased
host-derived contents including epithelial cells into the gut, change its physio-metabolic properties, and globally
alter microbial community and metabolic capacities.

Results: Consistently, we found host DNA contents (HDCs), calculated as the percentage of metagenomic
sequencing reads mapped to the host genome, were significantly elevated in patients of CRC and Crohn'’s disease
(CD). Consistent with our hypothesis, we found that HDC correlated with microbial- and metabolic-biomarkers of
these diseases, contributed significantly to machine-learning models for patient stratification and was consequently
ranked as a top contributor. CD patients with treatment could partially reverse the changes of many CD-signature
species over time, with reduced HDC and fecal calprotectin (FCP) levels. Strikingly, HDC showed stronger
correlations with the reversing changes of the CD-related species than FCP, and contributed greatly in classifying
treatment responses, suggesting that it was also a biomarker for effective treatment.

Conclusions: Together, we revealed that association between HDCs and gut dysbiosis, and identified HDC as a
novel biomarker from fecal metagenomics for diagnosis and effective treatment of intestinal diseases; our results
also suggested that host-derived contents may have greater impact on gut microbiota than previously anticipated.
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Background

Colorectal cancer (CRC) is the 3rd most common cancer
worldwide and the 2nd leading cause of cancer-related
death in the United States [1, 2]; in recent years, the in-
cidence of CRC has been increasing in young adults in
major western countries [3, 4]. Similarly, Crohn’s disease
(CD) is also increasing worldwide and can be attributed
largely to industrial urbanization and Western life-styles
[5]. As genetics could only explain limited proportions
of the CRC [6, 7] and CD (8] incidences, researchers
have recently linked it to environmental factors, life
styles and gut microbiota dysbiosis [8—13]. By contrast-
ing gut microbiome profiles of CRC and CD patients to
that of the healthy controls, researchers have identified
bacterial species that were specifically enriched in CRC
[10-12, 14] and CD [13] respectively; many of the CRC-
enriched species were recently found to be consistent
across populations, according to two meta-analysis stud-
ies [15, 16]. In addition, microbial genes involved in vari-
ous biological pathways were also enriched in the gut
microbiota of CRC [10, 15, 16] and CD [13] patients.
Both the differential species and pathways can be used
as non-invasive markers for patient stratification [10, 11,
13, 15, 16]. These findings greatly improved our under-
standing on the potential roles of gut microbiota in the
pathogenesis and/or development of these intestinal dis-
eases, and implied a global alteration of the local gut en-
vironment in the patients.

The performance of gut microbiota profiling on dis-
ease diagnosis can be further improved in combination
with clinical tests measuring human conditions includ-
ing fecal occult blood test (FOBT) and fecal calprotectin
(FCP) test [10, 17]. FOBT measures hidden blood in
stool samples, indicating intestinal injury, while FCP
produced by neutrophils due to activation or cell death
serves as a biomarker of gut inflammation; they are
markers for intestinal diseases but suffered from low
specificity and sensitivity. Although clinically feasible
and cost effective, it is not trivial to combine these mea-
surements with fecal microbial profiling results. More-
over, novel non-invasive methods for CD are needed,
because as a chronic and intractable gastrointestinal dis-
ease, patients with CD should be regularly monitored via
colonoscopy for disease progression and/or treatment ef-
fectiveness [18, 19].

Compromised intestinal barrier (CIB) has been shown
to associate with many intestinal diseases, including in-
flammatory bowel diseases (IBD) [20] and CRC [21, 22].
CIB could be caused by infection, lesion, and/or inflam-
mation, manifested as a thinner mucus layer and leaky
barrier, and consequently lead to increased host-derived
contents from epithelial cells and blood shedding into
lumen [23]. In other words, CIB could lead to increased
host DNAs (also referred as to host DNA contents,
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HDCs) in feces of patients with intestinal diseases; the
more severe the diseases, the higher HDCs. Previous re-
searchers have detected increased human DNAs in feces
from patients with intestinal diseases [24—26]. Since
fecal metagenomics are obtained using whole-genome
shotgun sequencing and contain unbiased survey on
bacterial, viral and HDCs [13, 26], we could directly cal-
culate the HDC as the percentage of the gut metage-
nomics sequencing reads mapped to the human genome
(see Methods) for each fecal sample and use it as a proxy
of CIB as well as a convenient approximation for FOBT
and FCP tests. Furthermore, the increased host contents
such as blood and human cells shedding to the intestinal
tract due to CIB could alter the physio-metabolic proper-
ties of the gut environment, stimulate pro-inflammatory
pathways [27] and consequently lead to global alterations
in gut microbiota composition as a result of complex
interplay between microbiome and host. We thus would
expect that HDC, as an indicator of CIB, may also correl-
ate with the disease-associated species and metabolic
pathways.

In this study, we collected nine metagenomic datasets
from two most common intestinal diseases and per-
formed the analysis to (1) confirm that HDCs elevated
in the patients signify microbial dysbiosis; (2) test
whether HDC can further improve performance of ma-
chine learning models in patient stratification in com-
bination with metagenomic profiles, and (3) evaluate the
contribution of HDCs and HDC-related microbes to
these models. We also analyzed the potential of HDC
and microbiome for predicting treatment response to in-
vestigate the feasibility of fecal metagenomics data alone
as non-invasive test.

Results

Increased HDCs in CRC patients

We first focused on CRC. As expected, we found that
HDCs were significantly higher in feces of CRC patients
than that of the healthy controls in all seven datasets
(Fig. 1a, Additional file 1: Table S1 and Additional file 2:
Table S2). We then identified in total 26 species that
were significantly correlated with HDCs in at least two
datasets (Spearman Rank Correlation, p-value <0.05,
Fig. 1b; see Methods and Additional file 3: Table S3) and
referred them as HDC-species below. We also identified
species that showed significantly differential abundances
between case and controls in at least two CRC datasets
(adjusted p-value < 0.05, see Methods) and referred them
as Dif-species (also known as CRC-signature species).
Interestingly, we found half of the HDC-species (13 out
of 26) overlap with the CRC Dif-species, including 12
CRC-enriched ones (Fig. 1b) such as Fusobacterium
nucleatum, Bacteroides fragilis and Peptostreptococcus
stomatis, which were found in two recent meta-analyses
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Fig. 1 Human DNA contents (HDCs) were significantly elevated in feces of CRC patients, and correlated with microbial- and functional-
biomarkers. a, HDCs, calculated as the percentage of gut metagenomics sequencing reads mapped to the human genome, were significantly
higher in CRC (dark red box) than healthy controls (grey box) in seven recently published datasets (Wilcoxon Rank Sum Test, see Methods). b,
Species that were significantly correlated with HDCs in two and more CRC datasets (Spearman Rank Correlation, p-value < 0.05, see Methods).
Correlations were calculated using both CRC patients and healthy controls. Red: species with differential abundances between CRC and controls
in two and more CRC datasets (Wilcoxon rank sum test, adjusted p-value < 0.05, see Methods). These species were referred as to HDC-species in
this study. ¢, Metabolic pathways that were significantly correlated with HDCs in three and more CRC datasets. Correlations were calculated using
both CRC patients and healthy controls. Red: pathways with differential abundances between CRC and controls in two and more CRC datasets
(Wilcoxon rank sum test, adjusted p-value < 0.05, see Methods). These species were referred as to HDC-pathways in this study

of CRC [15, 16]. Microbial colonization varies along the
colon, partly because of thickness of mucous layer. Pre-
vious studies showed the B. fragilis with the capability of
glycoproteins degradation and toxin production could
penetrate the protective mucous layer, suggesting the
bacteria accelerate the injury of gut barrier, trigger in-
flammation and induce tumorigenesis [28-30].

We also identified 40 HDC-correlated metabolic path-
ways in at least two datasets (referred as to HDC-

pathways, see Additional file 4: Table S4); among which,
16 were identified as metabolic pathways with differen-
tial abundances between patients and controls in at least
two datasets (referred as to Dif-pathways, see Methods).
Most of the HDC-pathways that decreased in at least
three datasets were related to carbohydrate degradation
for production of energy and short-chain fatty acids,
such as D-galactose degradation and sucrose degradation
(Fig. 1c) [31]. In addition, HDC negatively correlated
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with the degradation pathways of several monosaccha-
rides and monosaccharide derivatives, including fucose,
mannose, galactose and UDP-N-acetyl-D-glucosamine
(Additional file 4: Table S4), which are known building
blocks of gut mucus glycans; these results indicated de-
creased concentrations of the monosaccharides and de-
rivatives, further confirming that the intestinal barrier is
compromised [30].

Together, our results suggested that CIB, as indicated by
HDCs that can be directly quantified from gut metage-
nomics data, maintained a relationship with gut micro-
biota dysbiosis both in taxonomic and functional levels.

Combination of HDC and microbiome contributed
significantly to patient stratification

We next tested if HDC-species and HDC-pathways
could contribute to patient stratification in CRC. Similar
to Wirbel et al [15] and Thomas et al [16], we performed
a leave-one-dataset-out (LODO) analysis [32] in which
Random forest classifiers were trained on the combined
datasets of all but one, and tested on the one that was
left-out; we did this for each dataset in turn. As shown
in Fig. 2a and b, for models trained using species and
pathways abundances, including HDCs could improve
prediction performance. More importantly, HDC was
ranked as a top feature, i.e. the 4th and 1st in the taxo-
nomic (Fig. 2c) and functional (Fig. 2d) models, respect-
ively. Interestingly, both HDC-related models performed
better than models based on Dif-species and Dif-pathways,
even though overlap existed in the taxonomic and func-
tional features (Fig. 2a, b). These results indicated the
HDC-correlated features could contribute substantially to
patient stratification and disease diagnosis (Fig. 2).

Similar results were found in CD

We then checked if similar results could be found in
CD. A previous study reported elevated fecal HDCs in
pediatric CD patients as compared with healthy controls
[13]; the authors used quantitative polymerase chain re-
action (QPCR) method to quantify HDCs by targeting
human beta-tubulin coding-sequences. The authors also
calculated HDCs from the metagenomics data and re-
ported that the QPCR results were positively correlated
with metagenomics-data-derived HDC values (r=0.81
Pearson’s correlation, p =9.3 x 10 ; see ref. [13]). We
re-calculated the HDCs using our methods and found
they were highly correlated with theirs (r=0.978 Pear-
son’s correlation, p<2.2e-16; Additional file 5: Table
S5). These results further validated the reliability and ac-
curacy of metagenomics-derived HDCs.

We identified 46 HDC-species (Control+Baseline
group, Spearman correlation, P-value <0.001), most of
which (31 out of 47) overlapped with the Dif-species of
CD that showed significant abundance changes between
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healthy controls and untreated patients (Control+Base-
line group, Wilcoxon rank sum test, adjusted p-value <
0.05, Fig. 3a, Additional file 6: Table S6 and Additional
file 7: Table S7). Akkermansia muciniphila and Bacter-
oides caccae as mucus-degrading commensal species,
were expectedly reduced with increasing HDCs, because
impaired gut was insufficient to secrete mucus [33]. An-
other control-enriched bacterial marker, Eubacterium
ventriosum, was previously identified to be negatively as-
sociated with fundamental components of eukaryotic cell
membranes [34]. Similarly, differential pathways partly
overlapped with HDC related pathways, including those
involved in carbohydrate, protein and glycogen metabol-
ism, the decreased abundances of which were known to
associated with nutrient deficiency and dysfunction of in-
testine (Additional file 8: Table S8 and Additional file 9:
Table S9) [31, 35, 36].

We also built random forest classifiers using species
and pathways abundances for CD and did 10 times re-
peated 10-fold cross-validation. Similar to CRC, we
found that adding HDC to the input data could improve
prediction performance (AUC increased from 0.94 to
0.95 based on species profile; increased from 0.90 to
0.92 based on pathways profile; Additional file 10: Fig.
S1); similar to CRC, we found that HDC was ranked as a
top important feature (Ist in this case), and majority of
top 10 features were HDC-species (Fig. 3b). Interest-
ingly, although overlapped significantly, these species are
quite different from those in CRC (Additional file 11:
Table S10) in terms of their changes and importance in
patient stratification (Fig. 3b), likely due to differences of
disease localizations and microenvironments: CD com-
monly occurred in the terminal part of ileum and
present an inflammatory habitat for microbes, while
CRC appearing as tumor microenvironment occurred in
the colorectum [37, 38]. Nonetheless, it appears that ele-
vated HDC is a common feature of intestinal diseases,
while different diseases can be distinguished by their dif-
ferent gut dysbiosis profiles.

HDC and related dysbiosis signified clinical treatment
outcomes

The CD patients we analyzed were treated with diet inter-
vention or anti-TNF antibodies; the outcomes were evalu-
ated with fecal metagenomics sequencing at week 1, 4 and
8 after the interventions [13]. We found that the HDCs
were significantly decreased over time (Fig. 4a). As ex-
pected, HDC correlates significantly with FCP (Pearson’s
correlation = 0.498, p < 2.2e-16, Additional file 12: Fig. S2),
a clinical indicator of intestinal inflammation released by
neutrophils. However, concentrations of FCP were only
associated with 3 CD Dif-species, indicating that HDC is a
better biomarker related with dysbiosis than FCP. Strik-
ingly, we found 23 of the HDC-species in CD showed
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Fig. 2 HDC and correlated species and metabolic functions contribute significantly to patient stratification in LODO analysis in CRC. a, Predictive
performances as AUC values obtained using LODO analysis by training the models on the species abundances. The AUC values were averaged
from repeated results of 10-fold validation analysis. The labels of y-axis mean the features used for building models. Dif-species: species whose
abundances are significantly different between CRC and controls in at least two datasets (Wilcoxon Rank Sum Test, see Methods); HDC-species:
HDC-correlated species in at least two datasets; see Methods for details. All-species: the overall species. b, AUC values obtained using LODO
analysis by training the models on the metabolic pathway abundances. The labels of y-axis mean the features used for building models. Dif-
pathways: pathways whose abundances are significantly different between CRC and controls in at least two datasets (Wilcoxon Rank Sum Test,
see Methods); HDC-pathways: HDC-correlated pathways; see Methods for details. All-pathways: the overall pathways. ¢-d, Ranking of feature
importance in the HDC + All-species model ¢ and HDC + All-pathways model d. The models were trained by using HDC values and relative

abundances of all species/pathways as input. The importance scores were reported by the LODO models. The features were ranked according to
the median importance scores from 100 repeated results of 10-fold cross-validation analysis. Dif: species/pathways whose abundances are
significantly different between CRC and controls in at least two datasets (see Methods); HDC-related: species/pathways correlated with HDC in at
least two datasets (see Methods); Both: differential species/pathways that was also correlated with HDC; HDC: host DNA contents; Other: species/
pathways that were neither HDC-related nor differential
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Fig. 3 HDC was also elevated in CD, correlated with differential species and contributed significantly to patient stratification. a, Species that were
correlated with HDCs in the group of healthy controls and untreated patients (Baseline + Control, Spearman correlation, p-value < 0.001). Also
plotted are the correlation coefficients between HDCs and species abundances in patients at three time-points after they were treated (Week,
Week4 and Week8). Correlation coefficients were color-coded according to their significance levels. b, Ranking of feature importance in the
HDC + All-species model. The models were trained by using HDC values and relative abundances of all species as input; only the data of the
healthy controls and untreated patients were used. The importance scores were reported by the Random forest models. The features were
ranked according to the median importance scores from 100 repeated results of cross-validation analysis (see Methods). Dif: species whose
abundances are significantly different between untreated CD and controls (see Methods); Both: differential species that was also correlated with
HDGC, HDC: host DNA contents; Other: species that were neither HDC-related nor differential

coordinated changes with HDC, i.e. species that were posi-
tively (negatively) correlated with HDC in the Control+-
Baseline group decreased (increased) with the decreasing
HDCs (Kruskal-Wallis rank sum test, adjusted p-value <
0.05, Additional file 13: Fig. S3), suggesting that the inter-
vention that reduced fecal HDCs could globally reverse
the gut dysbiosis in a species-specific manner. Such a con-
clusion was further supported by the observation that the
correlations between HDC and some of the species were
consistent in the Control+Baseline, Weekl, Week4 and
Week8 groups (Fig. 3a).

We then investigated the effects of classifiers based on
HDC and gut microbiome in predicting response to CD
therapy (see Methods). As we expected, including HDC
to the models could improve performances (Fig. 4b,
Additional file 14: Fig. S4); again, we found that models
based on HDC-species performed better than models
based on Dif-species. These results suggested we need
reform the previous thinking that considers only chan-
ged species as biomarkers of patients, because there
were some species whose alterations did not reach the
significance threshold (e.g. fdr<0.05) but had a
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axis is true positive rate, and AUC is the area under the curve
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Fig. 4 HDCs were reduced during treatment, and could improve the performance of machine learning models in predicting treatment response
of CD patients. a, HDCs were significantly reduced along treatment intervention. b, Predictive results as AUC values obtained from 10-time
repeated 10-fold cross-validation models for classifying treatment response. The labels of y-axis mean the features used for building models. HDC-
species: HDC-correlated species in untreated patients and controls (see Methods for details); Dif-species: species whose abundances are
significantly different between untreated patients and controls (Wilcoxon Rank Sum Test, see Methods); All-species: the overall species. ¢, External
validation of models based on HDC and species showing in Fig. 4b. Accuracies were displayed as ROC plot, in which x axis is false positive rate, y

tendency. Besides, according to accuracies of classifiers
built on pathways, we hypothesized that the microbial
functional network didn’t change a lot during treatment,
even if the conditions of the patients were improved
over time (Additional file 14: Fig. S4). To confirm our
hypothesis above, we collected another metagenomics
dataset of CD patients for external validation. Interest-
ingly, models built on HDC and HDC-species performed
better (AUC=0.71, Fig. 4c) than other models
(AUCs<0.66) (Additional file 15: Table S11). Most of the
top features of HDC related classifier are consistent with
foregoing results that several HDC-species tended to re-
cover when patients were under treatment (Additional
file 16: Fig. S5). The performance of the classifiers con-
firmed our inference that HDC related features (i.e.
HDC-species) had the potential to be signatures in clas-
sifying therapeutic responses (Fig. 4b, Additional file 15:
Table S11).

Discussion

In this study, we showed that HDCs in fecal metage-
nomic data were significantly elevated in patients of in-
testinal diseases, and thus could be used as a
quantitative indicator for CIB. CIB can increase the
host-derived contents including epithelial cells and/or
blood to be shed into intestinal lumen, alter the local
gut environment and facilitate gut microbiota dysbiosis
in view of the reciprocal relationship between gut micro-
biota and the host [39, 40]. As we expected, HDCs as a
proxy of CIB, showed a higher abundance in feaces of
patients, correlated significantly with many disease-

altered species and metabolic pathways in CRC and CD,
and can also be used as a quantitative indicator of gut
microbiota dysbiosis.

Age, gender and BMI (body-mass index) are known
confounding factors of the taxonomic profiles of fecal
metagenomic data. To check if the differential HDCs
could also be attributed to them, we tested if these fac-
tors were well matched between the cases and controls
within the projects. Six out of the seven CRC datasets
showed well-matched gender, age, and BMI profiles
(Additional file 17: Table S12). For the remaining data-
set, we applied a generalized linear modeling function
(glm) to control for the three confounders; we found
that the HDCs were still significantly higher in cases
than in controls (Additional file 18: Table S13). For the
CD dataset, the meta-data were not available. However,
according to the related publication [13], the authors
performed similar statistical analysis and found no sig-
nificant differences on gender and age between patients
and controls. We thus believe that the elevated HDCs
were not the results of biased sample characteristics.

We further tested if biogeographic ancestry had im-
pacts on our analysis. We analyzed the dataset that con-
sisting of samples from two countries (PRJEB6070), and
found that there was no difference in microbial alpha di-
versity between Germany and France (Wilcoxon rank
sum test, CTR: p-value = 0.059, CRC: p-value = 0.16). We
also did cross-project comparison, and found that all
projects tended to have similar levels of HDCs in their
cases and controls respectively, although each project fo-
cused on samples of different countries from others (Fig.
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1a). These results suggested our results were not influ-
enced by biogeographic ancestry of the samples.

So far researchers have mostly focused on the poten-
tial of gut microbes as non-invasive biomarkers solely,
or together with an extra test indicating CIB, such as
FOBT and FCP, which are fast but low-sensitive and
low-specific. Our results suggested that CIB could be
quantified as HDCs from metagenomics data, that were
directly proportional with concentrations of FCP. As we
have expected, including HDC as an additional feature,
we obtained better machine learning models in patient
stratification in both CRC and CD.

We also showed that HDC can be used as an indicator
for effective treatment. HDCs were reduced significantly
during diet or drug intervention in CD patients, which
were accompanied by the recovery of many CD-related
species. FCP correlated with only a few of the species,
suggesting that HDC can be a better indicator for the
global recovery of gut dysbiosis. Again, machine learning
models including HDC achieved better performance in
predicting treatment responses in patients.

Surprisingly, we found that the overall model perform-
ance based on HDC-correlated features was better than
the differential features (i.e. taxonomic or functional fea-
tures that showed significant differences between pa-
tients and healthy controls), although they overlapped
significantly. These results suggest that the perturbation
of important species could also contribute to disease de-
velopment, even though the differences were not statisti-
cally significant. In addition, we found there were some
biases in distribution of HDC-related features, which
were mainly supplied by samples from Chinese,
Germany and Australian and rarely contributed by Japa-
nese and USA (Additional file 19: Table S14). However,
the LODO results showed that the HDC-related species/
pathways based models worked well on each projects
(mean = SD of AUC: 0.83 + 0.07 in HDC-species model,
0.65 + 0.07 in HDC-pathways model, see Fig. 2), suggest-
ing HDC-related species have the potential to be com-
mon features. These results also highlighted the
robustness of meta-analysis.

In silico removal of host DNAs from metagenomics
data is a recommended procedure [41], in part due to
the considerations of contamination. Our results indicate
that the metagenomics data can validate itself by looking
at the correlated changes in HDC and related gut micro-
bial species: a sudden increase in HDC without matching
alterations in related bacteria is a strong indication of
contamination. This line of reasoning can be applied to
any host-produced molecules identified from feces, such
as DNA, RNAs, proteins, metabolites and even cells, and
would pave the way for extracting more host related in-
formation directly from fecal samples using multi-omics
techniques and making use of them without worrying
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too much about contamination. As we have shown in
this study, host related information directly extracted
from fecal samples is reliable and useful.

In summary, we found that CIB as indicated by ele-
vated human DNA contents (HDCs) in feces, is a com-
mon feature of intestinal diseases; HDC could be a
promising biomarker for intestinal diseases because it
signified the abundances changes of most of disease-
related species, ranked as the top contributor to machine
learning models for patient stratification and treatment
response.

Conclusions

We identified that intestinal injury, manifesting as in-
creased HDC:s s in faeces were associated with gut micro-
biome dysbiosis, and microbial community could be
reversed during treatment along with reduced HDCs. In-
cluding HDCs as an additional feature to metagenomics-
based classifiers could improve their performance in pa-
tient stratification. Since both HDCs and the taxonomic
and metabolic profiles could be calculated from metage-
nomic sequencing data, our study further supported the
fecal metagenomics as a means for non-invasive diagnosis
and even assessment of therapeutic response of intestinal
diseases.

Methods
Metagenomics data analysis
A total of 354 CRC patients, 110 CD patients and 382
controls from nine fecal metagenomics datasets were in-
cluded in this study for classifier construction and exter-
nal validation. Raw sequencing reads and metadata of
the seven human CRC metagenomics datasets were ob-
tained from European Nucleotide Archive (ENA) under
the following ENA project identifiers: PRJEB10878 [11],
PRJEB27928 [15], PRJEB7774 [12], PRJEB12449 [14], and
PRJEB6070 [10], PRJNA447983 [16] (cohort 1), and
PRJDB4176 [15]. Raw sequencing reads and metadata of
the CD metagenomics dataset were obtained from NCBI
SRA database under SRA ID: SRP057027 [13] for model
construction and PRJNA384246 for external validation
[19]. More details, including the nationality and age of
these subjects, can be found in Additional file 1: Table S1.
To remove adapters and low quality of bases, raw
reads were filtered and trimmed by Trimmomatic [42]
v3.6, using the Truseq3 adapter files and option with
MINLEN cutoff 50. To estimate the human DNA con-
tents (HDC) in metagenomics sequencing reads, the
remaining reads (clean reads) were aligned to the human
reference genome (hgl9) using bowtie2 [43] (version
2.3.4.3); the HDC of a sample was calculated as the per-
centage of mapped reads out of total clean reads in the
sample. The human DNA contents measured by quanti-
tative PCR (QPCR) results in CD dataset were obtained



Jiang et al. BMC Genomics (2020) 21:348

from the corresponding publication by Lewis and col-
leagues [13]. Reads mapped to the human genome were
removed before subsequent analyses. Taxonomic abun-
dances of all metagenomic samples were quantified
using MetaPhlAn2 [44]. HUMAnN2 [45] was used to
calculate relative pathway abundances via mapping reads
to ChocoPhlAn database and full UniRef90 database.

In each project except PRINA384246 which was for
external validation, to remove noise, species with max
abundance < 0.1% in all samples as well as species whose
average abundance across all samples below 0.01% were
removed from further analyses. Similarly, pathways with
zero value in at least 15% samples and with maximum
relative abundances less than 1x 10”° in all samples of a
project were also removed. The abundance data were
then loaded into R and analyzed (https://www.r-projec-
t.org; version 3.5.1).

Statistical analyses

Wilcoxon Rank Sum Test was used to detect significant
between-group differences in relative abundances of taxo-
nomic- and pathway- features; features with adjusted P-
value < 0.05 in at least two datasets of CRC were deemed
significant; Similarly, differential features with adjusted P-
value <0.05 between controls and untreated patients
(marked as baseline) in CD dataset were deemed signifi-
cant. Spearman correlation was used to find HDC corre-
lated species and pathways, features with P-value < 0.05 in
at least two datasets of CRC were selected as significantly
correlated features. For CD dataset, HDC related species
and pathways with P-value < 0.001 were identified in con-
trols and untreated patients using Spearman correlation.
Besides, for determining the relationships between HDCs
and species during the treatment, those identified HDC-
related species were used to compute their spearman cor-
relations with HDCs in each treatment period (Weekl,
week 4 and week8). Also we used Kruskal-wallis test to
examine which HDC-related species decreased signifi-
cantly during therapy.

Classifiers construction

The randomForest package in R was used to build math-
ematic classification models (classifiers) that are capable
of distinguishing patients and tumor-free participants,
extract features that can be used to discriminate differ-
ent phenotype groups and calculate feature importance
scores. The createMultiFolds algorithm of caret package
was used to split dataset into 10 folds repeatedly to avoid
biases due to simply one split.

For the CRC data, a so-called LODO analysis was also
performed in order to evaluation cross-study performance
of the obtained classifiers. In LODO analyses, all datasets
except the one used for model testing were pooled as a
training dataset which would be implemented the within-
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dataset 10-fold cross-validation; LODO was performed for
each dataset in turn and were repeated 10 times, for all the
seven CRC datasets. The LODO training dataset prediction
accuracy was measured through 10 times repeated 10-fold
cross-validation.

For the CD data, 10 times repeated 10-fold cross-
validation was used to assess the within-dataset accuracy
of the resulting classifiers. We first utilized the data of
controls and baseline for building classifiers to distin-
guish CD patients from controls. Then we constructed
classifiers for predicting treatment response, only con-
sidering patients with complete longitudinal records
whose FCP over 250 pg/g at baseline [13]. We defined
response to therapy as a decrease in FCP to <250 pg/g in
a given period. For external validation, the information
of therapeutic response was obtained from original art-
icle, which estimated clinical response according to HBI
and SCCAI [19].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-6749-z.

Additional file 1: Table S1. A list of CRC and CD projects used in this
study and the numbers of controls and cases.

Additional file 2: Table S2. Metadata of participants in CRC projects
and their HDC%. HDC means the human DNA content.

Additional file 3: Table S3. Species that correlated with HDC in more
than two CRC datasets statistically. Species whose Spearman p-value <
0.05 in at least two projects were deemed as HDC correlated species. The
column overlap ="1" means that the species is a signature feature whose
abundance were significantly different in patients when compared with
controls.

Additional file 4: Table S4. Pathways that correlated with HDC in
more than two CRC datasets statistically. Pathways whose Spearman p-
value < 0.05 in at least two projects were deemed as HDC correlated
Pathways. The column overlap = “1" means that the pathway is a signa-
ture feature whose abundance were significantly different in patients
when compared with controls.

Additional file 5: Table S5. A list of samples of the CD

project (SRP057027) and their HDC% produced by two ways. Our HDC%
were generated using Bowtie2, while Lewis's HDC% were generated
using BMtagger (pmid:26468751).

Additional file 6: Table S6. Species that correlated with HDCs in
untreated patients and controls from CD project (P-value < 0.001). We
calculated Spearman correlation between HDC and HDC-related species
in each stage of patients and controls.

Additional file 7: Table S7. Differential species in the Control+Baseline
group of CD (Adjusted P-value < 0.05). The column overlap =“1" means
that the species were correlated with HDC (Spearman correlation P-value
<0.001, see Table S6).

Additional file 8: Table S8. Pathways that correlated with HDCs in
untreated patients and controls from CD project (P-value < 0.001). We
calculated Spearman correlation between HDC and HDC-related path-
ways in each stage of patients and controls.

Additional file 9: Table S9. Differential pathways in the
Control+Baseline group of CD (Adjusted P-value < 0.05). The column
overlap ="1" means that the pathways were correlated with HDC (Spear-
man correlation P-value < 0.001, see Table S8).

Additional file 10: Figure S1. AUC of random forest classifiers based
on species/pathways profiles (SRP057027) for predicting untreated CD
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patients from controls. The labels of y-axis mean the features used for
building models. Dif-species/pathways: species/pathways whose abun-
dances are significantly different between untreated CD patients and
controls (see Methods); HDC-species/pathways: species/pathways corre-
lated with HDC (see Methods); all-species/pathways: the overall species/
pathways.

Additional file 11: Table $10. Overlapped features of the top 30
important features between CD and CRC. The columns
“Importance_in_CRC" and “Importance_in_CD" mean the median
importance scores of the top 30 features in the CRC models and CD
models, respectively. The columns “ranking_in_CRC" and “ranking_in_CD"
mean the importance degrees of the shared features in the CRC models
and CD models separately.

Additional file 12: Figure S2. Pearson correlation between HDC and
FCP in CD dataset (SRP057027).

Additional file 13: Figure S3. Distributions of consistently HDC-
correlated species in controls and patients with complete longitudinal
treatment of CD dataset (SRP057027). Y-axis is log10 transformed relative
abundances.

Additional file 14: Figure S4. AUC of random forest classifiers based
on pathways profiles (SRP057027) for predicting treatment response. The
labels of y-axis mean the features used for building models. HDC-related
pathways: pathways correlated with HDC (see Methods); Dif-pathways:
pathways whose abundances are significantly different between un-
treated CD patients and controls (see Methods); all-pathways: the overall
pathways.

Additional file 15: Table S11. AUC of classifiers based on species/
pathways profiles (SRP057027) when predicting treatment response of
external dataset (PRINA384246). Features column means which type of
features used for constructing random forest model.

Additional file 16: Figure S5. Ranking of feature importance in the
HDC + HDC-related species model for predicting treatment response. The
models were trained by using HDC values and relative abundances of
HDC-related species as input; only the data of the patients with complete
longitudinal treatment were used. The importance scores were reported
by the Random forest models. The features were ranked according to the
median importance scores from 100 repeated results of cross-validation
analysis (see Methods). Both: HDC-related species whose abundances
were differential significantly between untreated CD patients and con-
trols; HDC: host DNA contents; HDC-related: species that were correlated
with HDC. Those species marked a star in front of the name were the
consistent HDC-related species shown in Fig. S3.

Additional file 17: Table S12. Characteristics of controls and CRC
patients in seven CRC projects.

Additional file 18: Table S13. Generalized linear model based on the
samples from PRJEB27928 to identify the significant predictors associated
with CRC.

Additional file 19: Table S14. The contribution of each dataset on
identification of HDC-related species and HDC-related pathways. The col-
umn “count_HDCrelated_species” and “count_HDCrelated_pathways"
mean the count of identified HDC-related species and HDC-related path-
ways respectively in the corresponding dataset.
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